A note on the saturation number of the family of k-connected graphs

Size: px
Start display at page:

Download "A note on the saturation number of the family of k-connected graphs"

Transcription

1 A note on the saturation number of the family of k-connected graphs Paul S. Wenger January 8, 014 Abstract Given a family of graphs F, a graph G is F-saturated if no member of F is a subgraph of G, but for all e E(G), some member of F is a subgraph of G + e. The saturation number of F, denoted sat(n, F), is the minimum number of edges in an n-vertex F-saturated graph. In this note we determine the saturation number for the family of k-connected graphs. Keywords: 05C35; saturation; k-connected; subgraph Given a family of graphs F, a graph G is F-saturated if no member of F is a subgraph of G, but for all e E(G), some member of F is a subgraph of G + e. The maximum number of edges in an n-vertex F-saturated graph is the traditional extremal number introduced by Turán. The saturation number of F, denoted sat(n, F), is the minimum number of edges in an n-vertex F-saturated graph. Saturation numbers were first studied by Erdős, Hajnal, and Moon [3], who proved that sat(n, K k ) = (k )n ( ) k 1 for n k. Furthermore, they proved that equality holds only for the graph G n,k consisting of a complete graph Q with k vertices plus n k + independent vertices adjacent to every vertex of Q. For a thorough account of the results known about saturation numbers, the reader should consult the excellent survey of Faudree, Faudree, and Schmitt [5]. Let F k denote the family of k-connected graphs. In [9], Mader proved that every n- vertex graph with at least kn edges contains a k-connected graph, thus establishing an upper bound on the extremal number of F k. This bound was later improved by Yuster [1] to 193 kn. These results have become quite useful, notably pertaining to graph minors and 10 subdivisions (e.g. [1, 7, 8]) and various partition problems (e.g. [, 4, 6]). In this note we consider the saturation variant of this question and determine sat(n, F k ). Observe that the School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY; pswsma@rit.edu. 1

2 condition that a graph G is F k -saturated does not mean that G is a maximal graph that is not k-connected. Rather, the addition of an edge to G makes a k-connected subgraph. Throughout we use the terminology and notation of [11]. A k-tree is any graph that is either K k or is obtained by joining a new vertex to a k-clique in a k-tree. Theorem 1. For n k + 1, sat(n, F k ) = (k 1)n. Furthermore, every (k 1)-tree with n vertices is F k -saturated and has this number of edges. The unique smallest K k+1 -saturated graph with n vertices is the Erdős-Hajnal-Moon graph K k 1 K n k+1 ; it is in fact a (k 1)-tree. We prove that all (k 1)-trees are F k - saturated in order to show that the family of minimum F k -saturated graphs is richer than the family of minimum K k+1 -saturated graphs. However, the family of (k 1)-trees is not the complete family of minimum F k -saturated graphs. For example, K k+ (P 3 K ) is F k -saturated but is not a (k 1)-tree. To prove that (k 1)-trees are F k -saturated, we use the following characterization of k-trees and corollary due to Rose [10]. Given two vertices x and y in a graph G, an x, y- separator is a set of vertices S such that G S has no x, y-path. Theorem (Theorem 1.1 in [10]). A graph G is a k-tree if and only if (i) G is connected, (ii) G has a k-clique but no (k + )-clique, and (iii) for all x, y V (G), every minimal x, y-separator is a k-clique. A set of vertices S in a graph G is a separating set if G S has more than one component. The connectivity of G, denoted κ(g), is the minimum size of a separating set when G is not complete and n 1 when G = K n. Given a separating set S in a graph G, an S-lobe is a subgraph of G induced by the union S and the vertex set of a component of G S. Corollary 3 (Corollary.3 in [10]). Let G be a k-tree. If S is a clique that is a separating set of G, then each S-lobe of G is a k-tree. Proof of Theorem 1. Lower Bound: First we show that sat(n, F k ) (k 1)n ( k ). We proceed by induction on n. Observe first that the bound holds trivially for n = k + 1, since the only k-connected graph with at most k + 1 vertices is K k+1. Let G be a F k -saturated graph with V (G) k +.

3 Let S be a smallest separating set in G. Let X and Y be two components in G S, with x V (X) and y V (Y ). Since G is F k -saturated, there is a k-connected subgraph in G + xy, and this subgraph must contain the edge xy. By Menger s Theorem, there are k 1 internally disjoint x, y-paths in G that pass through S. Thus S k 1. Since G is not k-connected, we conclude that κ(g) = k 1. Let S be a smallest separating set in G; hence S = k 1. For any xy E(G) such that x and y lie in the same S-lobe of G (they may both lie in S), a k-connected subgraph H of G + xy must lie in a single S-lobe of G. Otherwise, H contains two vertices separated by S. We now consider two subgraphs of G. Let Y be a component of G S, and let G 1 be the S-lobe containing Y. Let G = G V (Y ). Let m be the number of edges induced by S. If S contains nonadjacent vertices x and y, then G 1 + xy or G + xy contains a k-connected subgraph. If G 1 + xy does not contain a k-connected subgraph, then modify G 1 by adding the edge xy. Similarly, if G + xy does not contain a k-connected subgraph, then modify G by adding the edge xy. Repeat this process for each pair of nonadjacent vertices in S. Thus, with the addition of at most ( ) k 1 m edges, we obtain two Fk -saturated graphs G 1 and G. Let V (G 1 ) = a + k 1 and let V (G ) = b + k 1; thus V (G) = a + b + k 1. By the induction hypothesis we conclude that E(G 1) (k 1)(a + k 1) ( k ) and E(G ) (k 1)(b + k 1) ( k ). Since each of the m edges induced by S lies in both G 1 and G, we obtain the following count on the number of edges in G: 1 E(G) E(G 1) + E(G ) (k 1)(a + k 1) + (k 1)(b + k 1) = (k 1) V (G). 1 Upper Bound: To prove that sat(n, F k ) (k 1)n ( k ) we show that all (k 1)-trees are F k -saturated. We use induction on n. The result holds trivially for n = k + 1 since the only k-connected graph with at most k + 1 vertices is K k+1. Let G be an n-vertex (k 1)-tree with n k +. It is easy to show by induction that G has at least two vertices of degree k 1, and the vertices of degree k 1 form an independent set. Let x be a vertex in G with d(x) = k 1; it follows that G x is also a (k 1)-tree. By the induction hypothesis, G x is F k -saturated, so it remains to show that adding an edge to G that is incident to x yields a k-connected subgraph. 3

