# 6.1 Circles and Related Segments and Angles

Size: px
Start display at page:

Transcription

1 Chapter 6 Circles 6.1 Circles and Related Segments and Angles Definitions 32. A circle is the set of all points in a plane that are a fixed distance from a given point known as the center of the circle. 33. Congruent circles are two or more circles that have congruent radii. 34. Concentric circles are coplanar circles that have a common center. 46

2 Sjoberg Math 30 Sec A central angle of a circle is an angle whose vertex is the center of the circle and whose sides are radii of the circle. 36. In a circle or congruent circles, congruent arcs are arcs with equal measures. 37. An inscribed angle of a circle is an angle whose vertex is a point on the circle and whose sides are chords of the circle. Postulates 16. (Central Angle Postulate) In a circle, the degree measure of a central angle is equal to the degree measure of its intercepted arc. 17. (Arc-Addition Postulate) If B lies between A and C on a circle, then mab + mbc = mabc ( ( ( 47

3 Sjoberg Math 30 Sec 6.1 Theorems, Corollaries and Lemmas A radius that is perpendicular to a chord bisects the chord The measure of an inscribed angle of a circle is one-half the measure of its intercepted arc In a circle (or congruent circles), congruent minor arcs have congruent central angles In a circle (or congruent circles), congruent central angles have congruent arcs In a circle (or congruent circles), congruent chords have congruent minor chords. 48

4 Sjoberg Math 30 Sec In a circle (or congruent circles), congruent arcs have congruent chords Chords that are the same distance from the center of a circle are congruent Congruent chords are located at the same distance from the center of the circle An angle inscribed in a semicircle is a right angle If two inscribed angles intercept the same arc, then these angles are congruent. 49

5 Sjoberg Math 30 Sec More Angle Measures in the Circle Definitions 38. A tangent is a line that intersects a circle at exactly one point; the point of intersection is the point of contact or point of tangency. 39. A secant is a line (or segment or ray) that intersects a circle at exactly two points. 40. A polygon is inscribed in a circle if its vertices are points on the circle and its sides are chords of the circle. Equivalently, the circle is said to be circumscribed about the polygon. The polygon inscribed in a circle is further described as a cyclic polygon. 41. A polygon is circumscribed about a circle if all sides of the polygon are line segments tangent to the circle; also, the circle is said to be inscribed in the polygon. 50

6 Sjoberg Math 30 Sec 6.2 Theorems, Corollaries and Lemmas If a quadrilateral is inscribed in a circle, the opposite angles are supplementary. Alternative Form: The opposite angles of a cyclic quadrilateral are supplementary The measure of an angle formed by two chords that intersect within a circle is one-half the sum of the measures of the arcs intercepted by the angle and its vertical angle The radius (or any other line through the center of a circle) drawn to a tangent at the point of tangency is perpendicular to the tangent at that point The measure of an angle formed by a tangent and a chord drawn to the point of tangency is one-half the measure of the intercepted arc. 51

7 Sjoberg Math 30 Sec The measure of an angle formed when two secants intersect at a point outside the circle is one-half the difference of the measures of the two intercepted arcs If an angle is formed by a secant and a tangent that intersects in the exterior of a circle, then the measure of the angle is one-half the difference of the measures of its intercepted arcs If an angle is formed by two intersecting tangents, then the measure of the angle is one half the difference of the measures of the intercepted arcs If two parallel lines intersect a circle, the intercepted arcs between these lines are congruent. 52

8 Sjoberg Math 30 Sec Line and Segment Relationships in the Circle Definitions 42. For two circles with different centers, the line of centers is the line (or line segment) containing the centers of both circles. Theorems, Corollaries and Lemmas If a line is drawn through the center of a circle perpendicular to a chord, then it bisects the chord If a line through the center of a circle bisects a chord other than a diameter, then it is perpendicular to the chord The perpendicular bisector of a chord contains the center of the circle. 53

9 Sjoberg Math 30 Sec The tangent segments to a circle from an external point are congruent If two chords intersect within a circle, then the product of the lengths of the segments (parts) of one chord is equal to the product of the lengths of the segments of the other chord If two secant segments are drawn to a circle from an external point, then the product of the lengths of each secant with its external segment are equal If a tangent segment and a secant segment are drawn to a circle from an external point, then the square of the length of the tangent equals the product of the length of the secant with the length of it external segment. 54

