L15. POSE-GRAPH SLAM. NA568 Mobile Robotics: Methods & Algorithms

Size: px
Start display at page:

Download "L15. POSE-GRAPH SLAM. NA568 Mobile Robotics: Methods & Algorithms"

Transcription

1 L15. POSE-GRAPH SLAM NA568 Mobile Robotics: Methods & Algorithms

2 Today s Topic Nonlinear Least Squares Pose-Graph SLAM Incremental Smoothing and Mapping

3 Feature-Based SLAM Filtering Problem: Motion Prediction Causes Fill-in Conceptual Abstraction: Full-SLAM Marginalize out the Poses -1

4 Feature-Based SLAM In feature-based SLAM, the information matrix fills in unless we enforce approximations to make it sparse This is because we are continually marginalizing out the robot trajectory from the state representation What if we were to marginalize out the landmarks instead? Feature-Based SLAM Pose-Base SLAM

5 Pose-Graph SLAM Feature-based SLAM requires approximations to enforce sparsity. Furthermore, this approximation is non-trivial Conceptual Abstraction: Full-SLAM Marginalize out the Landmarks Key idea: marginalizing out the landmarks preserves locality

6 Three Main SLAM Paradigms Kalman filter Particle filter Graphbased least squares approach to SLAM Courtesy: C. Stachniss

7 Least Squares in General Approach for computing a solution for an overdetermined system More equations than unknowns Minimizes the sum of the squared errors in the equations Standard approach to a large set of problems Today: Application to SLAM Courtesy: C. Stachniss

8 Graph-Based SLAM Constraints connect the poses of the robot while it is moving Constraints are inherently uncertain Robot pose Constraint Courtesy: C. Stachniss

9 Graph-Based SLAM Observing previously seen areas generates constraints between non-successive poses Robot pose Constraint Courtesy: C. Stachniss

10 Idea of Graph-Based SLAM Use a graph to represent the problem Every node in the graph corresponds to a pose of the robot during mapping Every edge between two nodes corresponds to a spatial constraint between them Graph-Based SLAM: Build the graph and find a node configuration that minimizes the error introduced by the constraints Courtesy: C. Stachniss

11 Graph-Based SLAM in a Nutshell Every node in the graph corresponds to a robot position and a laser measurement An edge between two nodes represents a spatial constraint between the nodes Courtesy: C. Stachniss KUKA Halle 22, courtesy of P. Pfaff

12 Graph-Based SLAM in a Nutshell Every node in the graph corresponds to a robot position and a laser measurement An edge between two nodes represents a spatial constraint between the nodes Courtesy: C. Stachniss KUKA Halle 22, courtesy of P. Pfaff

13 Graph-Based SLAM in a Nutshell Once we have the graph, we determine the most likely map by correcting the nodes Courtesy: C. Stachniss

14 Graph-Based SLAM in a Nutshell Once we have the graph, we determine the most likely map by correcting the nodes like this Courtesy: C. Stachniss

15 Graph-Based SLAM in a Nutshell Once we have the graph, we determine the most likely map by correcting the nodes like this Then, we can render a map based on the known poses Courtesy: C. Stachniss

16 The Overall SLAM System Interplay of front-end and back-end Map helps to determine constraints by reducing the search space Topic today: optimization node positions raw data Graph Construction (Front-End) graph (nodes & edges) Graph Optimization (Back-End) Courtesy: C. Stachniss today

17 The Graph It consists of n nodes Each is a 2D or 3D transformation (the pose of the robot at time ) A constraint/edge exists between the nodes and if Courtesy: C. Stachniss

18 Create an Edge If (1) the robot moves from to Edge corresponds to odometry The edge represents the odometry measurement Courtesy: C. Stachniss

19 Create an Edge If (2) the robot observes the same part of the environment from and from Measurement from Measurement from Courtesy: C. Stachniss

20 Create an Edge If (2) the robot observes the same part of the environment from and from Construct a virtual measurement about the position of seen from Edge represents the position of from based on the observation seen Courtesy: C. Stachniss

21 Transformations Transformations can be expressed using homogenous coordinates Odometry-Based edge Observation-Based edge How node i sees node j Courtesy: C. Stachniss

22

23 Visual SLAM: Why Filter?

24 Visual SLAM

25 The SLAM Problem (t=0) Landmark measurement Robot Onboard sensors: Wheel odometry Inertial measurement unit (gyro, accelerometer) Sonar Laser range finder Camera RGB-D sensors Landmark

