Cordial Labelling Of K-Regular Bipartite Graphs for K = 1, 2, N, N-1 Where K Is Cardinality of Each Bipartition

Size: px
Start display at page:

Download "Cordial Labelling Of K-Regular Bipartite Graphs for K = 1, 2, N, N-1 Where K Is Cardinality of Each Bipartition"

Transcription

1 IOSR Journal of Mathematics (IOSR-JM) e-issn: p-ISSN: X Volume 6 Issue 4 (May. - Jun. 3) PP 35-4 Cordial Labelling Of K-Regular Bipartite Graphs for K = N N- Where K Is Cardinality of Each Bipartition Pranali Sapre JJT University Jhunjhunu Rajasthan India Assistant ProfessorVidyavardhini s College of Engineering & Technology Vasai Road Dist. Thane. Maharashtra Abstract: In the labelling of graphs one of the types is cordial labelling. In this we label the vertices or and then every edge will have a label or if the end vertices of the edge have same or different labellings respectively. Here we are going find whether a k-regular bipartite graph can be cordial for different values of k. I. Introduction : Regular graph: A graph G is said to be a regular graph if degree of each vertex a same. It is called k-regular if degree of each vertex is k. Bipartite graph: Let G be a graph. If the vertex of G is divided into two subsets A and B such that there is no edge ab with a b A or a b B then G is said to be bipartite that is Every edge of G joins a vertex in A to a vertex in B. The sets A and B are called partite sets of G. Complete graph: A graph in which every vertex is adjacent to every other vertex is a complete graph. For a complete graph on n vertices degree of each vertex is n-. Complete bipartite graph: A bipartite graph G with bipartition ( AB ) is said to be complete bipartite if every vertex in A is adjacent to every vertex in B and vice versa. Cycle: A closed path is called a cycle. Labelling of a graph: Vertex labelling :It is a mapping from set of vertices to set of natural numbers. Edge labelling :It is a mapping from set of edges to set of natural numbers. Cordial labelling: For a given graph G label the vertices of G or. And every edge 'ab' of G will be labeled as if the labeling of the vertices a and b are same and will be labeled as if the labeling of the vertices a and b are different. Then this labeling is called a cordial labeling or the graph G is called a cordial graph iff number of vertices labeled '' number of vertives labeled ' ' number of edges labeled '' number of edges labeled Theorem. If G is a - regular bipartite graph with partite sets A and B with A = B = n Then G is cordial iff n = 3 mod 4. ' ' like Case I. n = 4m Let m = i.e. n = 4 then G looks 35 Page

2 Cordial labeling of k-regular bipartite graphs for k = n n- where k is cardinality of This can be labeled as shown is figure. This is CORDIAL. Now for n = 4m for m > G can be considered as combination of graph shown above and hence can be labeled repeatedly as above which is CORDIAL. Hence G IS CORDIAL FOR n = 4m Case II. n = 4m + Consider n 4 m for mz u A v B Consider any edge uv E ( G ) for Then G {uv} is a bipartite graph with n = 4m. Hence it has a cordial labeling as given in case ( i ) which gives # of edges labeled - # of edges labeled = hence along with the same labeling if we label u as and v as we get # of vertices labeled - # of vertices labeled = and # of edges labeled - # of edges labeled = Hence it is cordial. G IS CORDIAL FOR n = 4m+ Case III. Let n = 4m + Consider n 4 m for mz A = B = 4m+ Assume G is cordial. Let be the number of vertices in A labeled Let be the number of vertices in A labeled Let be the number of vertices in B labeled Let be the number of vertices in B labeled Total number of edges ab where a is labeled and b B = Total number of edges ab where b is labeled and a A= * Total number of edges ab where a is labeled and b B = Total number of edges ab where b is labeled and a A= Let number of edges of type ( i.e. edge ab where a and b both are labeled ) be x And Let number of edges of type be y From * Number of edges of type and are x Number of edges of type and are x = y But By assumption G is cordial x = y y But total number of edges = 4m+ Number of edges labeled = Number of edges labeled G is cordial x + y = m+ 36 Page

3 Cordial labeling of k-regular bipartite graphs for k = n n- where k is cardinality of x m Contradiction. and y m Hence G is not cordial for n=4m+ G IS NOT CORDIAL FOR n = 4m+ Case IV Let n = 4m + 3 Consider n 4 m 3 for mz A = B = 4m+3 Let G be a graph n = 4m+3 Consider any three edges u v )( u v )( u ) with u Aand v B for i =3 ( 3 v3 v u v u3 v Then G - u 3 is a graph with n = 4m By case i it has a cordial labeling with # of vertices labeled - # of vertices labeled = and # of edges labeled - # of edges labeled = Along with the same labeling label u v u v u3 v3 as follows u as o v as o u as o v as u3 as v3 as Then number of vertices labeled = Then number of vertices labeled And labeling of ( u v ) is ( u v) is ( u3 v3) is Then number of vertices labeled = Then number of vertices labeled + # of vertices labeled - # of vertices labeled = and # of edges labeled - # of edges labeled = G is cordial G IS CORDIAL FOR n = 4m+3 Hence the result. i i Theorem. If G is a - regular bipartite graph with partite sets A and B with Then G is cordial iff every component of G can be written as cycle of length 4m A = B = n Let G be a bipartite regular graph of degree. We know that If G is a regular bipartite graph of degree then it can always be written as disjoint union of even cycles. Let G be the graph which is the cycle of length n Claim : Cycle of length n is cordial iff n is even. Part (a) : To prove: n is even G is cordial. Part (b) : To prove: G is cordial n is even. i.e. To prove: n is odd G is not cordial. Proof of (a): Consider a cycle of length m = n where n is even. Let n = p m = 4p Let a a a3 a4 a5... a4 p a be the given cycle where ai is adjacent to a i For i 3...4p and a4 p is adjacent to a 37 Page