### Geometry Definitions and Theorems. Chapter 9. Definitions and Important Terms & Facts

Geometry Definitions and Theorems Chapter 9 Definitions and Important Terms & Facts A circle is the set of points in a plane at a given distance from a given point in that plane. The given point is the

### Unit 10 Circles 10-1 Properties of Circles Circle - the set of all points equidistant from the center of a circle. Chord - A line segment with

Unit 10 Circles 10-1 Properties of Circles Circle - the set of all points equidistant from the center of a circle. Chord - A line segment with endpoints on the circle. Diameter - A chord which passes through

### Chapter 6. Sir Migo Mendoza

Circles Chapter 6 Sir Migo Mendoza Central Angles Lesson 6.1 Sir Migo Mendoza Central Angles Definition 5.1 Arc An arc is a part of a circle. Types of Arc Minor Arc Major Arc Semicircle Definition 5.2

### Notes Circle Basics Standard:

Notes Circle Basics M RECALL EXAMPLES Give an example of each of the following: 1. Name the circle 2. Radius 3. Chord 4. Diameter 5. Secant 6. Tangent (line) 7. Point of tangency 8. Tangent (segment) DEFINTION

### 10-1 Circles & Circumference

10-1 Circles & Circumference Radius- Circle- Formula- Chord- Diameter- Circumference- Formula- Formula- Two circles are congruent if and only if they have congruent radii All circles are similar Concentric

### Theorems & Postulates Math Fundamentals Reference Sheet Page 1

Math Fundamentals Reference Sheet Page 1 30-60 -90 Triangle In a 30-60 -90 triangle, the length of the hypotenuse is two times the length of the shorter leg, and the length of the longer leg is the length

### Topic 7: Properties of Circles

This Packet Belongs to (Student Name) Topic 7: Properties of Circles Unit 6 Properties of Circles Module 15: Angles and Segments in Circles 15.1 Central Angles and Inscribed Angles 15.2 Angles in Inscribed

### Videos, Constructions, Definitions, Postulates, Theorems, and Properties

Videos, Constructions, Definitions, Postulates, Theorems, and Properties Videos Proof Overview: http://tinyurl.com/riehlproof Modules 9 and 10: http://tinyurl.com/riehlproof2 Module 9 Review: http://tinyurl.com/module9livelesson-recording

### Chapter 10 Similarity

Chapter 10 Similarity Def: The ratio of the number a to the number b is the number. A proportion is an equality between ratios. a, b, c, and d are called the first, second, third, and fourth terms. The

### SOME IMPORTANT PROPERTIES/CONCEPTS OF GEOMETRY (Compiled by Ronnie Bansal)

1 SOME IMPORTANT PROPERTIES/CONCEPTS OF GEOMETRY (Compiled by Ronnie Bansal) 1. Basic Terms and Definitions: a) Line-segment: A part of a line with two end points is called a line-segment. b) Ray: A part

### Postulates, Theorems, and Corollaries. Chapter 1

Chapter 1 Post. 1-1-1 Through any two points there is exactly one line. Post. 1-1-2 Through any three noncollinear points there is exactly one plane containing them. Post. 1-1-3 If two points lie in a

### Lines That Intersect Circles

LESSON 11-1 Lines That Intersect Circles Lesson Objectives (p. 746): Vocabulary 1. Interior of a circle (p. 746): 2. Exterior of a circle (p. 746): 3. Chord (p. 746): 4. Secant (p. 746): 5. Tangent of

### GEOMETRY is the study of points in space

CHAPTER 5 Logic and Geometry SECTION 5-1 Elements of Geometry GEOMETRY is the study of points in space POINT indicates a specific location and is represented by a dot and a letter R S T LINE is a set of

### 22. A parallelogram is a quadrilateral in which both pairs of opposite sides are parallel.

Chapter 4 Quadrilaterals 4.1 Properties of a Parallelogram Definitions 22. A parallelogram is a quadrilateral in which both pairs of opposite sides are parallel. 23. An altitude of a parallelogram is the