26 The SLAM Problem (t=1) Odometry measurement Robot Landmark measurement Landmark 1 Landmark 2

27 The SLAM Problem (t=n-1) Odometry measurement Robot Landmark measurement Landmark 1 Landmark 2

28 The SLAM Problem (t=n) Odometry measurement Landmark measurement

29 Factor Graph Representation Odometry measurement Robot pose Landmark measurement Landmark position Bipartite graph with variable nodes and factor nodes

30 Factor Graph Representation: Pose Graph Odometry measurement Loop closing constraint Robot pose Landmark measurement Landmark position Bipartite graph with variable nodes and factor nodes

31 Factor Graph Representation: Bundle Adjust. Pose Point measurement Point Bipartite graph with variable nodes and factor nodes

32 Nonlinear Least-Squares [Dellaert and Kaess, IJRR 06] poses points Gaussian noise Repeatedly solve linearized system (GN) A b

33 Solving the Linear Least-Squares System Solve: A Normal equations A T A Information matrix Measurement Jacobian

34 Solving the Linear Least-Squares System Can we simply invert A T A to solve for x? Normal equations A T A Yes, but we shouldn t The inverse of A T A is dense! O(n 3 ) Can do much better by taking advantage of sparsity! Information matrix

35 Solving the Linear Least-Squares System Solve: [Dellaert and Kaess, IJRR 06] A Normal equations Matrix factorization A T A Information matrix R Measurement Jacobian Square root information matrix

36 Matrix Square Root Factorization QR on A: Numerically More Stable A QR R Cholesky on A T A: Faster A T A Cholesky R

37 Retaining Sparsity: Variable Ordering Fill-in depends on elimination order: A T A R [Dellaert and Kaess, IJRR 06] factor Default ordering (poses, landmarks) permute factor Ordering based on COLAMD heuristic [Davis04] (best order: NP hard)

38 Solving by Backsubstitution After factorization: R T R x = A T b Forward substitution R T y = A T b, solve for y R T Backsubstition R x = y, solve for x R

39 Full Bundle Adjustment From Strasdat et al, 2011 IVC Visual SLAM: Why filter? Graph grows with time: Have to solve a sequence of increasingly larger BA problems Will become too expensive even for sparse Cholesky F. Dellaert and M. Kaess, Square Root SAM: Simultaneous localization and mapping via square root information smoothing, IJRR 2006

40 Keyframe Bundle Adjustment Drop subset of poses to reduce density/complexity Only retain keyframes necessary for good map Complexity still grows with time, just slower

41 Filter Keyframe idea not applicable: map would fall apart Instead, marginalize out previous poses Extended Kalman Filter (EKF) Problems when used for Visual SLAM: All points become fully connected! expensive Relinearization not possible! inconsistent

42 Incremental Solver Back to full BA and keyframes: New information is added to the graph Older information does not change Can be exploited to obtain an efficient solution!

43 Incremental Smoothing and Mapping (isam)

44 isam Solving a growing system: Exact/batch (quickly gets expensive) Approximations Incremental Smoothing and Mapping (isam) Key idea: New measurements -> Append to existing matrix factorization Repair using Givens rotations Periodic batch steps for Relinearization Variable reordering (to keep sparsity) [Kaess et al., TRO 08] R R

45 Factor Updates with Givens Rotations Zeroing entries with Givens Rotations: Old R factor New rows New R factor: Triangulated using Givens Rotations Numerically stable! Constant time!

46 Variable Reordering Constrained COLAMD Greedy approach Constrained Ordering Arbitrary placement of newest variable Newest variables forced to the end Number of affected variables: low high Much cheaper!

47 Variable Reordering Fill-in Incremental ordering still yields good overall ordering Only slightly more fill-in than batch COLAMD ordering Constrained ordering is worse than naïve/greedy: Suboptimal ordering because of partial constraint, but cheaper to update!