4 Let y be a nonneighbor of x in G, and consider the addition of the edge xy. If G has a vertex z such that z / {x, y} and G z is a (k 1)-tree, then by induction G + xy contains a k-connected subgraph. Thus we may assume that G has exactly two vertices of degree k 1, namely x and y. Let S be a set of k 1 vertices in G + xy. If S is not a clique, then by Theorem, G S is connected, and therefore S is not a separating set of G + xy. If S is a clique that separates G, then by Corollary 3 each S-lobe of G is a (k 1)-tree. Thus each lobe contains a vertex of degree k 1 (in G) that is not in S. Consequently there are only two S-lobes in G, one containing x and the other containing y. Thus S is not a separating set in G + xy, and we conclude that G + xy is k-connected. References [1] T. Böhme, K-I. Kawarabayashi, J. Maharry, and B. Mohar, Linear connectivity forces large bipartite minors, J. Combin. Theory Ser. B 99 (009), no. 3, [] T. Böhme and A. Kostochka, Many disjoint dense subgraphs versus large k-connected subgraphs in large graphs with given edge density, Discrete Math. 309 (009), no. 4, [3] P. Erdős, A. Hajnal and J.W. Moon, A problem in graph theory, Amer. Math. Monthly 71 (1964), [4] M. Ferrara, C. Magnant, P. Wenger, Conditions for families of disjoint k-connected subgraphs in a graph, Discrete Math. 313 (013), no. 6, [5] J. Faudree, R. Faudree, and J. Schmitt, A survey of minimum saturated graphs, Electron. J. Combin. 18 (011), Dynamic Survey 19, 36 pp. (electronic). [6] A. Gyárfás, M. Ruszinkó, G. Sárközy, and E. Szemerédi, An improved bound for the monochromatic cycle partition number. J. Combin. Theory Ser. B 96 (006), no. 6, [7] D. Kühn, and D. Osthus, Forcing unbalanced complete bipartite minors, European J. Combin. 6 (005), no. 1, [8] D. Kühn, and D. Osthus, Extremal connectivity for topological cliques in bipartite graphs, J. Combin. Theory Ser. B 96 (006), no. 1,

5 [9] W. Mader, Existenz n-fach zusammenhängender Teilgraphen in Graphen genügend grosser Kantendichte, Abh. Math. Sem. Univ. Hamburg 37 (197), [10] D.J. Rose, On simple characterizations of k-trees, Discrete Math., 7 (1947), [11] D.B. West, Introduction to Graph Theory, second ed., Prentice Hall, Upper Saddle River, NJ, 001. [1] R. Yuster, A note on graphs with k-connected subgraphs, Ars Combin. 67 (003),

Colored Saturation Parameters for Rainbow Subgraphs

Colored Saturation Parameters for Rainbow Subgraphs Colored Saturation Parameters for Rainbow Subgraphs Michael D. Barrus 1, Michael Ferrara, Jennifer Vandenbussche 3, and Paul S. Wenger 4 June 13, 016 Abstract Inspired by a 1987 result of Hanson and Toft

More information

Colored Saturation Parameters for Rainbow Subgraphs

Colored Saturation Parameters for Rainbow Subgraphs Colored Saturation Parameters for Rainbow Subgraphs Michael Barrus 1, Michael Ferrara, Jennifer Vandenbussche 3, and Paul S. Wenger 4 December 30, 014 Abstract Inspired by a 1987 result of Hanson and Toft

More information

HAMBURGER BEITRÄGE ZUR MATHEMATIK

HAMBURGER BEITRÄGE ZUR MATHEMATIK HAMBURGER BEITRÄGE ZUR MATHEMATIK Heft 299 Bridges in Highly Connected Graphs Paul Wollan December 2007 Bridges in highly connected graphs Paul Wollan Mathematisches Seminar University of Hamburg Bundesstr.