### Term Definition Figure

Notes LT 1.1 - Distinguish and apply basic terms of geometry (coplanar, collinear, bisectors, congruency, parallel, perpendicular, etc.) Term Definition Figure collinear on the same line (note: you do

### Perimeter. Area. Surface Area. Volume. Circle (circumference) C = 2πr. Square. Rectangle. Triangle. Rectangle/Parallelogram A = bh

Perimeter Circle (circumference) C = 2πr Square P = 4s Rectangle P = 2b + 2h Area Circle A = πr Triangle A = bh Rectangle/Parallelogram A = bh Rhombus/Kite A = d d Trapezoid A = b + b h A area a apothem

### STANDARDS OF LEARNING CONTENT REVIEW NOTES GEOMETRY. 3 rd Nine Weeks,

STANDARDS OF LEARNING CONTENT REVIEW NOTES GEOMETRY 3 rd Nine Weeks, 2016-2017 1 OVERVIEW Geometry Content Review Notes are designed by the High School Mathematics Steering Committee as a resource for

### Math 3315: Geometry Vocabulary Review Human Dictionary: WORD BANK

Math 3315: Geometry Vocabulary Review Human Dictionary: WORD BANK [acute angle] [acute triangle] [adjacent interior angle] [alternate exterior angles] [alternate interior angles] [altitude] [angle] [angle_addition_postulate]

### Examples: The name of the circle is: The radii of the circle are: The chords of the circle are: The diameter of the circle is:

Geometry P Lesson 10-1: ircles and ircumference Page 1 of 1 Objectives: To identify and use parts of circles To solve problems involving the circumference of a circle Geometry Standard: 8 Examples: The

### Term Definition Figure

Geometry Unit 1 Packet - Language of Geometry Name: #: Video Notes LT 1.1 - Distinguish and apply basic terms of geometry (coplanar, collinear, bisectors, congruent, parallel, perpendicular, etc.) Term

### Acknowledgement: Scott, Foresman. Geometry. SIMILAR TRIANGLES. 1. Definition: A ratio represents the comparison of two quantities.

1 cknowledgement: Scott, Foresman. Geometry. SIMILR TRINGLS 1. efinition: ratio represents the comparison of two quantities. In figure, ratio of blue squares to white squares is 3 : 5 2. efinition: proportion

### added to equal quantities, their sum is equal. Same holds for congruence.

Mr. Cheung s Geometry Cheat Sheet Theorem List Version 6.0 Updated 3/14/14 (The following is to be used as a guideline. The rest you need to look up on your own, but hopefully this will help. The original

### Definition / Postulates / Theorems Checklist

3 undefined terms: point, line, plane Definition / Postulates / Theorems Checklist Section Definition Postulate Theorem 1.2 Space Collinear Non-collinear Coplanar Non-coplanar Intersection 1.3 Segment

### Preliminary: First you must understand the relationship between inscribed and circumscribed, for example:

10.7 Inscribed and Circumscribed Polygons Lesson Objective: After studying this section, you will be able to: Recognize inscribed and circumscribed polygons Apply the relationship between opposite angles

### Geometry (H) Worksheet: 1st Semester Review:True/False, Always/Sometimes/Never

1stSemesterReviewTrueFalse.nb 1 Geometry (H) Worksheet: 1st Semester Review:True/False, Always/Sometimes/Never Classify each statement as TRUE or FALSE. 1. Three given points are always coplanar. 2. A

### MATH 30 GEOMETRY UNIT OUTLINE AND DEFINITIONS Prepared by: Mr. F.

1 MTH 30 GEMETRY UNIT UTLINE ND DEFINITINS Prepared by: Mr. F. Some f The Typical Geometric Properties We Will Investigate: The converse holds in many cases too! The Measure f The entral ngle Tangent To

### Name Class Date. Lines that appear to be tangent are tangent. O is the center of each circle. What is the value of x?