48 isam [Kaess et al., TRO 08] Example from real sequence: Square root inf. matrix Side length: variables Dense: 1.7GB, sparse: 1MB R non-zeros 0.1% density 11/column

49 Next Lecture FastSLAM

CVPR 2014 Visual SLAM Tutorial Efficient Inference

CVPR 2014 Visual SLAM Tutorial Efficient Inference CVPR 2014 Visual SLAM Tutorial Efficient Inference kaess@cmu.edu The Robotics Institute Carnegie Mellon University The Mapping Problem (t=0) Robot Landmark Measurement Onboard sensors: Wheel odometry Inertial

More information

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss Robot Mapping Least Squares Approach to SLAM Cyrill Stachniss 1 Three Main SLAM Paradigms Kalman filter Particle filter Graphbased least squares approach to SLAM 2 Least Squares in General Approach for

More information

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General Robot Mapping Three Main SLAM Paradigms Least Squares Approach to SLAM Kalman filter Particle filter Graphbased Cyrill Stachniss least squares approach to SLAM 1 2 Least Squares in General! Approach for

More information

Advanced Techniques for Mobile Robotics Graph-based SLAM using Least Squares. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz

Advanced Techniques for Mobile Robotics Graph-based SLAM using Least Squares. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Advanced Techniques for Mobile Robotics Graph-based SLAM using Least Squares Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz SLAM Constraints connect the poses of the robot while it is moving

More information

Least Squares and SLAM Pose-SLAM

Least Squares and SLAM Pose-SLAM Least Squares and SLAM Pose-SLAM Giorgio Grisetti Part of the material of this course is taken from the Robotics 2 lectures given by G.Grisetti, W.Burgard, C.Stachniss, K.Arras, D. Tipaldi and M.Bennewitz

More information

ICRA 2016 Tutorial on SLAM. Graph-Based SLAM and Sparsity. Cyrill Stachniss

ICRA 2016 Tutorial on SLAM. Graph-Based SLAM and Sparsity. Cyrill Stachniss ICRA 2016 Tutorial on SLAM Graph-Based SLAM and Sparsity Cyrill Stachniss 1 Graph-Based SLAM?? 2 Graph-Based SLAM?? SLAM = simultaneous localization and mapping 3 Graph-Based SLAM?? SLAM = simultaneous

More information

L10. PARTICLE FILTERING CONTINUED. NA568 Mobile Robotics: Methods & Algorithms

L10. PARTICLE FILTERING CONTINUED. NA568 Mobile Robotics: Methods & Algorithms L10. PARTICLE FILTERING CONTINUED NA568 Mobile Robotics: Methods & Algorithms Gaussian Filters The Kalman filter and its variants can only model (unimodal) Gaussian distributions Courtesy: K. Arras Motivation

More information

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Arun Das 05/09/2017 Arun Das Waterloo Autonomous Vehicles Lab Introduction What s in a name? Arun Das Waterloo Autonomous

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: EKF-based SLAM Dr. Kostas Alexis (CSE) These slides have partially relied on the course of C. Stachniss, Robot Mapping - WS 2013/14 Autonomous Robot Challenges Where

More information

Humanoid Robotics. Least Squares. Maren Bennewitz

Humanoid Robotics. Least Squares. Maren Bennewitz Humanoid Robotics Least Squares Maren Bennewitz Goal of This Lecture Introduction into least squares Use it yourself for odometry calibration, later in the lecture: camera and whole-body self-calibration

More information

Robot Mapping. Graph-Based SLAM with Landmarks. Cyrill Stachniss

Robot Mapping. Graph-Based SLAM with Landmarks. Cyrill Stachniss Robot Mapping Graph-Based SLAM with Landmarks Cyrill Stachniss 1 Graph-Based SLAM (Chap. 15) Use a graph to represent the problem Every node in the graph corresponds to a pose of the robot during mapping

More information

High-precision, consistent EKF-based visual-inertial odometry

High-precision, consistent EKF-based visual-inertial odometry High-precision, consistent EKF-based visual-inertial odometry Mingyang Li and Anastasios I. Mourikis, IJRR 2013 Ao Li Introduction What is visual-inertial odometry (VIO)? The problem of motion tracking

More information

Robot Mapping. A Short Introduction to the Bayes Filter and Related Models. Gian Diego Tipaldi, Wolfram Burgard

Robot Mapping. A Short Introduction to the Bayes Filter and Related Models. Gian Diego Tipaldi, Wolfram Burgard Robot Mapping A Short Introduction to the Bayes Filter and Related Models Gian Diego Tipaldi, Wolfram Burgard 1 State Estimation Estimate the state of a system given observations and controls Goal: 2 Recursive

More information

Incremental Real-time Bundle Adjustment for Multi-camera Systems with Points at Infinity