More information

SUBDIVISIONS OF TRANSITIVE TOURNAMENTS A.D. SCOTT

SUBDIVISIONS OF TRANSITIVE TOURNAMENTS A.D. SCOTT SUBDIVISIONS OF TRANSITIVE TOURNAMENTS A.D. SCOTT Abstract. We prove that, for r 2 and n n(r), every directed graph with n vertices and more edges than the r-partite Turán graph T (r, n) contains a subdivision

More information

Induced Subgraph Saturated Graphs

Induced Subgraph Saturated Graphs Theory and Applications of Graphs Volume 3 Issue Article 1 016 Induced Subgraph Saturated Graphs Craig M. Tennenhouse University of New England, ctennenhouse@une.edu Follow this and additional works at:

More information

A generalization of Mader s theorem

A generalization of Mader s theorem A generalization of Mader s theorem Ajit A. Diwan Department of Computer Science and Engineering Indian Institute of Technology, Bombay Mumbai, 4000076, India. email: aad@cse.iitb.ac.in 18 June 2007 Abstract

More information

Subdivided graphs have linear Ramsey numbers

Subdivided graphs have linear Ramsey numbers Subdivided graphs have linear Ramsey numbers Noga Alon Bellcore, Morristown, NJ 07960, USA and Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv,

More information

Non-zero disjoint cycles in highly connected group labelled graphs

Non-zero disjoint cycles in highly connected group labelled graphs Non-zero disjoint cycles in highly connected group labelled graphs Ken-ichi Kawarabayashi Paul Wollan Abstract Let G = (V, E) be an oriented graph whose edges are labelled by the elements of a group Γ.

More information

ON THE NON-(p 1)-PARTITE K p -FREE GRAPHS

ON THE NON-(p 1)-PARTITE K p -FREE GRAPHS Discussiones Mathematicae Graph Theory 33 (013) 9 3 doi:10.7151/dmgt.1654 Dedicated to the 70th Birthday of Mieczys law Borowiecki ON THE NON-(p 1)-PARTITE K p -FREE GRAPHS Kinnari Amin Department of Mathematics,

More information

Graphs of Large. Connectivity and. Chromatic Number. N. Alon DEPARTMENT OF MATHEMATICS TEL AVIV UNIVERSITY RAMAT AVIV. TEL AVIV ISRAEL

Graphs of Large. Connectivity and. Chromatic Number. N. Alon DEPARTMENT OF MATHEMATICS TEL AVIV UNIVERSITY RAMAT AVIV. TEL AVIV ISRAEL Subgraphs of Large Connectivity and Chromatic Number in Graphs of Large Chromatic Number N. Alon DEARTMENT OF MATHEMATICS TEL AVIV UNIVERSITY RAMAT AVIV. TEL AVIV 69978 ISRAEL D. Kleitman DEARTMENT OF

More information

EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS. Jordan Journal of Mathematics and Statistics (JJMS) 8(2), 2015, pp I.

EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS. Jordan Journal of Mathematics and Statistics (JJMS) 8(2), 2015, pp I. EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS M.S.A. BATAINEH (1), M.M.M. JARADAT (2) AND A.M.M. JARADAT (3) A. Let k 4 be a positive integer. Let G(n; W k ) denote the class of graphs on n vertices

More information

Saturation Numbers for Families of Ramsey-minimal Graphs

Saturation Numbers for Families of Ramsey-minimal Graphs Journal of Combinatorics,,, Saturation Numbers for Families of Ramsey-minimal Graphs Guantao Chen, Michael Ferrara, Ronald J. Gould, Colton Magnant and John Schmitt Given a family of graphs F, a graph

More information

Abstract. A graph G is perfect if for every induced subgraph H of G, the chromatic number of H is equal to the size of the largest clique of H.

Abstract. A graph G is perfect if for every induced subgraph H of G, the chromatic number of H is equal to the size of the largest clique of H. Abstract We discuss a class of graphs called perfect graphs. After defining them and getting intuition with a few simple examples (and one less simple example), we present a proof of the Weak Perfect Graph

More information

Extremal functions for rooted minors

Extremal functions for rooted minors Extremal functions for rooted minors Paul Wollan Abstract The graph G contains a graph H as a minor if there exist pair-wise disjoint sets {S i V (G) i = 1,..., V (H) } such that for every i, G[S i] is

More information

K 4 C 5. Figure 4.5: Some well known family of graphs

K 4 C 5. Figure 4.5: Some well known family of graphs 08 CHAPTER. TOPICS IN CLASSICAL GRAPH THEORY K, K K K, K K, K K, K C C C C 6 6 P P P P P. Graph Operations Figure.: Some well known family of graphs A graph Y = (V,E ) is said to be a subgraph of a graph

More information

Monochromatic Tree Partition for Complete. Multipartite Graphs

Monochromatic Tree Partition for Complete. Multipartite Graphs Int. J. Contemp. Math. Sciences, Vol. 6, 2011, no. 43, 2129-2134 Monochromatic Tree Partition for Complete Multipartite Graphs Shili Wen and Peipei Zhu Department of Mathematics Zhejiang Normal University

More information

Ramsey numbers in rainbow triangle free colorings

Ramsey numbers in rainbow triangle free colorings AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 46 (2010), Pages 269 284 Ramsey numbers in rainbow triangle free colorings Ralph J. Faudree Department of Mathematical Sciences University of Memphis Memphis,

More information

CONNECTIVITY AND NETWORKS

CONNECTIVITY AND NETWORKS CONNECTIVITY AND NETWORKS We begin with the definition of a few symbols, two of which can cause great confusion, especially when hand-written. Consider a graph G. (G) the degree of the vertex with smallest

More information

CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN

CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN TOMASZ LUCZAK AND FLORIAN PFENDER Abstract. We show that every 3-connected claw-free graph which contains no induced copy of P 11 is hamiltonian.