12-1 Practice Tangent Lines Lines that appear to be tangent are tangent. O is the center of each circle. What is the value of x? 1. To start, identify the type of geometric figure formed by the tangent

### Indicate whether the statement is true or false.

Math 121 Fall 2017 - Practice Exam - Chapters 5 & 6 Indicate whether the statement is true or false. 1. The simplified form of the ratio 6 inches to 1 foot is 6:1. 2. The triple (20,21,29) is a Pythagorean

### Modeling with Geometry

Modeling with Geometry 6.3 Parallelograms https://mathbitsnotebook.com/geometry/quadrilaterals/qdparallelograms.html Properties of Parallelograms Sides A parallelogram is a quadrilateral with both pairs

### Carnegie Learning High School Math Series: Geometry Indiana Standards Worktext Correlations

Carnegie Learning High School Math Series: Logic and Proofs G.LP.1 Understand and describe the structure of and relationships within an axiomatic system (undefined terms, definitions, axioms and postulates,

### Name: Partners: Math 2. Review 5 Version A

Name: Partners: Math 2 Date: Review 5 Version A [A] Circle whether each statement is true or false. 1. A chord is part of a secant. 2. An inscribed triangle must have a right angle. 3. An inscribed polygon

### EUCLID S GEOMETRY. Raymond Hoobler. January 27, 2008

EUCLID S GEOMETRY Raymond Hoobler January 27, 2008 Euclid rst codi ed the procedures and results of geometry, and he did such a good job that even today it is hard to improve on his presentation. He lived

### UNIT 5 GEOMETRY TEMPLATE CREATED BY REGION 1 ESA UNIT 5

UNIT 5 GEOMETRY TEMPLATE CREATED BY REGION 1 ESA UNIT 5 Geometry Unit 5 Overview: Circles With and Without Coordinates In this unit, students prove basic theorems about circles, with particular attention

### b. find the lateral area of the cylinder c. If the radius is doubled, what happens to the volume?

im: How do we find the volume and surface area of pyramids? o Now: If the radius and the height of a cylinder is 4 a. find the volume of the cylinder b. find the lateral area of the cylinder c. If the

### STANDARDS OF LEARNING CONTENT REVIEW NOTES HONORS GEOMETRY. 3 rd Nine Weeks,

STANDARDS OF LEARNING CONTENT REVIEW NOTES HONORS GEOMETRY 3 rd Nine Weeks, 2016-2017 1 OVERVIEW Geometry Content Review Notes are designed by the High School Mathematics Steering Committee as a resource

### Geometry Vocabulary Math Fundamentals Reference Sheet Page 1

Math Fundamentals Reference Sheet Page 1 Acute Angle An angle whose measure is between 0 and 90 Acute Triangle A that has all acute Adjacent Alternate Interior Angle Two coplanar with a common vertex and

### Unit 9 Syllabus: Circles

ate Period Unit 9 Syllabus: ircles ay Topic 1 Tangent Lines 2 hords and rcs and Inscribed ngles 3 Review/Graded lasswork 4 Review from before reak 5 Finding ngle Measures 6 Finding Segment Lengths 7 Review

### Angles. An angle is: the union of two rays having a common vertex.

Angles An angle is: the union of two rays having a common vertex. Angles can be measured in both degrees and radians. A circle of 360 in radian measure is equal to 2π radians. If you draw a circle with

### 10.5 Warmup. Find the indicated measure. Thursday, March 23, 2:46. Geometry 10.5 Angle Relationships in Circles 1

0.5 Warmup Find the indicated measure. 0.5 Warmup Solve each equation. Use Factoring. ) x 2 + 4x + 40 = 0 2) x 2 36 = 0 3) x 2 + 5x = 0 4) x 2 + 5x = 24 5) 3x 2 + 24x = 48 6) 5x 2 = 20 2 0.5 Warmup (Answers)

### MANHATTAN HUNTER SCIENCE HIGH SCHOOL GEOMETRY CURRICULUM

COORDINATE Geometry Plotting points on the coordinate plane. Using the Distance Formula: Investigate, and apply the Pythagorean Theorem as it relates to the distance formula. (G.GPE.7, 8.G.B.7, 8.G.B.8)