4 Cordial labeling of k-regular bipartite graphs for k = n n- where k is cardinality of Label a a a3 a4 a5... a4 p as As m = 4p we can have repeatedly p times the labeling of vertices as Which gives edges labeling as [ last edge will be labeled as a4 p and a both labeled. We can see that the labeling is cordial. Hence cycle of length n where n is even is always cordial. Proof of (b): Consider a cycle of length m = n where n is odd. Let n p m 4p We can write this graph as a bipartite graph with partite sets A and B where A = B = p+ Let number vertices of A labeled be Let number vertices of A labeled be Let number vertices of B labeled be Let number vertices of B labeled be Notation: i j --- number of edges ab where a is a vertex in A labeled i and b is a vertex in B labeled j With this notation we have a a a a a a a a Assuming G is cordial we get a a a * a But a a a a 4p a a a 4p a ** From *and * a a p a a p and 3 a a a p a Which is a contradiction as L.H.S. is mod and R.H.S. is mod Hence this cycle cannot be cordial. Hence a cycle of length n is not cordial if n is odd. Thus we have proved: Cycle of length n is cordial iff n is even. A regular bipartite graph of degree is cordial iff its every component can be written as a cycle of length 4n. Hence the proof. 38 Page

5 Cordial labeling of k-regular bipartite graphs for k = n n- where k is cardinality of Theorem 3. If G is a n- regular bipartite graph with partite sets A and B with Then G is cordial A = B = n A { a a... an} Let B { b b... bn} Case I : n is even Let n = m Label a a... an as and am am... am as. For set B label any m vertices as any m as W.l.g. let b b... bn are and bm bm... bm are For the vertex a :The edges incident on a are a b ab... abm abm abm... ab m out of which a b ab... ab m are labeled and a bm abm... ab m are labeled. Which gives equal number of edges labeled and each equal to m Similarly for remaining vertices. Hence we have in all m edges labeled o and m edges labeled. # of edges labeled - # of edges labeled = G is cordial Case II : n is odd Let n = m+ Consider A { u } and B { v } for some uv V (G) Then by case ( i ) it has a cordial labeling with m edges labeled and m edges labeled Now label u as and v as As it is complete bipartite we have edges ub ub... ub ub ub... ub uv m m m m which are labeled as. respectively giving m edges labeled and m+ edges labeled. Also a v av... amv am v amv... amv which are labeled as. respectively giving m edges labeled and m edges labeled. m m and In all we get Number of edges labeled = Number of edges labeled = m m # of edges labeled - # of edges labeled = G is cordial Hence the proof. Theorem 4. If G is a n- regular bipartite graph with partite sets A and B with Then G is cordial iff n = mod 4. A = B = n Case ( i ) : n = 4m Let A = { a a... an} and B ={ b... b bn} And G is a (k-) bipartite graph with partite sets AB. It can be obtained by removing one and only one edge of every vertex of a complete graph. Label a a... am as and a m am... a4m as Then we can have G is a graph obtained by removing bi abi... a mbi where bi bi for i j ik from the complete bipartite graph. a 4 4 m We will rename the vertices in the set B such that the edges removes are a b a b a b... 4m 4m j k 39 Page

6 Now label Cordial labeling of k-regular bipartite graphs for k = n n- where k is cardinality of b b... b4m as b m bm bm... b b b... as m as b m bm... b3m as b3 m b3m... b4m as Then the edges removed from the complete graph are labeled as a b a b a b m m total m edges am bm ambm... ambm total m edges a m bm ambm... a3mb3m total m edges a3 m b3m a3mb3m... a4mb4m total m edges For G Number of vertices labeled = number of vertices labeled = 4m And Number of edges labeled = number of edges labeled = ( from the case k = n ) # of vertices labeled - # of vertices labeled = and # of edges labeled - # of edges labeled = G is cordial Case ( ii ) : n = 4m+ 8m m As G is a (n-)-regular bipartite graph with the partitions A and B Where A = { a a... an} and B ={ b... b bn} By case ( i ) with the similar arguments let G is obtained from the complete bipartite graph by deleting the edges a b a b... a b a b Where 4m 4m 4m 4m a... am am a are labeled as and a m am... a4m as. Now label the vertices of B as follows. b b... b m as b m bm... bm bm as b m bm... b3m as b 3 m b3m... b4m as The edges removed from the complete graph and there labelings are as follows : a b a b... a b m m total m edges a total m+ edges m bm ambm... ambm am bm mbm am3bm3.. a3m b3m 3 mb3m a3m3b3m3... a4m b4m a total m edges a total m edges Number of edges labeled are 8m 8m 4m m m m Number of edges labeled are 8m 8m 4m m m m Number of edges labeled = Number of edges labeled Hence G is cordial. (n-) regular graph is cordial for n = 4m+ Case ( iii ) : n = 4m+ As G is a (n-)-regular bipartite graph with the partitions A and B Where A = { a a... an} and B ={ b... b bn} 4 Page