More information

K s,t -saturated bipartite graphs

K s,t -saturated bipartite graphs K s,t -saturated bipartite graphs Wenying Gan Dániel Korándi Benny Sudakov Abstract An n-by-n bipartite graph is H-saturated if the addition of any missing edge between its two parts creates a new copy

More information

Partitioning Complete Multipartite Graphs by Monochromatic Trees

Partitioning Complete Multipartite Graphs by Monochromatic Trees Partitioning Complete Multipartite Graphs by Monochromatic Trees Atsushi Kaneko, M.Kano 1 and Kazuhiro Suzuki 1 1 Department of Computer and Information Sciences Ibaraki University, Hitachi 316-8511 Japan

More information

Dirac-type characterizations of graphs without long chordless cycles

Dirac-type characterizations of graphs without long chordless cycles Dirac-type characterizations of graphs without long chordless cycles Vašek Chvátal Department of Computer Science Rutgers University chvatal@cs.rutgers.edu Irena Rusu LIFO Université de Orléans irusu@lifo.univ-orleans.fr

More information

On the packing numbers in graphs arxiv: v1 [math.co] 26 Jul 2017

On the packing numbers in graphs arxiv: v1 [math.co] 26 Jul 2017 On the packing numbers in graphs arxiv:1707.08656v1 [math.co] 26 Jul 2017 Doost Ali Mojdeh and Babak Samadi Department of Mathematics University of Mazandaran, Babolsar, Iran damojdeh@umz.ac.ir samadibabak62@gmail.com

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

Fundamental Properties of Graphs

Fundamental Properties of Graphs Chapter three In many real-life situations we need to know how robust a graph that represents a certain network is, how edges or vertices can be removed without completely destroying the overall connectivity,

More information

Technische Universität Ilmenau Institut für Mathematik

Technische Universität Ilmenau Institut für Mathematik Technische Universität Ilmenau Institut für Mathematik Preprint No. M 07/26 Precoloring extension for K4-minorfree graphs Pruchnewski, Anja; Voigt, Margit November 2007 Impressum: Hrsg.: Leiter des Instituts

More information

Few T copies in H-saturated graphs

Few T copies in H-saturated graphs Few T copies in H-saturated graphs Jürgen Kritschgau Abhishek Methuku Michael Tait Craig Timmons October 1, 018 Abstract A graph is F -saturated if it is F -free but the addition of any edge creates a

More information

Extremal Graph Theory. Ajit A. Diwan Department of Computer Science and Engineering, I. I. T. Bombay.

Extremal Graph Theory. Ajit A. Diwan Department of Computer Science and Engineering, I. I. T. Bombay. Extremal Graph Theory Ajit A. Diwan Department of Computer Science and Engineering, I. I. T. Bombay. Email: aad@cse.iitb.ac.in Basic Question Let H be a fixed graph. What is the maximum number of edges

More information

arxiv: v2 [math.co] 13 Aug 2013

arxiv: v2 [math.co] 13 Aug 2013 Orthogonality and minimality in the homology of locally finite graphs Reinhard Diestel Julian Pott arxiv:1307.0728v2 [math.co] 13 Aug 2013 August 14, 2013 Abstract Given a finite set E, a subset D E (viewed

More information

Discrete Applied Mathematics

Discrete Applied Mathematics Discrete Applied Mathematics 160 (2012) 505 512 Contents lists available at SciVerse ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam 1-planarity of complete multipartite

More information

NOTE ON MINIMALLY k-connected GRAPHS

NOTE ON MINIMALLY k-connected GRAPHS NOTE ON MINIMALLY k-connected GRAPHS R. Rama a, Suresh Badarla a a Department of Mathematics, Indian Institute of Technology, Chennai, India ABSTRACT A k-tree is either a complete graph on (k+1) vertices

More information

The strong chromatic number of a graph

The strong chromatic number of a graph The strong chromatic number of a graph Noga Alon Abstract It is shown that there is an absolute constant c with the following property: For any two graphs G 1 = (V, E 1 ) and G 2 = (V, E 2 ) on the same

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 6 Basic concepts and definitions of graph theory By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

On the extending of k-regular graphs and their strong defining spectrum

On the extending of k-regular graphs and their strong defining spectrum On the extending of k-regular graphs and their strong defining spectrum Doost Ali Mojdeh Department of Mathematics University of Mazandaran P. O. Box 47416-1467 Babolsar Iran Abstract In a given graph

More information

HW Graph Theory SOLUTIONS (hbovik) - Q

HW Graph Theory SOLUTIONS (hbovik) - Q 1, Diestel 9.3: An arithmetic progression is an increasing sequence of numbers of the form a, a+d, a+ d, a + 3d.... Van der Waerden s theorem says that no matter how we partition the natural numbers into

More information

1 Minimal Examples and Extremal Problems

1 Minimal Examples and Extremal Problems MATH 68 Notes Combinatorics and Graph Theory II 1 Minimal Examples and Extremal Problems Minimal and extremal problems are really variations on the same question: what is the largest or smallest graph

More information

Collapsible biclaw-free graphs

Collapsible biclaw-free graphs Collapsible biclaw-free graphs Hong-Jian Lai, Xiangjuan Yao February 24, 2006 Abstract A graph is called biclaw-free if it has no biclaw as an induced subgraph. In this note, we prove that if G is a connected

More information

Some Upper Bounds for Signed Star Domination Number of Graphs. S. Akbari, A. Norouzi-Fard, A. Rezaei, R. Rotabi, S. Sabour.