### Thomas Jefferson High School for Science and Technology Program of Studies TJ Math 1

Course Description: This course is designed for students who have successfully completed the standards for Honors Algebra I. Students will study geometric topics in depth, with a focus on building critical

### Unit Number of Days Dates. 1 Angles, Lines and Shapes 14 8/2 8/ Reasoning and Proof with Lines and Angles 14 8/22 9/9

8 th Grade Geometry Curriculum Map Overview 2016-2017 Unit Number of Days Dates 1 Angles, Lines and Shapes 14 8/2 8/19 2 - Reasoning and Proof with Lines and Angles 14 8/22 9/9 3 - Congruence Transformations

GEOMETRY: CONGRUENCE G.CO Prove geometric theorems. Focus on validity of underlying reasoning while using variety of ways of writing proofs. G.CO.11 Prove theorems about parallelograms. Theorems include:

### Angles. Classification Acute Right Obtuse. Complementary s 2 s whose sum is 90 Supplementary s 2 s whose sum is 180. Angle Addition Postulate

ngles Classification cute Right Obtuse Complementary s 2 s whose sum is 90 Supplementary s 2 s whose sum is 180 ngle ddition Postulate If the exterior sides of two adj s lie in a line, they are supplementary

### Definition / Postulates / Theorems Checklist

3 undefined terms: point, line, plane Definition / Postulates / Theorems Checklist Section Definition Postulate Theorem 1.2 Space Collinear Non-collinear Coplanar Non-coplanar Intersection 1.3 Segment

### Circles - Probability

Section 10-1: Circles and Circumference SOL: G.10 The student will investigate and solve practical problems involving circles, using properties of angles, arcs, chords, tangents, and secants. Problems

### Pearson Mathematics Geometry

A Correlation of Pearson Mathematics Geometry Indiana 2017 To the INDIANA ACADEMIC STANDARDS Mathematics (2014) Geometry The following shows where all of the standards that are part of the Indiana Mathematics

### NOTES: Tangents to Circles

Unit# ssign # TS: Tangents to ircles GL Identify segments and lines related to circles and use properties of a tangent to a circle VULRY circle is the set of all points in a plane that are equidistant

### Understand and Apply Theorems About Circles

Teaching Circles in High School Geometry According to the Common Core Standards For 9 th and 10 th grade using Basic Geometry by Ray Jurgensen and Richard G. brown V. Martinez January 27, 2014 Understand

### Common Core State Standards High School Geometry Constructions

ommon ore State Standards High School Geometry onstructions HSG.O..12 onstruction: opying a line segment HSG.O..12 onstruction: opying an angle HSG.O..12 onstruction: isecting a line segment HSG.O..12

### Lines Plane A flat surface that has no thickness and extends forever.

Lines Plane A flat surface that has no thickness and extends forever. Point an exact location Line a straight path that has no thickness and extends forever in opposite directions Ray Part of a line that

### Plane Geometry. Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2011

lane Geometry aul Yiu epartment of Mathematics Florida tlantic University Summer 2011 NTENTS 101 Theorem 1 If a straight line stands on another straight line, the sum of the adjacent angles so formed is

### CURRICULUM GUIDE. Honors Geometry

CURRICULUM GUIDE Honors Geometry This level of Geometry is approached at an accelerated pace. Topics of postulates, theorems and proofs are discussed both traditionally and with a discovery approach. The

### West Windsor-Plainsboro Regional School District Basic Geometry Grades 9-12

West Windsor-Plainsboro Regional School District Basic Geometry Grades 9-12 Unit 1: Basics of Geometry Content Area: Mathematics Course & Grade Level: Basic Geometry, 9 12 Summary and Rationale This unit

### Name Date. Inscribed Angles and Polygons For use with Exploration arcs? How are the angles of an inscribed quadrilateral related to each other?