Incremental Real-time Bundle Adjustment for Multi-camera Systems with Points at Infinity Incremental Real-time Bundle Adjustment for Multi-camera Systems with Points at Infinity Johannes Schneider, Thomas Läbe, Wolfgang Förstner 1 Department of Photogrammetry Institute of Geodesy and Geoinformation

More information

L17. OCCUPANCY MAPS. NA568 Mobile Robotics: Methods & Algorithms

L17. OCCUPANCY MAPS. NA568 Mobile Robotics: Methods & Algorithms L17. OCCUPANCY MAPS NA568 Mobile Robotics: Methods & Algorithms Today s Topic Why Occupancy Maps? Bayes Binary Filters Log-odds Occupancy Maps Inverse sensor model Learning inverse sensor model ML map

More information

Graph-Based SLAM (Chap. 15) Robot Mapping. Hierarchical Pose-Graphs for Online Mapping. Graph-Based SLAM (Chap. 15) Graph-Based SLAM (Chap.

Graph-Based SLAM (Chap. 15) Robot Mapping. Hierarchical Pose-Graphs for Online Mapping. Graph-Based SLAM (Chap. 15) Graph-Based SLAM (Chap. Robot Mapping Hierarchical Pose-Graphs for Online Mapping Graph-Based SLAM (Chap. 15)! Constraints connect the poses of the robot while it is moving! Constraints are inherently uncertain Cyrill Stachniss

More information

Removing Scale Biases and Ambiguity from 6DoF Monocular SLAM Using Inertial

Removing Scale Biases and Ambiguity from 6DoF Monocular SLAM Using Inertial 28 IEEE International Conference on Robotics and Automation Pasadena, CA, USA, May 9-23, 28 Removing Scale Biases and Ambiguity from 6DoF Monocular SLAM Using Inertial Todd Lupton and Salah Sukkarieh Abstract

More information

INCREMENTAL SMOOTHING AND MAPPING

INCREMENTAL SMOOTHING AND MAPPING INCREMENTAL SMOOTHING AND MAPPING A Dissertation Presented to The Academic Faculty by Michael Kaess In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the College of Computing

More information

Robot Mapping. Graph-Based SLAM with Landmarks. Cyrill Stachniss

Robot Mapping. Graph-Based SLAM with Landmarks. Cyrill Stachniss Robot Mapping Graph-Based SLAM with Landmarks Cyrill Stachniss 1 Graph-Based SLAM (Chap. 15) Use a graph to represent the problem Every node in the graph corresponds to a pose of the robot during mapping

More information

INCREMENTAL SMOOTHING AND MAPPING

INCREMENTAL SMOOTHING AND MAPPING INCREMENTAL SMOOTHING AND MAPPING A Dissertation Presented to The Academic Faculty by Michael Kaess In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the College of Computing

More information

Lecture 13 Visual Inertial Fusion

Lecture 13 Visual Inertial Fusion Lecture 13 Visual Inertial Fusion Davide Scaramuzza Course Evaluation Please fill the evaluation form you received by email! Provide feedback on Exercises: good and bad Course: good and bad How to improve

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics FastSLAM Sebastian Thrun (abridged and adapted by Rodrigo Ventura in Oct-2008) The SLAM Problem SLAM stands for simultaneous localization and mapping The task of building a map while

More information

Information Fusion in Navigation Systems via Factor Graph Based Incremental Smoothing

Information Fusion in Navigation Systems via Factor Graph Based Incremental Smoothing Information Fusion in Navigation Systems via Factor Graph Based Incremental Smoothing Vadim Indelman a, Stephen Williams a, Michael Kaess b, Frank Dellaert a a College of Computing, Georgia Institute of

More information

Practical Course WS12/13 Introduction to Monte Carlo Localization

Practical Course WS12/13 Introduction to Monte Carlo Localization Practical Course WS12/13 Introduction to Monte Carlo Localization Cyrill Stachniss and Luciano Spinello 1 State Estimation Estimate the state of a system given observations and controls Goal: 2 Bayes Filter

More information

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models Introduction ti to Embedded dsystems EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping Gabe Hoffmann Ph.D. Candidate, Aero/Astro Engineering Stanford University Statistical Models