7 Cordial labeling of k-regular bipartite graphs for k = n n- where k is cardinality of Number of edges in G is 4m 4m 6m m Let be number of vertices in A labeled be number of vertices in A labeled be number of vertices in B labeled be number of vertices in B labeled Total number of edges ab where a is labeled and b B = (4m ) Total number of edges ab where b is labeled and a A= (4m ) Total number of edges ab where a is labeled and b B = (4m ) Total number of edges ab where b is labeled and a A= (4m ) Let Total number of edges ab where a and b both are labeled =x Total number of edges ab where a and b both are labeled =y (i.e. - and - type) The number of edged ab of labeling & And & are 4m (4m ) x Also The number of edged ab of labeling & And &are 4m (4m ) y m (4m ) x m (4m ) = y 4 4 (4 ) (4m ) x = m y But = as G is cordial x = y Now as total number of edges are 6m m number of edges labeled = 8m 6m x+y = 8m 6m x = 8m 6m x y asgis cordial Contradiction L.H.S. is even & R.H.S. is odd Hence G is Not cordial. (n-) regular graph is not cordial for n = 4m+ Case ( iii ) : n = 4m+3 Total number of edges = (4m 3)(4m ) 6m m 6 Using the same notations and the same arguments as in case ( iii ) we get m (4m ) x = m (4m ) y 4 4 (4 ) (4m ) x = m y But = as G is cordial x = y Now as total number of edges are 6m m 6 number of edges labeled = 8m m 3 4 Page

8 Cordial labeling of k-regular bipartite graphs for k = n n- where k is cardinality of x+y = 8m m 3 x = 8m m 3 x y asgis cordial Contradiction L.H.S. is even & R.H.S. is odd Hence G is NOT cordial (n-) regular graph is not cordial for n = 4m+3 Hence the proof. II. Conclusion If G is a -regular bipartite graph with partite sets A and B such that A = B = n then G is cordial iff n = 3 mod 4 If G is a -regular bipartite graph with partite sets A and B such that A = B = n then G is cordial iff its every component is a cycle of length 4m. If G is a n-regular n 3 bipartite graph with partite sets A and B such that A = B = n then G is cordial. If G is a n -regular bipartite graph with partite sets A and B such that A = B = n then G is cordial iff n mod 4. References [] L.CAIX.ZHU () Gaming coloring index of graphs Journal of graph theory [] XUDING ZHU (999) The game coloring number of planar graphs Journal of Combinatorial Theory Series B [3] H. YEH XUDING ZHUING (3) 4-colorable 6-regular toroidal graphs Discrete Mathematics [4] X.ZHU (6) Recent development in circular coloring of graphs Topics in discrete mathematics spinger [5] H.CHANG X.ZHU (8) Coloring games on outerplanar graphs & trees Discrete mathematicsdoi.6/j.disc 9-5 [6] H. HAJIABLOHASSAN X. ZHU (3): The circular chromatic number and mycielski construction Journal of graph theory Page

11.4 Bipartite Multigraphs

11.4 Bipartite Multigraphs 11.4 Bipartite Multigraphs Introduction Definition A graph G is bipartite if we can partition the vertices into two disjoint subsets U and V such that every edge of G has one incident vertex in U and the

More information

Matching Theory. Figure 1: Is this graph bipartite?

Matching Theory. Figure 1: Is this graph bipartite? Matching Theory 1 Introduction A matching M of a graph is a subset of E such that no two edges in M share a vertex; edges which have this property are called independent edges. A matching M is said to

More information

Math 776 Graph Theory Lecture Note 1 Basic concepts

Math 776 Graph Theory Lecture Note 1 Basic concepts Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved

More information

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition.

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition. 18.433 Combinatorial Optimization Matching Algorithms September 9,14,16 Lecturer: Santosh Vempala Given a graph G = (V, E), a matching M is a set of edges with the property that no two of the edges have

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 6 Basic concepts and definitions of graph theory By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

Math 170- Graph Theory Notes

Math 170- Graph Theory Notes 1 Math 170- Graph Theory Notes Michael Levet December 3, 2018 Notation: Let n be a positive integer. Denote [n] to be the set {1, 2,..., n}. So for example, [3] = {1, 2, 3}. To quote Bud Brown, Graph theory

More information

The Restrained Edge Geodetic Number of a Graph

The Restrained Edge Geodetic Number of a Graph International Journal of Computational and Applied Mathematics. ISSN 0973-1768 Volume 11, Number 1 (2016), pp. 9 19 Research India Publications http://www.ripublication.com/ijcam.htm The Restrained Edge

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

Triple Connected Domination Number of a Graph

Triple Connected Domination Number of a Graph International J.Math. Combin. Vol.3(2012), 93-104 Triple Connected Domination Number of a Graph G.Mahadevan, Selvam Avadayappan, J.Paulraj Joseph and T.Subramanian Department of Mathematics Anna University:

More information

Math 778S Spectral Graph Theory Handout #2: Basic graph theory

Math 778S Spectral Graph Theory Handout #2: Basic graph theory Math 778S Spectral Graph Theory Handout #: Basic graph theory Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved the Königsberg Bridge problem: Is it possible

More information

Prime Labeling for Some Cycle Related Graphs

Prime Labeling for Some Cycle Related Graphs Journal of Mathematics Research ISSN: 1916-9795 Prime Labeling for Some Cycle Related Graphs S K Vaidya (Corresponding author) Department of Mathematics, Saurashtra University Rajkot 360 005, Gujarat,

More information

EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS. Jordan Journal of Mathematics and Statistics (JJMS) 8(2), 2015, pp I.

EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS. Jordan Journal of Mathematics and Statistics (JJMS) 8(2), 2015, pp I. EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS M.S.A. BATAINEH (1), M.M.M. JARADAT (2) AND A.M.M. JARADAT (3) A. Let k 4 be a positive integer. Let G(n; W k ) denote the class of graphs on n vertices

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information

Generalized Pebbling Number

Generalized Pebbling Number International Mathematical Forum, 5, 2010, no. 27, 1331-1337 Generalized Pebbling Number A. Lourdusamy Department of Mathematics St. Xavier s College (Autonomous) Palayamkottai - 627 002, India lourdugnanam@hotmail.com

More information

K 4 C 5. Figure 4.5: Some well known family of graphs

K 4 C 5. Figure 4.5: Some well known family of graphs 08 CHAPTER. TOPICS IN CLASSICAL GRAPH THEORY K, K K K, K K, K K, K C C C C 6 6 P P P P P. Graph Operations Figure.: Some well known family of graphs A graph Y = (V,E ) is said to be a subgraph of a graph

More information

Some bounds on chromatic number of NI graphs

Some bounds on chromatic number of NI graphs International Journal of Mathematics and Soft Computing Vol.2, No.2. (2012), 79 83. ISSN 2249 3328 Some bounds on chromatic number of NI graphs Selvam Avadayappan Department of Mathematics, V.H.N.S.N.College,

More information

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60 CPS 102: Discrete Mathematics Instructor: Bruce Maggs Quiz 3 Date: Wednesday November 30, 2011 NAME: Prob # Score Max Score 1 10 2 10 3 10 4 10 5 10 6 10 Total 60 1 Problem 1 [10 points] Find a minimum-cost

More information

Line Graphs and Circulants

Line Graphs and Circulants Line Graphs and Circulants Jason Brown and Richard Hoshino Department of Mathematics and Statistics Dalhousie University Halifax, Nova Scotia, Canada B3H 3J5 Abstract The line graph of G, denoted L(G),

More information

Gracefulness of a New Class from Copies of kc 4 P 2n and P 2 * nc 3

Gracefulness of a New Class from Copies of kc 4 P 2n and P 2 * nc 3 International Journal of Fuzzy Mathematics and Systems. ISSN 2248-9940 Volume 2, Number 1 (2012), pp. 75-81 Research India Publications http://www.ripublication.com Gracefulness of a New Class from Copies

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 7 Graph properties By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com 2 Module-2: Eulerian

More information

1 Matchings in Graphs

1 Matchings in Graphs Matchings in Graphs J J 2 J 3 J 4 J 5 J J J 6 8 7 C C 2 C 3 C 4 C 5 C C 7 C 8 6 J J 2 J 3 J 4 J 5 J J J 6 8 7 C C 2 C 3 C 4 C 5 C C 7 C 8 6 Definition Two edges are called independent if they are not adjacent

More information

Chromatic Transversal Domatic Number of Graphs

Chromatic Transversal Domatic Number of Graphs International Mathematical Forum, 5, 010, no. 13, 639-648 Chromatic Transversal Domatic Number of Graphs L. Benedict Michael Raj 1, S. K. Ayyaswamy and I. Sahul Hamid 3 1 Department of Mathematics, St.

More information

Partitioning Complete Multipartite Graphs by Monochromatic Trees

Partitioning Complete Multipartite Graphs by Monochromatic Trees Partitioning Complete Multipartite Graphs by Monochromatic Trees Atsushi Kaneko, M.Kano 1 and Kazuhiro Suzuki 1 1 Department of Computer and Information Sciences Ibaraki University, Hitachi 316-8511 Japan

More information

Prime Labeling For Some Octopus Related Graphs

Prime Labeling For Some Octopus Related Graphs IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 12, Issue 6 Ver. III (Nov. - Dec.2016), PP 57-64 www.iosrjournals.org Prime Labeling For Some Octopus Related Graphs A.

More information

Super vertex Gracefulness of Some Special Graphs

Super vertex Gracefulness of Some Special Graphs IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 11, Issue 3 Ver. V (May - Jun. 2015), PP 07-15 www.iosrjournals.org Super vertex Gracefulness of Some Special Graphs N.Murugesan

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

Total magic cordial labeling and square sum total magic cordial labeling in extended duplicate graph of triangular snake

Total magic cordial labeling and square sum total magic cordial labeling in extended duplicate graph of triangular snake 2016; 2(4): 238-242 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Impact Factor: 5.2 IJAR 2016; 2(4): 238-242 www.allresearchjournal.com Received: 28-02-2016 Accepted: 29-03-2016 B Selvam K Thirusangu P

More information

The Edge Fixing Edge-To-Vertex Monophonic Number Of A Graph

The Edge Fixing Edge-To-Vertex Monophonic Number Of A Graph Applied Mathematics E-Notes, 15(2015), 261-275 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ The Edge Fixing Edge-To-Vertex Monophonic Number Of A Graph KrishnaPillai

More information

Math236 Discrete Maths with Applications

Math236 Discrete Maths with Applications Math236 Discrete Maths with Applications P. Ittmann UKZN, Pietermaritzburg Semester 1, 2012 Ittmann (UKZN PMB) Math236 2012 1 / 19 Degree Sequences Let G be a graph with vertex set V (G) = {v 1, v 2, v

More information

CLASSES OF VERY STRONGLY PERFECT GRAPHS. Ganesh R. Gandal 1, R. Mary Jeya Jothi 2. 1 Department of Mathematics. Sathyabama University Chennai, INDIA

CLASSES OF VERY STRONGLY PERFECT GRAPHS. Ganesh R. Gandal 1, R. Mary Jeya Jothi 2. 1 Department of Mathematics. Sathyabama University Chennai, INDIA Inter national Journal of Pure and Applied Mathematics Volume 113 No. 10 2017, 334 342 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Abstract: CLASSES

More information

Two Characterizations of Hypercubes

Two Characterizations of Hypercubes Two Characterizations of Hypercubes Juhani Nieminen, Matti Peltola and Pasi Ruotsalainen Department of Mathematics, University of Oulu University of Oulu, Faculty of Technology, Mathematics Division, P.O.