Some Upper Bounds for Signed Star Domination Number of Graphs. S. Akbari, A. Norouzi-Fard, A. Rezaei, R. Rotabi, S. Sabour. Some Upper Bounds for Signed Star Domination Number of Graphs S. Akbari, A. Norouzi-Fard, A. Rezaei, R. Rotabi, S. Sabour Abstract Let G be a graph with the vertex set V (G) and edge set E(G). A function

More information

arxiv: v2 [math.co] 25 May 2016

arxiv: v2 [math.co] 25 May 2016 arxiv:1605.06638v2 [math.co] 25 May 2016 A note on a conjecture of Gyárfás Ryan R. Martin Abstract This note proves that, given one member, T, of a particular family of radius-three trees, every radius-two,

More information

Induced-universal graphs for graphs with bounded maximum degree

Induced-universal graphs for graphs with bounded maximum degree Induced-universal graphs for graphs with bounded maximum degree Steve Butler UCLA, Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095, USA. email: butler@math.ucla.edu.

More information

V10 Metabolic networks - Graph connectivity

V10 Metabolic networks - Graph connectivity V10 Metabolic networks - Graph connectivity Graph connectivity is related to analyzing biological networks for - finding cliques - edge betweenness - modular decomposition that have been or will be covered

More information

Subdivisions of Graphs: A Generalization of Paths and Cycles

Subdivisions of Graphs: A Generalization of Paths and Cycles Subdivisions of Graphs: A Generalization of Paths and Cycles Ch. Sobhan Babu and Ajit A. Diwan Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076,

More information

Matching Theory. Figure 1: Is this graph bipartite?

Matching Theory. Figure 1: Is this graph bipartite? Matching Theory 1 Introduction A matching M of a graph is a subset of E such that no two edges in M share a vertex; edges which have this property are called independent edges. A matching M is said to

More information

[8] that this cannot happen on the projective plane (cf. also [2]) and the results of Robertson, Seymour, and Thomas [5] on linkless embeddings of gra

[8] that this cannot happen on the projective plane (cf. also [2]) and the results of Robertson, Seymour, and Thomas [5] on linkless embeddings of gra Apex graphs with embeddings of face-width three Bojan Mohar Department of Mathematics University of Ljubljana Jadranska 19, 61111 Ljubljana Slovenia bojan.mohar@uni-lj.si Abstract Aa apex graph is a graph

More information

Part II. Graph Theory. Year

Part II. Graph Theory. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 53 Paper 3, Section II 15H Define the Ramsey numbers R(s, t) for integers s, t 2. Show that R(s, t) exists for all s,

More information

GRAPHS WITH 1-FACTORS

GRAPHS WITH 1-FACTORS proceedings of the american mathematical society Volume 42, Number 1, January 1974 GRAPHS WITH 1-FACTORS DAVID P. SUMNER Abstract. In this paper it is shown that if G is a connected graph of order 2n (n>

More information

Augmenting a Graph of Minimum Degree 2 to have Two Disjoint Total Dominating Sets

Augmenting a Graph of Minimum Degree 2 to have Two Disjoint Total Dominating Sets Augmenting a Graph of Minimum Degree 2 to have Two Disjoint Total Dominating Sets Michael Dorfling a,1 Wayne Goddard b,c Johannes H. Hattingh d Michael A. Henning a,1 a School of Mathematical Sciences,

More information

Math 777 Graph Theory, Spring, 2006 Lecture Note 1 Planar graphs Week 1 Weak 2

Math 777 Graph Theory, Spring, 2006 Lecture Note 1 Planar graphs Week 1 Weak 2 Math 777 Graph Theory, Spring, 006 Lecture Note 1 Planar graphs Week 1 Weak 1 Planar graphs Lectured by Lincoln Lu Definition 1 A drawing of a graph G is a function f defined on V (G) E(G) that assigns

More information

Module 7. Independent sets, coverings. and matchings. Contents

Module 7. Independent sets, coverings. and matchings. Contents Module 7 Independent sets, coverings Contents and matchings 7.1 Introduction.......................... 152 7.2 Independent sets and coverings: basic equations..... 152 7.3 Matchings in bipartite graphs................

More information

Forced orientation of graphs

Forced orientation of graphs Forced orientation of graphs Babak Farzad Mohammad Mahdian Ebad S. Mahmoodian Amin Saberi Bardia Sadri Abstract The concept of forced orientation of graphs was introduced by G. Chartrand et al. in 1994.

More information

Hamiltonian cycles in bipartite quadrangulations on the torus

Hamiltonian cycles in bipartite quadrangulations on the torus Hamiltonian cycles in bipartite quadrangulations on the torus Atsuhiro Nakamoto and Kenta Ozeki Abstract In this paper, we shall prove that every bipartite quadrangulation G on the torus admits a simple

More information

Bar k-visibility Graphs

Bar k-visibility Graphs Bar k-visibility Graphs Alice M. Dean Department of Mathematics Skidmore College adean@skidmore.edu William Evans Department of Computer Science University of British Columbia will@cs.ubc.ca Ellen Gethner

More information

Week 9-10: Connectivity

Week 9-10: Connectivity Week 9-0: Connectiity October 3, 206 Vertex Connectiity Let G = (V, E) be a graph. Gien two ertices x, y V. Two (x, y)-path are said to be internally disjoint if they hae no internal ertices in common.