More information

g2o: A General Framework for Graph Optimization Rainer Kümmerle Giorgio Grisetti Hauke Strasdat Kurt Konolige Wolfram Burgard

g2o: A General Framework for Graph Optimization Rainer Kümmerle Giorgio Grisetti Hauke Strasdat Kurt Konolige Wolfram Burgard g2o: A General Framework for Graph Optimization Rainer Kümmerle Giorgio Grisetti Hauke Strasdat Kurt Konolige Wolfram Burgard Graph-Based SLAM Constraints connect the poses of the robot while it is moving

More information

GTSAM 4.0 Tutorial Theory, Programming, and Applications

GTSAM 4.0 Tutorial Theory, Programming, and Applications GTSAM 4.0 Tutorial Theory, Programming, and Applications GTSAM: https://bitbucket.org/gtborg/gtsam Examples: https://github.com/dongjing3309/gtsam-examples Jing Dong 2016-11-19 License CC BY-NC-SA 3.0

More information

Dealing with Scale. Stephan Weiss Computer Vision Group NASA-JPL / CalTech

Dealing with Scale. Stephan Weiss Computer Vision Group NASA-JPL / CalTech Dealing with Scale Stephan Weiss Computer Vision Group NASA-JPL / CalTech Stephan.Weiss@ieee.org (c) 2013. Government sponsorship acknowledged. Outline Why care about size? The IMU as scale provider: The

More information

Utility-based Map Reduction for Ground and Flight Vehicle Navigation

Utility-based Map Reduction for Ground and Flight Vehicle Navigation Utility-based Map Reduction for Ground and Flight Vehicle Navigation Theodore J. Steiner III, Jeffrey A. Hoffman June 2015 SSL # 15-15 Utility-based Map Reduction for Ground and Flight Vehicle Navigation

More information

Graph-Based SLAM and Open Source Tools. Giorgio Grisetti

Graph-Based SLAM and Open Source Tools. Giorgio Grisetti Graph-Based SLAM and Open Source Tools Giorgio Grisetti SLAM SLAM= Simultaneous Localization and Mapping Estimate: the map of the environment the trajectory of a moving device using a sequence of sensor

More information

Introduction to robot algorithms CSE 410/510

Introduction to robot algorithms CSE 410/510 Introduction to robot algorithms CSE 410/510 Rob Platt robplatt@buffalo.edu Times: MWF, 10-10:50 Location: Clemens 322 Course web page: http://people.csail.mit.edu/rplatt/cse510.html Office Hours: 11-12

More information

Particle Filter in Brief. Robot Mapping. FastSLAM Feature-based SLAM with Particle Filters. Particle Representation. Particle Filter Algorithm

Particle Filter in Brief. Robot Mapping. FastSLAM Feature-based SLAM with Particle Filters. Particle Representation. Particle Filter Algorithm Robot Mapping FastSLAM Feature-based SLAM with Particle Filters Cyrill Stachniss Particle Filter in Brief! Non-parametric, recursive Bayes filter! Posterior is represented by a set of weighted samples!

More information

What is the SLAM problem?

What is the SLAM problem? SLAM Tutorial Slides by Marios Xanthidis, C. Stachniss, P. Allen, C. Fermuller Paul Furgale, Margarita Chli, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart What is the SLAM problem? The

More information

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS Mobile Robotics Mathematics, Models, and Methods Alonzo Kelly Carnegie Mellon University HI Cambridge UNIVERSITY PRESS Contents Preface page xiii 1 Introduction 1 1.1 Applications of Mobile Robots 2 1.2

More information

Zürich. Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza. ETH Master Course: L Autonomous Mobile Robots Summary

Zürich. Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza. ETH Master Course: L Autonomous Mobile Robots Summary Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza ETH Master Course: 151-0854-00L Autonomous Mobile Robots Summary 2 Lecture Overview Mobile Robot Control Scheme knowledge, data base mission

More information

L12. EKF-SLAM: PART II. NA568 Mobile Robotics: Methods & Algorithms

L12. EKF-SLAM: PART II. NA568 Mobile Robotics: Methods & Algorithms L12. EKF-SLAM: PART II NA568 Mobile Robotics: Methods & Algorithms Today s Lecture Feature-based EKF-SLAM Review Data Association Configuration Space Incremental ML (i.e., Nearest Neighbor) Joint Compatibility

More information

Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features

Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features Stephen Se, David Lowe, Jim Little Department of Computer Science University of British Columbia Presented by Adam Bickett