Name ate 10.4 Inscribed ngles and Polygons For use with Exploration 10.4 Essential Question How are inscribed angles related to their intercepted arcs? How are the angles of an inscribed quadrilateral

### Have students complete the summary table, and then share as a class to make sure students understand concepts.

Closing (5 minutes) Have students complete the summary table, and then share as a class to make sure students understand concepts. Lesson Summary: We have just developed proofs for an entire family of

### Circles and Polygons Long-Term Memory Review Review 1 (Note: Figures are not drawn to scale.)

Review 1 (Note: Figures are not drawn to scale.) 1. Fill in the lank: In circle below, the angle shown is a/an angle. 2. The measure of a central angle and the measure of the arc that it intersects are

### Mrs. Daniel s Geometry Vocab List

Mrs. Daniel s Geometry Vocab List Geometry Definition: a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. Refectional Symmetry Definition:

### Theta Circles & Polygons 2015 Answer Key 11. C 2. E 13. D 4. B 15. B 6. C 17. A 18. A 9. D 10. D 12. C 14. A 16. D

Theta Circles & Polygons 2015 Answer Key 1. C 2. E 3. D 4. B 5. B 6. C 7. A 8. A 9. D 10. D 11. C 12. C 13. D 14. A 15. B 16. D 17. A 18. A 19. A 20. B 21. B 22. C 23. A 24. C 25. C 26. A 27. C 28. A 29.

### Geometry Rules. Triangles:

Triangles: Geometry Rules 1. Types of Triangles: By Sides: Scalene - no congruent sides Isosceles - 2 congruent sides Equilateral - 3 congruent sides By Angles: Acute - all acute angles Right - one right

### Instructional Unit CPM Geometry Unit Content Objective Performance Indicator Performance Task State Standards Code:

306 Instructional Unit Area 1. Areas of Squares and The students will be -Find the amount of carpet 2.4.11 E Rectangles able to determine the needed to cover various plane 2. Areas of Parallelograms and

1 www.gradestack.com/ssc Dear readers, ADVANCE MATHS - GEOMETRY DIGEST Geometry is a very important topic in numerical ability section of SSC Exams. You can expect 14-15 questions from Geometry in SSC

### Unit 6, Lesson 3.1 Constructing Tangent Lines

Unit 6, Lesson 3.1 Constructing Tangent Lines Tangent lines are useful in calculating distances as well as diagramming in the professions of construction, architecture, and landscaping. Geometry construction

### Geometry: A Complete Course

Geometry: omplete ourse with Trigonometry) Module Progress Tests Written by: Larry. ollins Geometry: omplete ourse with Trigonometry) Module - Progress Tests opyright 2014 by VideotextInteractive Send

### Geometry: A Complete Course

Geometry: Complete Course with Trigonometry) Module E - Course Notes Written by: Thomas E. Clark Geometry: Complete Course with Trigonometry) Module E - Course Notes Copyright 2014 by VideotextInteractive

### Geometry A Year-at-a-Glance Year-at-a-Glance

Year-at-a-Glance 2018-2019 Year-at-a-Glance FIRST SEMESTER SECOND SEMESTER Unit 1 Foundations of Geometry Unit 2 Circles Unit 3 Equations of Lines and Angle-Pairs Unit 4 Congruence Unit 5 Triangles 1st

### CCSD Proficiency Scale - Language of Geometry

CCSD Scale - Language of Geometry Content Area: HS Math Grade : Geometry Standard Code: G-CO.1 application G-CO.1 Know precise definitions of angle, circle, perpendicular lines, parallel lines, and line

### Index COPYRIGHTED MATERIAL. Symbols & Numerics

Symbols & Numerics. (dot) character, point representation, 37 symbol, perpendicular lines, 54 // (double forward slash) symbol, parallel lines, 54, 60 : (colon) character, ratio of quantity representation

### 1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false.

Chapter 1 Line and Angle Relationships 1.1 Sets, Statements and Reasoning Definitions 1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false.

### Construction Instructions. Construct the perpendicular bisector of a line segment. Or, construct the midpoint of a line segment.