More information

Connected size Ramsey number for matchings vs. small stars or cycles

Connected size Ramsey number for matchings vs. small stars or cycles Proc. Indian Acad. Sci. (Math. Sci.) Vol. 127, No. 5, November 2017, pp. 787 792. https://doi.org/10.1007/s12044-017-0366-z Connected size Ramsey number for matchings vs. small stars or cycles BUDI RAHADJENG,

More information

Monochromatic loose-cycle partitions in hypergraphs

Monochromatic loose-cycle partitions in hypergraphs Monochromatic loose-cycle partitions in hypergraphs András Gyárfás Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences Budapest, P.O. Box 27 Budapest, H-364, Hungary gyarfas.andras@renyi.mta.hu

More information

An Improved Upper Bound for the Sum-free Subset Constant

An Improved Upper Bound for the Sum-free Subset Constant 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 13 (2010), Article 10.8.3 An Improved Upper Bound for the Sum-free Subset Constant Mark Lewko Department of Mathematics University of Texas at Austin

More information

Vertex Colorings without Rainbow or Monochromatic Subgraphs. 1 Introduction

Vertex Colorings without Rainbow or Monochromatic Subgraphs. 1 Introduction Vertex Colorings without Rainbow or Monochromatic Subgraphs Wayne Goddard and Honghai Xu Dept of Mathematical Sciences, Clemson University Clemson SC 29634 {goddard,honghax}@clemson.edu Abstract. This

More information

Weak Dynamic Coloring of Planar Graphs

Weak Dynamic Coloring of Planar Graphs Weak Dynamic Coloring of Planar Graphs Caroline Accurso 1,5, Vitaliy Chernyshov 2,5, Leaha Hand 3,5, Sogol Jahanbekam 2,4,5, and Paul Wenger 2 Abstract The k-weak-dynamic number of a graph G is the smallest

More information

Properly Colored Paths and Cycles in Complete Graphs

Properly Colored Paths and Cycles in Complete Graphs 011 ¼ 9 È È 15 ± 3 ¾ Sept., 011 Operations Research Transactions Vol.15 No.3 Properly Colored Paths and Cycles in Complete Graphs Wang Guanghui 1 ZHOU Shan Abstract Let K c n denote a complete graph on

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

GEODETIC DOMINATION IN GRAPHS

GEODETIC DOMINATION IN GRAPHS GEODETIC DOMINATION IN GRAPHS H. Escuadro 1, R. Gera 2, A. Hansberg, N. Jafari Rad 4, and L. Volkmann 1 Department of Mathematics, Juniata College Huntingdon, PA 16652; escuadro@juniata.edu 2 Department

More information

LOCAL CONNECTIVE CHROMATIC NUMBER OF CARTESIAN PRODUCT OF SOME GRAPHS

LOCAL CONNECTIVE CHROMATIC NUMBER OF CARTESIAN PRODUCT OF SOME GRAPHS LOCAL CONNECTIVE CHROMATIC NUMBER OF CARTESIAN PRODUCT OF SOME GRAPHS ROMANIAN JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 08, VOLUME 8, ISSUE, p-7 CANAN C IFTC I AND PINAR DU NDAR Abstract A local connective

More information

Potential Bisections of Large Degree

Potential Bisections of Large Degree Potential Bisections of Large Degree Stephen G Hartke and Tyler Seacrest Department of Mathematics, University of Nebraska, Lincoln, NE 68588-0130 {hartke,s-tseacre1}@mathunledu June 6, 010 Abstract A

More information

The Restrained Edge Geodetic Number of a Graph

The Restrained Edge Geodetic Number of a Graph International Journal of Computational and Applied Mathematics. ISSN 0973-1768 Volume 11, Number 1 (2016), pp. 9 19 Research India Publications http://www.ripublication.com/ijcam.htm The Restrained Edge

More information

Vertex coloring, chromatic number

Vertex coloring, chromatic number Vertex coloring, chromatic number A k-coloring of a graph G is a labeling f : V (G) S, where S = k. The labels are called colors; the vertices of one color form a color class. A k-coloring is proper if

More information

A New Game Chromatic Number

A New Game Chromatic Number Europ. J. Combinatorics (1997) 18, 1 9 A New Game Chromatic Number G. C HEN, R. H. S CHELP AND W. E. S HREVE Consider the following two-person game on a graph G. Players I and II move alternatively to

More information

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1 Graph fundamentals Bipartite graph characterization Lemma. If a graph contains an odd closed walk, then it contains an odd cycle. Proof strategy: Consider a shortest closed odd walk W. If W is not a cycle,

More information

Equitable Coloring on Triple Star Graph Families

Equitable Coloring on Triple Star Graph Families International J.Math. Combin. Vol.2(2018), 24-32 Equitable Coloring on Triple Star Graph Families K.Praveena (Department of Computer Science, Dr.G.R. Damodaran College of Science, Coimbatore-641014, Tamilnadu,

More information

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PAUL BALISTER Abstract It has been shown [Balister, 2001] that if n is odd and m 1,, m t are integers with m i 3 and t i=1 m i = E(K n) then K n can be decomposed

More information

Super connectivity of line graphs

Super connectivity of line graphs Information Processing Letters 94 (2005) 191 195 www.elsevier.com/locate/ipl Super connectivity of line graphs Jun-Ming Xu a,,minlü a, Meijie Ma a, Angelika Hellwig b a Department of Mathematics, University