More information

CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN

CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN TOMASZ LUCZAK AND FLORIAN PFENDER Abstract. We show that every 3-connected claw-free graph which contains no induced copy of P 11 is hamiltonian.

More information

Lecture 6: Graph Properties

Lecture 6: Graph Properties Lecture 6: Graph Properties Rajat Mittal IIT Kanpur In this section, we will look at some of the combinatorial properties of graphs. Initially we will discuss independent sets. The bulk of the content

More information

Some Properties of Glue Graph

Some Properties of Glue Graph Annals of Pure and Applied Mathematics Vol. 6, No. 1, 2014, 98-103 ISSN: 2279-087X (P), 2279-0888(online) Published on 23 May 2014 www.researchmathsci.org Annals of V.S.Shigehalli 1 and G.V.Uppin 2 1 Department

More information

Matching and Factor-Critical Property in 3-Dominating-Critical Graphs

Matching and Factor-Critical Property in 3-Dominating-Critical Graphs Matching and Factor-Critical Property in 3-Dominating-Critical Graphs Tao Wang a,, Qinglin Yu a,b a Center for Combinatorics, LPMC Nankai University, Tianjin, China b Department of Mathematics and Statistics

More information

On Balance Index Set of Double graphs and Derived graphs

On Balance Index Set of Double graphs and Derived graphs International Journal of Mathematics and Soft Computing Vol.4, No. (014), 81-93. ISSN Print : 49-338 ISSN Online: 319-515 On Balance Index Set of Double graphs and Derived graphs Pradeep G. Bhat, Devadas

More information

STRONGLY REGULAR FUZZY GRAPH

STRONGLY REGULAR FUZZY GRAPH 345 STRONGLY REGULAR FUZZY GRAPH K. Radha 1 * and A.Rosemine 2 1 PG and Research Department of Mathematics,Periyar E.V.R. College, Tiruchirappalli 620023 Tamilnadu, India radhagac@yahoo.com 2 PG and Research

More information

5.1 Min-Max Theorem for General Matching

5.1 Min-Max Theorem for General Matching CSC5160: Combinatorial Optimization and Approximation Algorithms Topic: General Matching Date: 4/01/008 Lecturer: Lap Chi Lau Scribe: Jennifer X.M. WU In this lecture, we discuss matchings in general graph.

More information

Ma/CS 6b Class 5: Graph Connectivity

Ma/CS 6b Class 5: Graph Connectivity Ma/CS 6b Class 5: Graph Connectivity By Adam Sheffer Communications Network We are given a set of routers and wish to connect pairs of them to obtain a connected communications network. The network should

More information

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory Math.3336: Discrete Mathematics Chapter 10 Graph Theory Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall

More information

Variation of Graceful Labeling on Disjoint Union of two Subdivided Shell Graphs

Variation of Graceful Labeling on Disjoint Union of two Subdivided Shell Graphs Annals of Pure and Applied Mathematics Vol. 8, No., 014, 19-5 ISSN: 79-087X (P), 79-0888(online) Published on 17 December 014 www.researchmathsci.org Annals of Variation of Graceful Labeling on Disjoint

More information

Planar Drawing of Bipartite Graph by Eliminating Minimum Number of Edges

Planar Drawing of Bipartite Graph by Eliminating Minimum Number of Edges UITS Journal Volume: Issue: 2 ISSN: 2226-32 ISSN: 2226-328 Planar Drawing of Bipartite Graph by Eliminating Minimum Number of Edges Muhammad Golam Kibria Muhammad Oarisul Hasan Rifat 2 Md. Shakil Ahamed

More information

Graceful Labeling for Cycle of Graphs

Graceful Labeling for Cycle of Graphs International Journal of Mathematics Research. ISSN 0976-5840 Volume 6, Number (014), pp. 173 178 International Research Publication House http://www.irphouse.com Graceful Labeling for Cycle of Graphs

More information

On Independent Equitable Cototal Dominating set of graph

On Independent Equitable Cototal Dominating set of graph IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X Volume 12, Issue 6 Ver V (Nov - Dec2016), PP 62-66 wwwiosrjournalsorg On Independent Equitable Cototal Dominating set of graph

More information

Chapter 4. square sum graphs. 4.1 Introduction

Chapter 4. square sum graphs. 4.1 Introduction Chapter 4 square sum graphs In this Chapter we introduce a new type of labeling of graphs which is closely related to the Diophantine Equation x 2 + y 2 = n and report results of our preliminary investigations

More information

NOTE ON MINIMALLY k-connected GRAPHS

NOTE ON MINIMALLY k-connected GRAPHS NOTE ON MINIMALLY k-connected GRAPHS R. Rama a, Suresh Badarla a a Department of Mathematics, Indian Institute of Technology, Chennai, India ABSTRACT A k-tree is either a complete graph on (k+1) vertices

More information

Star Decompositions of the Complete Split Graph

Star Decompositions of the Complete Split Graph University of Dayton ecommons Honors Theses University Honors Program 4-016 Star Decompositions of the Complete Split Graph Adam C. Volk Follow this and additional works at: https://ecommons.udayton.edu/uhp_theses

More information

Graph Theory: Introduction

Graph Theory: Introduction Graph Theory: Introduction Pallab Dasgupta, Professor, Dept. of Computer Sc. and Engineering, IIT Kharagpur pallab@cse.iitkgp.ernet.in Resources Copies of slides available at: http://www.facweb.iitkgp.ernet.in/~pallab

More information

Bipartite Roots of Graphs

Bipartite Roots of Graphs Bipartite Roots of Graphs Lap Chi Lau Department of Computer Science University of Toronto Graph H is a root of graph G if there exists a positive integer k such that x and y are adjacent in G if and only

More information

Subdivided graphs have linear Ramsey numbers

Subdivided graphs have linear Ramsey numbers Subdivided graphs have linear Ramsey numbers Noga Alon Bellcore, Morristown, NJ 07960, USA and Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv,

More information

Bounds on the signed domination number of a graph.