Construction Instructions Construct the perpendicular bisector of a line segment. Or, construct the midpoint of a line segment. 1.) Begin with line segment XY. 2.) Place the compass at point X. Adjust

### High School Geometry. Correlation of the ALEKS course High School Geometry to the ACT College Readiness Standards for Mathematics

High School Geometry Correlation of the ALEKS course High School Geometry to the ACT College Readiness Standards for Mathematics Standard 5 : Graphical Representations = ALEKS course topic that addresses

### WAYNESBORO AREA SCHOOL DISTRICT CURRICULUM ACCELERATED GEOMETRY (June 2014)

UNIT: Chapter 1 Essentials of Geometry UNIT : How do we describe and measure geometric figures? Identify Points, Lines, and Planes (1.1) How do you name geometric figures? Undefined Terms Point Line Plane

MADISON ACADEMY GEOMETRY PACING GUIDE 2018-2019 Standards (ACT included) ALCOS#1 Know the precise definitions of angle, circle, perpendicular line, parallel line, and line segment based on the undefined

### South Carolina College- and Career-Ready (SCCCR) Geometry Overview

South Carolina College- and Career-Ready (SCCCR) Geometry Overview In South Carolina College- and Career-Ready (SCCCR) Geometry, students build on the conceptual knowledge and skills they mastered in previous

### a) 1/3 area of triangle ABC b) 3.6 c) 3 d) e) Euclid s fifth postulate is equivalent to: Given a line and a point not on that line

1. Given is a right triangle with AD a perpendicular from the right angle to the hypotenuse, find the length of AD given AB = 6, BC = 10 and AC = 8. B D A C a) 7.5 b) 6.5 c) 4.8 d) e) 2. Using the figure

### Elementary Planar Geometry

Elementary Planar Geometry What is a geometric solid? It is the part of space occupied by a physical object. A geometric solid is separated from the surrounding space by a surface. A part of the surface

### Geometry. Cluster: Experiment with transformations in the plane. G.CO.1 G.CO.2. Common Core Institute

Geometry Cluster: Experiment with transformations in the plane. G.CO.1: Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of

### Russell County Pacing Guide

August Experiment with transformations in the plane. 1. Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment based on the undefined notions of point, line, distance

### Geometry Foundations Pen Argyl Area High School 2018

Geometry emphasizes the development of logical thinking as it relates to geometric problems. Topics include using the correct language and notations of geometry, developing inductive and deductive reasoning,

### HS Geometry Mathematics CC

Course Description This course involves the integration of logical reasoning and spatial visualization skills. It includes a study of deductive proofs and applications from Algebra, an intense study of

NEW YORK GEOMETRY TABLE OF CONTENTS CHAPTER 1 POINTS, LINES, & PLANES {G.G.21, G.G.27} TOPIC A: Concepts Relating to Points, Lines, and Planes PART 1: Basic Concepts and Definitions...1 PART 2: Concepts

### Geometry/Trigonometry Unit 5: Polygon Notes Period:

Geometry/Trigonometry Unit 5: Polygon Notes Name: Date: Period: # (1) Page 270 271 #8 14 Even, #15 20, #27-32 (2) Page 276 1 10, #11 25 Odd (3) Page 276 277 #12 30 Even (4) Page 283 #1-14 All (5) Page

### Geometry Ch 7 Quadrilaterals January 06, 2016

Theorem 17: Equal corresponding angles mean that lines are parallel. Corollary 1: Equal alternate interior angles mean that lines are parallel. Corollary 2: Supplementary interior angles on the same side

### Chapter 1-2 Points, Lines, and Planes

Chapter 1-2 Points, Lines, and Planes Undefined Terms: A point has no size but is often represented by a dot and usually named by a capital letter.. A A line extends in two directions without ending. Lines

### Course: Geometry Level: Regular Date: 11/2016. Unit 1: Foundations for Geometry 13 Days 7 Days. Unit 2: Geometric Reasoning 15 Days 8 Days

Geometry Curriculum Chambersburg Area School District Course Map Timeline 2016 Units *Note: unit numbers are for reference only and do not indicate the order in which concepts need to be taught Suggested

### Montclair Public Schools Math Curriculum Unit Planning Template Unit # SLO # MC 2 MC 3

Subject Geometry High Honors Grade Montclair Public Schools Math Curriculum Unit Planning Template Unit # Pacing 8-10 9 10 weeks Unit Circles, Conic Sections, Area & 3-D Measurements Name Overview Unit