More information

Particle Filters. CSE-571 Probabilistic Robotics. Dependencies. Particle Filter Algorithm. Fast-SLAM Mapping

Particle Filters. CSE-571 Probabilistic Robotics. Dependencies. Particle Filter Algorithm. Fast-SLAM Mapping CSE-571 Probabilistic Robotics Fast-SLAM Mapping Particle Filters Represent belief by random samples Estimation of non-gaussian, nonlinear processes Sampling Importance Resampling (SIR) principle Draw

More information

Probabilistic Robotics. FastSLAM

Probabilistic Robotics. FastSLAM Probabilistic Robotics FastSLAM The SLAM Problem SLAM stands for simultaneous localization and mapping The task of building a map while estimating the pose of the robot relative to this map Why is SLAM

More information

Introduction to Mobile Robotics SLAM Landmark-based FastSLAM

Introduction to Mobile Robotics SLAM Landmark-based FastSLAM Introduction to Mobile Robotics SLAM Landmark-based FastSLAM Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello Partial slide courtesy of Mike Montemerlo 1 The SLAM Problem

More information

Computer Science and Artificial Intelligence Laboratory Technical Report. MIT-CSAIL-TR January 29, 2010

Computer Science and Artificial Intelligence Laboratory Technical Report. MIT-CSAIL-TR January 29, 2010 Computer Science and Artificial Intelligence Laboratory Technical Report MIT-CSAIL-TR-2010-021 January 29, 2010 The Bayes Tree: Enabling Incremental Reordering and Fluid Relinearization for Online Mapping

More information

Robot Mapping. Hierarchical Pose-Graphs for Online Mapping. Gian Diego Tipaldi, Wolfram Burgard

Robot Mapping. Hierarchical Pose-Graphs for Online Mapping. Gian Diego Tipaldi, Wolfram Burgard Robot Mapping Hierarchical Pose-Graphs for Online Mapping Gian Diego Tipaldi, Wolfram Burgard 1 Graph-Based SLAM Measurements connect the poses of the robot while it is moving Measurements are inherently

More information

Implementation of Odometry with EKF for Localization of Hector SLAM Method

Implementation of Odometry with EKF for Localization of Hector SLAM Method Implementation of Odometry with EKF for Localization of Hector SLAM Method Kao-Shing Hwang 1 Wei-Cheng Jiang 2 Zuo-Syuan Wang 3 Department of Electrical Engineering, National Sun Yat-sen University, Kaohsiung,

More information

Lecture 8.2 Structure from Motion. Thomas Opsahl

Lecture 8.2 Structure from Motion. Thomas Opsahl Lecture 8.2 Structure from Motion Thomas Opsahl More-than-two-view geometry Correspondences (matching) More views enables us to reveal and remove more mismatches than we can do in the two-view case More

More information

Robotics. Chapter 25. Chapter 25 1

Robotics. Chapter 25. Chapter 25 1 Robotics Chapter 25 Chapter 25 1 Outline Robots, Effectors, and Sensors Localization and Mapping Motion Planning Chapter 25 2 Mobile Robots Chapter 25 3 Manipulators P R R R R R Configuration of robot

More information

The Bayes Tree: An Algorithmic Foundation for Probabilistic Robot Mapping

The Bayes Tree: An Algorithmic Foundation for Probabilistic Robot Mapping The Bayes Tree: An Algorithmic Foundation for Probabilistic Robot Mapping Michael Kaess, Viorela Ila, Richard Roberts and Frank Dellaert Abstract We present a novel data structure, the Bayes tree, that

More information

SLAM with SIFT (aka Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks ) Se, Lowe, and Little

SLAM with SIFT (aka Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks ) Se, Lowe, and Little SLAM with SIFT (aka Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks ) Se, Lowe, and Little + Presented by Matt Loper CS296-3: Robot Learning and Autonomy Brown

More information

Augmented Reality, Advanced SLAM, Applications

Augmented Reality, Advanced SLAM, Applications Augmented Reality, Advanced SLAM, Applications Prof. Didier Stricker & Dr. Alain Pagani alain.pagani@dfki.de Lecture 3D Computer Vision AR, SLAM, Applications 1 Introduction Previous lectures: Basics (camera,

More information

Incremental Light Bundle Adjustment for Robotics Navigation

Incremental Light Bundle Adjustment for Robotics Navigation Incremental Light Bundle Adjustment for Robotics Vadim Indelman, Andrew Melim, Frank Dellaert Robotics and Intelligent Machines (RIM) Center College of Computing Georgia Institute of Technology Introduction