More information

Gallai-Ramsey Numbers for C7 with Multiple Colors

Gallai-Ramsey Numbers for C7 with Multiple Colors University of Central Florida Honors in the Major Theses Open Access Gallai-Ramsey Numbers for C7 with Multiple Colors 2017 Dylan Bruce University of Central Florida Find similar works at: http://stars.library.ucf.edu/honorstheses

More information

by conservation of flow, hence the cancelation. Similarly, we have

by conservation of flow, hence the cancelation. Similarly, we have Chapter 13: Network Flows and Applications Network: directed graph with source S and target T. Non-negative edge weights represent capacities. Assume no edges into S or out of T. (If necessary, we can

More information

Ramsey number of a connected triangle matching

Ramsey number of a connected triangle matching Ramsey number of a connected triangle matching András Gyárfás Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences Budapest, P.O. Box 127 Budapest, Hungary, H-1364 gyarfas.andras@renyi.mta.hu

More information

ON THE SUM OF THE SQUARES OF ALL DISTANCES IN SOME GRAPHS

ON THE SUM OF THE SQUARES OF ALL DISTANCES IN SOME GRAPHS ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS N. 38 017 (137 144) 137 ON THE SUM OF THE SQUARES OF ALL DISTANCES IN SOME GRAPHS Xianya Geng Zhixiang Yin Xianwen Fang Department of Mathematics and Physics

More information

Vertex coloring, chromatic number

Vertex coloring, chromatic number Vertex coloring, chromatic number A k-coloring of a graph G is a labeling f : V (G) S, where S = k. The labels are called colors; the vertices of one color form a color class. A k-coloring is proper if

More information

Maximum number of edges in claw-free graphs whose maximum degree and matching number are bounded

Maximum number of edges in claw-free graphs whose maximum degree and matching number are bounded Maximum number of edges in claw-free graphs whose maximum degree and matching number are bounded Cemil Dibek Tınaz Ekim Pinar Heggernes Abstract We determine the maximum number of edges that a claw-free

More information

WORM COLORINGS. Wayne Goddard. Dept of Mathematical Sciences, Clemson University Kirsti Wash

WORM COLORINGS. Wayne Goddard. Dept of Mathematical Sciences, Clemson University   Kirsti Wash 1 2 Discussiones Mathematicae Graph Theory xx (xxxx) 1 14 3 4 5 6 7 8 9 10 11 12 13 WORM COLORINGS Wayne Goddard Dept of Mathematical Sciences, Clemson University e-mail: goddard@clemson.edu Kirsti Wash

More information

Extremal Graph Theory: Turán s Theorem

Extremal Graph Theory: Turán s Theorem Bridgewater State University Virtual Commons - Bridgewater State University Honors Program Theses and Projects Undergraduate Honors Program 5-9-07 Extremal Graph Theory: Turán s Theorem Vincent Vascimini

More information

Monochromatic path and cycle partitions in hypergraphs

Monochromatic path and cycle partitions in hypergraphs Monochromatic path and cycle partitions in hypergraphs András Gyárfás Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences Budapest, P.O. Box 127 Budapest, Hungary, H-1364 gyarfas.andras@renyi.mta.hu

More information

Discrete Applied Mathematics. A revision and extension of results on 4-regular, 4-connected, claw-free graphs

Discrete Applied Mathematics. A revision and extension of results on 4-regular, 4-connected, claw-free graphs Discrete Applied Mathematics 159 (2011) 1225 1230 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam A revision and extension of results

More information

Independence Number and Cut-Vertices

Independence Number and Cut-Vertices Independence Number and Cut-Vertices Ryan Pepper University of Houston Downtown, Houston, Texas 7700 pepperr@uhd.edu Abstract We show that for any connected graph G, α(g) C(G) +1, where α(g) is the independence

More information

ON LOCAL STRUCTURE OF 1-PLANAR GRAPHS OF MINIMUM DEGREE 5 AND GIRTH 4

ON LOCAL STRUCTURE OF 1-PLANAR GRAPHS OF MINIMUM DEGREE 5 AND GIRTH 4 Discussiones Mathematicae Graph Theory 9 (009 ) 385 00 ON LOCAL STRUCTURE OF -PLANAR GRAPHS OF MINIMUM DEGREE 5 AND GIRTH Dávid Hudák and Tomáš Madaras Institute of Mathematics, Faculty of Sciences University

More information

Characterizations of graph classes by forbidden configurations

Characterizations of graph classes by forbidden configurations Characterizations of graph classes by forbidden configurations Zdeněk Dvořák September 14, 2015 We consider graph classes that can be described by excluding some fixed configurations. Let us give some

More information

{ 1} Definitions. 10. Extremal graph theory. Problem definition Paths and cycles Complete subgraphs

{ 1} Definitions. 10. Extremal graph theory. Problem definition Paths and cycles Complete subgraphs Problem definition Paths and cycles Complete subgraphs 10. Extremal graph theory 10.1. Definitions Let us examine the following forbidden subgraph problems: At most how many edges are in a graph of order

More information

THE INSULATION SEQUENCE OF A GRAPH

THE INSULATION SEQUENCE OF A GRAPH THE INSULATION SEQUENCE OF A GRAPH ELENA GRIGORESCU Abstract. In a graph G, a k-insulated set S is a subset of the vertices of G such that every vertex in S is adjacent to at most k vertices in S, and