Bounds on the signed domination number of a graph. Bounds on the signed domination number of a graph. Ruth Haas and Thomas B. Wexler September 7, 00 Abstract Let G = (V, E) be a simple graph on vertex set V and define a function f : V {, }. The function

More information

PAijpam.eu PRIME CORDIAL LABELING OF THE GRAPHS RELATED TO CYCLE WITH ONE CHORD, TWIN CHORDS AND TRIANGLE G.V. Ghodasara 1, J.P.

PAijpam.eu PRIME CORDIAL LABELING OF THE GRAPHS RELATED TO CYCLE WITH ONE CHORD, TWIN CHORDS AND TRIANGLE G.V. Ghodasara 1, J.P. International Journal of Pure and Applied Mathematics Volume 89 No. 1 2013, 79-87 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v89i1.9

More information

Acyclic Edge Colouring of 2-degenerate Graphs

Acyclic Edge Colouring of 2-degenerate Graphs Acyclic Edge Colouring of 2-degenerate Graphs Chandran Sunil L., Manu B., Muthu R., Narayanan N., Subramanian C. R. Abstract An acyclic edge colouring of a graph is a proper edge colouring such that there

More information

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem David Glickenstein November 26, 2008 1 Graph minors Let s revisit some de nitions. Let G = (V; E) be a graph. De nition 1 Removing

More information

Graph Theory Day Four

Graph Theory Day Four Graph Theory Day Four February 8, 018 1 Connected Recall from last class, we discussed methods for proving a graph was connected. Our two methods were 1) Based on the definition, given any u, v V(G), there

More information

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PAUL BALISTER Abstract It has been shown [Balister, 2001] that if n is odd and m 1,, m t are integers with m i 3 and t i=1 m i = E(K n) then K n can be decomposed

More information

[Ramalingam, 4(12): December 2017] ISSN DOI /zenodo Impact Factor

[Ramalingam, 4(12): December 2017] ISSN DOI /zenodo Impact Factor GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES FORCING VERTEX TRIANGLE FREE DETOUR NUMBER OF A GRAPH S. Sethu Ramalingam * 1, I. Keerthi Asir 2 and S. Athisayanathan 3 *1,2 & 3 Department of Mathematics,

More information

Complementary Acyclic Weak Domination Preserving Sets

Complementary Acyclic Weak Domination Preserving Sets International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 30-9364, ISSN (Print): 30-9356 ijresorg Volume 4 Issue 7 ǁ July 016 ǁ PP 44-48 Complementary Acyclic Weak Domination

More information

Graph Connectivity G G G

Graph Connectivity G G G Graph Connectivity 1 Introduction We have seen that trees are minimally connected graphs, i.e., deleting any edge of the tree gives us a disconnected graph. What makes trees so susceptible to edge deletions?

More information

On Sequential Topogenic Graphs

On Sequential Topogenic Graphs Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 36, 1799-1805 On Sequential Topogenic Graphs Bindhu K. Thomas, K. A. Germina and Jisha Elizabath Joy Research Center & PG Department of Mathematics Mary

More information

Degree Equitable Domination Number and Independent Domination Number of a Graph

Degree Equitable Domination Number and Independent Domination Number of a Graph Degree Equitable Domination Number and Independent Domination Number of a Graph A.Nellai Murugan 1, G.Victor Emmanuel 2 Assoc. Prof. of Mathematics, V.O. Chidambaram College, Thuthukudi-628 008, Tamilnadu,

More information

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1 Graph fundamentals Bipartite graph characterization Lemma. If a graph contains an odd closed walk, then it contains an odd cycle. Proof strategy: Consider a shortest closed odd walk W. If W is not a cycle,

More information

Some Upper Bounds for Signed Star Domination Number of Graphs. S. Akbari, A. Norouzi-Fard, A. Rezaei, R. Rotabi, S. Sabour.

Some Upper Bounds for Signed Star Domination Number of Graphs. S. Akbari, A. Norouzi-Fard, A. Rezaei, R. Rotabi, S. Sabour. Some Upper Bounds for Signed Star Domination Number of Graphs S. Akbari, A. Norouzi-Fard, A. Rezaei, R. Rotabi, S. Sabour Abstract Let G be a graph with the vertex set V (G) and edge set E(G). A function

More information

Module 7. Independent sets, coverings. and matchings. Contents

Module 7. Independent sets, coverings. and matchings. Contents Module 7 Independent sets, coverings Contents and matchings 7.1 Introduction.......................... 152 7.2 Independent sets and coverings: basic equations..... 152 7.3 Matchings in bipartite graphs................