### Geometry Review for Test 3 January 13, 2016

Homework #7 Due Thursday, 14 January Ch 7 Review, pp. 292 295 #1 53 Test #3 Thurs, 14 Jan Emphasis on Ch 7 except Midsegment Theorem, plus review Betweenness of Rays Theorem Whole is Greater than Part

### Ganado Unified School District Geometry

Ganado Unified School District Geometry PACING Guide SY 2016-2017 Timeline & Resources 1st Quarter Unit 1 AZ & ELA Standards Essential Question Learning Goal Vocabulary CC.9-12.G.CO. Transformations and

### A parabola has a focus at the point (6, 0), and the equation of the directrix is

1 A parabola has a focus at the point (6, 0), and the equation of the directrix is Part A Determine the vertex of the parabola. Explain your answer. Part B Prove that point (12, 8) is on the parabola.

### ALLEGHANY COUNTY SCHOOLS CURRICULUM GUIDE

GRADE/COURSE: Geometry GRADING PERIOD: 1 Year Course Time SEMESTER 1: 1 ST SIX WEEKS Pre-Test, Class Meetings, Homeroom Chapter 1 12 days Lines and Angles Point Line AB Ray AB Segment AB Plane ABC Opposite

### Madison County Schools Suggested Geometry Pacing Guide,

Madison County Schools Suggested Geometry Pacing Guide, 2016 2017 Domain Abbreviation Congruence G-CO Similarity, Right Triangles, and Trigonometry G-SRT Modeling with Geometry *G-MG Geometric Measurement

### MAKE GEOMETRIC CONSTRUCTIONS

MAKE GEOMETRIC CONSTRUCTIONS KEY IDEAS 1. To copy a segment, follow the steps given: Given: AB Construct: PQ congruent to AB 1. Use a straightedge to draw a line, l. 2. Choose a point on line l and label

### The Research- Driven Solution to Raise the Quality of High School Core Courses. Geometry. Course Outline

The Research- Driven Solution to Raise the Quality of High School Core Courses Course Outline Course Outline Page 2 of 5 0 1 2 3 4 5 ACT Course Standards A. Prerequisites 1. Skills Acquired by Students

### CORRELATION TO GEORGIA QUALITY CORE CURRICULUM FOR GEOMETRY (GRADES 9-12)

CORRELATION TO GEORGIA (GRADES 9-12) SUBJECT AREA: Mathematics COURSE: 27. 06300 TEXTBOOK TITLE: PUBLISHER: Geometry: Tools for a Changing World 2001 Prentice Hall 1 Solves problems and practical applications

### Unit 1 Unit 1 A M. M.Sigley, Baker MS. Unit 1 Unit 1. 3 M.Sigley, Baker MS

A M S 1 2 G O E A B 3 4 LINE POINT Undefined No thickness Extends infinitely in two directions Designated with two points Named with two capital letters or Undefined No size Named with a capital letter

### YEAR AT A GLANCE Student Learning Outcomes by Marking Period

2014-2015 Term 1 Overarching/general themes: Tools to Build and Analyze Points, Lines and Angles Dates Textual References To Demonstrate Proficiency by the End of the Term Students Will : Marking Period

### Honors Geometry Pacing Guide Honors Geometry Pacing First Nine Weeks

Unit Topic To recognize points, lines and planes. To be able to recognize and measure segments and angles. To classify angles and name the parts of a degree To recognize collinearity and betweenness of

### Geometry Mathematics. Grade(s) 10th - 12th, Duration 1 Year, 1 Credit Required Course

Scope And Sequence Timeframe Unit Instructional Topics 9 Week(s) 9 Week(s) 9 Week(s) Geometric Structure Measurement Similarity Course Overview GENERAL DESCRIPTION: In this course the student will become

### Dover-Sherborn High School Mathematics Curriculum Geometry Level 1/CP

Mathematics Curriculum A. DESCRIPTION This is the traditional geometry course with emphasis on the student s understanding of the characteristics and properties of two- and three-dimensional geometry.

### G.GMD.3 Some Things To Know

1 GGMD3 Some Things To Know The volume formula for a right prism or cylinder is, where B is the area of the base and h is the height For a cone or pyramid, the volume formula is 1 You try: A grain silo