More information

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4)

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4) S-72.2420/T-79.5203 Basic Concepts 1 S-72.2420/T-79.5203 Basic Concepts 3 Characterizing Graphs (1) Characterizing Graphs (3) Characterizing a class G by a condition P means proving the equivalence G G

More information

Bar k-visibility Graphs: Bounds on the Number of Edges, Chromatic Number, and Thickness

Bar k-visibility Graphs: Bounds on the Number of Edges, Chromatic Number, and Thickness Bar k-visibility Graphs: Bounds on the Number of Edges, Chromatic Number, and Thickness Alice M. Dean, William Evans, Ellen Gethner 3,JoshuaD.Laison, Mohammad Ali Safari 5, and William T. Trotter 6 Department

More information

Edge disjoint monochromatic triangles in 2-colored graphs

Edge disjoint monochromatic triangles in 2-colored graphs Discrete Mathematics 31 (001) 135 141 www.elsevier.com/locate/disc Edge disjoint monochromatic triangles in -colored graphs P. Erdős a, R.J. Faudree b; ;1, R.J. Gould c;, M.S. Jacobson d;3, J. Lehel d;

More information

9 Connectivity. Contents. 9.1 Vertex Connectivity

9 Connectivity. Contents. 9.1 Vertex Connectivity 9 Connectivity Contents 9.1 Vertex Connectivity.............................. 205 Connectivity and Local Connectivity............... 206 Vertex Cuts and Menger s Theorem................. 207 9.2 The Fan

More information

Graph Connectivity G G G

Graph Connectivity G G G Graph Connectivity 1 Introduction We have seen that trees are minimally connected graphs, i.e., deleting any edge of the tree gives us a disconnected graph. What makes trees so susceptible to edge deletions?

More information

Rainbow game domination subdivision number of a graph

Rainbow game domination subdivision number of a graph Rainbow game domination subdivision number of a graph J. Amjadi Department of Mathematics Azarbaijan Shahid Madani University Tabriz, I.R. Iran j-amjadi@azaruniv.edu Abstract The rainbow game domination

More information

List of Theorems. Mat 416, Introduction to Graph Theory. Theorem 1 The numbers R(p, q) exist and for p, q 2,

List of Theorems. Mat 416, Introduction to Graph Theory. Theorem 1 The numbers R(p, q) exist and for p, q 2, List of Theorems Mat 416, Introduction to Graph Theory 1. Ramsey s Theorem for graphs 8.3.11. Theorem 1 The numbers R(p, q) exist and for p, q 2, R(p, q) R(p 1, q) + R(p, q 1). If both summands on the

More information

Improved monochromatic loose cycle partitions in hypergraphs

Improved monochromatic loose cycle partitions in hypergraphs Improved monochromatic loose cycle partitions in hypergraphs Gábor N. Sárközy Computer Science Department Worcester Polytechnic Institute Worcester, MA, USA 01609 gsarkozy@cs.wpi.edu and Computer and Automation

More information

Bar k-visibility Graphs

Bar k-visibility Graphs Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 11, no. 1, pp. 45 59 (2007) Bar k-visibility Graphs Alice M. Dean Department of Mathematics and Computer Science, Skidmore College http://www.skidmore.edu/

More information

Extremal results for Berge-hypergraphs

Extremal results for Berge-hypergraphs Extremal results for Berge-hypergraphs Dániel Gerbner Cory Palmer Abstract Let G be a graph and H be a hypergraph both on the same vertex set. We say that a hypergraph H is a Berge-G if there is a bijection

More information

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE Professor Kindred Math 104, Graph Theory Homework 2 Solutions February 7, 2013 Introduction to Graph Theory, West Section 1.2: 26, 38, 42 Section 1.3: 14, 18 Section 2.1: 26, 29, 30 DO NOT RE-DISTRIBUTE

More information

THE THICKNESS OF THE COMPLETE MULTIPARTITE GRAPHS AND THE JOIN OF GRAPHS

THE THICKNESS OF THE COMPLETE MULTIPARTITE GRAPHS AND THE JOIN OF GRAPHS THE THICKNESS OF THE COMPLETE MULTIPARTITE GRAPHS AND THE JOIN OF GRAPHS YICHAO CHEN AND YAN YANG Abstract. The thickness of a graph is the minimum number of planar s- panning subgraphs into which the

More information

Two Characterizations of Hypercubes

Two Characterizations of Hypercubes Two Characterizations of Hypercubes Juhani Nieminen, Matti Peltola and Pasi Ruotsalainen Department of Mathematics, University of Oulu University of Oulu, Faculty of Technology, Mathematics Division, P.O.

More information

Math 778S Spectral Graph Theory Handout #2: Basic graph theory

Math 778S Spectral Graph Theory Handout #2: Basic graph theory Math 778S Spectral Graph Theory Handout #: Basic graph theory Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved the Königsberg Bridge problem: Is it possible

More information

Problem Set 3. MATH 776, Fall 2009, Mohr. November 30, 2009

Problem Set 3. MATH 776, Fall 2009, Mohr. November 30, 2009 Problem Set 3 MATH 776, Fall 009, Mohr November 30, 009 1 Problem Proposition 1.1. Adding a new edge to a maximal planar graph of order at least 6 always produces both a T K 5 and a T K 3,3 subgraph. Proof.

More information