More information

Extremal results for Berge-hypergraphs

Extremal results for Berge-hypergraphs Extremal results for Berge-hypergraphs Dániel Gerbner Cory Palmer Abstract Let G be a graph and H be a hypergraph both on the same vertex set. We say that a hypergraph H is a Berge-G if there is a bijection

More information

Math 454 Final Exam, Fall 2005

Math 454 Final Exam, Fall 2005 c IIT Dept. Applied Mathematics, December 12, 2005 1 PRINT Last name: Signature: First name: Student ID: Math 454 Final Exam, Fall 2005 I. Examples, Counterexamples and short answer. (6 2 ea.) Do not give

More information

THE RESTRAINED EDGE MONOPHONIC NUMBER OF A GRAPH

THE RESTRAINED EDGE MONOPHONIC NUMBER OF A GRAPH BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 7(1)(2017), 23-30 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS

More information

Some Strong Connectivity Concepts in Weighted Graphs

Some Strong Connectivity Concepts in Weighted Graphs Annals of Pure and Applied Mathematics Vol. 16, No. 1, 2018, 37-46 ISSN: 2279-087X (P), 2279-0888(online) Published on 1 January 2018 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v16n1a5

More information

Vertex Magic Total Labelings of Complete Graphs 1

Vertex Magic Total Labelings of Complete Graphs 1 Vertex Magic Total Labelings of Complete Graphs 1 Krishnappa. H. K. and Kishore Kothapalli and V. Ch. Venkaiah Centre for Security, Theory, and Algorithmic Research International Institute of Information

More information

Coloring edges and vertices of graphs without short or long cycles

Coloring edges and vertices of graphs without short or long cycles Coloring edges and vertices of graphs without short or long cycles Marcin Kamiński and Vadim Lozin Abstract Vertex and edge colorability are two graph problems that are NPhard in general. We show that

More information

Equitable Colouring of Certain Double Vertex Graphs

Equitable Colouring of Certain Double Vertex Graphs Volume 118 No. 23 2018, 147-154 ISSN: 1314-3395 (on-line version) url: http://acadpubl.eu/hub ijpam.eu Equitable Colouring of Certain Double Vertex Graphs Venugopal P 1, Padmapriya N 2, Thilshath A 3 1,2,3

More information

CPCS Discrete Structures 1

CPCS Discrete Structures 1 Let us switch to a new topic: Graphs CPCS 222 - Discrete Structures 1 Introduction to Graphs Definition: A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs

More information

Discrete Applied Mathematics. A revision and extension of results on 4-regular, 4-connected, claw-free graphs

Discrete Applied Mathematics. A revision and extension of results on 4-regular, 4-connected, claw-free graphs Discrete Applied Mathematics 159 (2011) 1225 1230 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam A revision and extension of results

More information

Collapsible biclaw-free graphs

Collapsible biclaw-free graphs Collapsible biclaw-free graphs Hong-Jian Lai, Xiangjuan Yao February 24, 2006 Abstract A graph is called biclaw-free if it has no biclaw as an induced subgraph. In this note, we prove that if G is a connected

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics 310 (2010) 2769 2775 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc Optimal acyclic edge colouring of grid like graphs

More information

Ma/CS 6b Class 4: Matchings in General Graphs

Ma/CS 6b Class 4: Matchings in General Graphs Ma/CS 6b Class 4: Matchings in General Graphs By Adam Sheffer Reminder: Hall's Marriage Theorem Theorem. Let G = V 1 V 2, E be a bipartite graph. There exists a matching of size V 1 in G if and only if

More information

Solutions to Exercises 9

Solutions to Exercises 9 Discrete Mathematics Lent 2009 MA210 Solutions to Exercises 9 (1) There are 5 cities. The cost of building a road directly between i and j is the entry a i,j in the matrix below. An indefinite entry indicates

More information

On Acyclic Vertex Coloring of Grid like graphs

On Acyclic Vertex Coloring of Grid like graphs On Acyclic Vertex Coloring of Grid like graphs Bharat Joshi and Kishore Kothapalli {bharatj@research., kkishore@}iiit.ac.in Center for Security, Theory and Algorithmic Research International Institute

More information

Graceful V * 2F n -tree

Graceful V * 2F n -tree IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn:2319-765x. Volume 10, Issue 2 Ver. IV (Mar-Apr. 2014), PP 01-06 Graceful V * 2F n -tree D. R. Kirubaharan 1, Dr. G. Nirmala 2 1 Research

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

Problem Set 2 Solutions

Problem Set 2 Solutions Problem Set 2 Solutions Graph Theory 2016 EPFL Frank de Zeeuw & Claudiu Valculescu 1. Prove that the following statements about a graph G are equivalent. - G is a tree; - G is minimally connected (it is

More information

Mathematics and Statistics, Part A: Graph Theory Problem Sheet 1, lectures 1-4

Mathematics and Statistics, Part A: Graph Theory Problem Sheet 1, lectures 1-4 1. Draw Mathematics and Statistics, Part A: Graph Theory Problem Sheet 1, lectures 1-4 (i) a simple graph. A simple graph has a non-empty vertex set and no duplicated edges. For example sketch G with V

More information

Ma/CS 6b Class 2: Matchings

Ma/CS 6b Class 2: Matchings Ma/CS 6b Class 2: Matchings By Adam Sheffer Send anonymous suggestions and complaints from here. Email: adamcandobetter@gmail.com Password: anonymous2 There aren t enough crocodiles in the presentations

More information

Graph theory - solutions to problem set 1

Graph theory - solutions to problem set 1 Graph theory - solutions to problem set 1 1. (a) Is C n a subgraph of K n? Exercises (b) For what values of n and m is K n,n a subgraph of K m? (c) For what n is C n a subgraph of K n,n? (a) Yes! (you

More information

1. Relations 2. Equivalence relations 3. Modular arithmetics. ! Think of relations as directed graphs! xry means there in an edge x!

1. Relations 2. Equivalence relations 3. Modular arithmetics. ! Think of relations as directed graphs! xry means there in an edge x! 2 Today s Topics: CSE 20: Discrete Mathematics for Computer Science Prof. Miles Jones 1. Relations 2. 3. Modular arithmetics 3 4 Relations are graphs! Think of relations as directed graphs! xry means there

More information

EDGE-COLOURED GRAPHS AND SWITCHING WITH S m, A m AND D m

EDGE-COLOURED GRAPHS AND SWITCHING WITH S m, A m AND D m EDGE-COLOURED GRAPHS AND SWITCHING WITH S m, A m AND D m GARY MACGILLIVRAY BEN TREMBLAY Abstract. We consider homomorphisms and vertex colourings of m-edge-coloured graphs that have a switching operation

More information

Cycles through specified vertices in triangle-free graphs

Cycles through specified vertices in triangle-free graphs March 6, 2006 Cycles through specified vertices in triangle-free graphs Daniel Paulusma Department of Computer Science, Durham University Science Laboratories, South Road, Durham DH1 3LE, England daniel.paulusma@durham.ac.uk

More information

COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES

COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES Volume 2, Number 1, Pages 61 66 ISSN 1715-0868 COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES MARCIN KAMIŃSKI AND VADIM LOZIN Abstract. Vertex and edge colorability are two graph problems

More information

An Introduction to Chromatic Polynomials

An Introduction to Chromatic Polynomials An Introduction to Chromatic Polynomials Julie Zhang May 17, 2018 Abstract This paper will provide an introduction to chromatic polynomials. We will first define chromatic polynomials and related terms,

More information

The Lower and Upper Forcing Edge-to-vertex Geodetic Numbers of a Graph

The Lower and Upper Forcing Edge-to-vertex Geodetic Numbers of a Graph International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 4, Issue 6, June 2016, PP 23-27 ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) DOI: http://dx.doi.org/10.20431/2347-3142.0406005

More information

Math 485, Graph Theory: Homework #3

Math 485, Graph Theory: Homework #3 Math 485, Graph Theory: Homework #3 Stephen G Simpson Due Monday, October 26, 2009 The assignment consists of Exercises 2129, 2135, 2137, 2218, 238, 2310, 2313, 2314, 2315 in the West textbook, plus the

More information

arxiv: v2 [math.co] 13 Aug 2013

arxiv: v2 [math.co] 13 Aug 2013 Orthogonality and minimality in the homology of locally finite graphs Reinhard Diestel Julian Pott arxiv:1307.0728v2 [math.co] 13 Aug 2013 August 14, 2013 Abstract Given a finite set E, a subset D E (viewed

More information

On a conjecture of Keedwell and the cycle double cover conjecture

On a conjecture of Keedwell and the cycle double cover conjecture Discrete Mathematics 216 (2000) 287 292 www.elsevier.com/locate/disc Note On a conjecture of Keedwell and the cycle double cover conjecture M. Mahdian, E.S. Mahmoodian, A. Saberi, M.R. Salavatipour, R.

More information

Star-in-Coloring of Some New Class of Graphs

Star-in-Coloring of Some New Class of Graphs International Journal of Scientific Innovative Mathematical Research (IJSIMR) Volume 2, Issue 4, April 2014, PP 352-360 ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) www.arcjournals.org Star-in-Coloring

More information

Complementary nil vertex edge dominating sets

Complementary nil vertex edge dominating sets Proyecciones Journal of Mathematics Vol. 34, N o 1, pp. 1-13, March 2015. Universidad Católica del Norte Antofagasta - Chile Complementary nil vertex edge dominating sets S. V. Siva Rama Raju Ibra College

More information

Vertex Odd Divisor Cordial Labeling for Vertex Switching of Special Graphs

Vertex Odd Divisor Cordial Labeling for Vertex Switching of Special Graphs Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 9 (017), pp. 555 5538 Research India Publications http://www.ripublication.com/gjpam.htm Vertex Odd Divisor Cordial Labeling

More information

Product Cordial Labeling for Some New Graphs

Product Cordial Labeling for Some New Graphs www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. ; May 011 Product Cordial Labeling for Some New Graphs S K Vaidya (Corresponding author) Department of Mathematics, Saurashtra University

More information

CHAPTER 5. b-colouring of Line Graph and Line Graph of Central Graph

CHAPTER 5. b-colouring of Line Graph and Line Graph of Central Graph CHAPTER 5 b-colouring of Line Graph and Line Graph of Central Graph In this Chapter, the b-chromatic number of L(K 1,n ), L(C n ), L(P n ), L(K m,n ), L(K 1,n,n ), L(F 2,k ), L(B n,n ), L(P m ӨS n ), L[C(K

More information

Prime Harmonious Labeling of Some New Graphs

Prime Harmonious Labeling of Some New Graphs IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 12, Issue 5 Ver. IV (Sep. - Oct.2016), PP 57-61 www.iosrjournals.org Prime Harmonious Labeling of Some New Graphs P.Deepa

More information

Graceful and odd graceful labeling of graphs

Graceful and odd graceful labeling of graphs International Journal of Mathematics and Soft Computing Vol.6, No.2. (2016), 13-19. ISSN Print : 2249 3328 ISSN Online: 2319 5215 Graceful and odd graceful labeling of graphs Department of Mathematics

More information