More information

COS Lecture 13 Autonomous Robot Navigation

COS Lecture 13 Autonomous Robot Navigation COS 495 - Lecture 13 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 2011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

Smoothing and Mapping using Multiple Robots

Smoothing and Mapping using Multiple Robots Smoothing and Mapping using Multiple Robots Karthik Paga (kpaga), Joe Phaneuf (jphaneuf), Adam Driscoll (jdriscol), David Evans (dje1) @cs.cmu.edu arxiv:1805.02141v1 [cs.ro 6 May 2018 Abstract Mapping

More information

Hybrids Mixed Approaches

Hybrids Mixed Approaches Hybrids Mixed Approaches Stephan Weiss Computer Vision Group NASA-JPL / CalTech Stephan.Weiss@ieee.org (c) 2013. Government sponsorship acknowledged. Outline Why mixing? Parallel Tracking and Mapping Benefits

More information

Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles

Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles Shaojie Shen Dept. of Electrical and Systems Engineering & GRASP Lab, University of Pennsylvania Committee: Daniel

More information

This chapter explains two techniques which are frequently used throughout

This chapter explains two techniques which are frequently used throughout Chapter 2 Basic Techniques This chapter explains two techniques which are frequently used throughout this thesis. First, we will introduce the concept of particle filters. A particle filter is a recursive

More information

Università degli Studi di Padova. Graph-Based Simultaneous Localization And Mapping Using a Stereo Camera

Università degli Studi di Padova. Graph-Based Simultaneous Localization And Mapping Using a Stereo Camera Università degli Studi di Padova Facoltà di Ingegneria Industriale Corso di Laurea Magistrale in Ingegneria Aerospaziale Graph-Based Simultaneous Localization And Mapping Using a Stereo Camera Lorenzo

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Bundle Adjustment 2 Example Application A vehicle needs to map its environment that it is moving

More information

TORO - Efficient Constraint Network Optimization for SLAM

TORO - Efficient Constraint Network Optimization for SLAM TORO - Efficient Constraint Network Optimization for SLAM Cyrill Stachniss Joint work with Giorgio Grisetti and Wolfram Burgard Special thanks to and partial slide courtesy of: Diego Tipaldi, Edwin Olson,

More information

Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing

Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing Frank Dellaert Michael Kaess Center for Robotics and Intelligent Machines College of Computing Georgia Institute of Technology Atlanta, GA 30332-0280 dellaert@cc.gatech.edu kaess@cc.gatech.edu Square Root

More information

Simultaneous Localization and Mapping

Simultaneous Localization and Mapping Sebastian Lembcke SLAM 1 / 29 MIN Faculty Department of Informatics Simultaneous Localization and Mapping Visual Loop-Closure Detection University of Hamburg Faculty of Mathematics, Informatics and Natural

More information

Final project: 45% of the grade, 10% presentation, 35% write-up. Presentations: in lecture Dec 1 and schedule:

Final project: 45% of the grade, 10% presentation, 35% write-up. Presentations: in lecture Dec 1 and schedule: Announcements PS2: due Friday 23:59pm. Final project: 45% of the grade, 10% presentation, 35% write-up Presentations: in lecture Dec 1 and 3 --- schedule: CS 287: Advanced Robotics Fall 2009 Lecture 24:

More information

Visual Bearing-Only Simultaneous Localization and Mapping with Improved Feature Matching

Visual Bearing-Only Simultaneous Localization and Mapping with Improved Feature Matching Visual Bearing-Only Simultaneous Localization and Mapping with Improved Feature Matching Hauke Strasdat, Cyrill Stachniss, Maren Bennewitz, and Wolfram Burgard Computer Science Institute, University of

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Sebastian Thrun Wolfram Burgard Dieter Fox The MIT Press Cambridge, Massachusetts London, England Preface xvii Acknowledgments xix I Basics 1 1 Introduction 3 1.1 Uncertainty in

More information

Announcements. Recap Landmark based SLAM. Types of SLAM-Problems. Occupancy Grid Maps. Grid-based SLAM. Page 1. CS 287: Advanced Robotics Fall 2009

Announcements. Recap Landmark based SLAM. Types of SLAM-Problems. Occupancy Grid Maps. Grid-based SLAM. Page 1. CS 287: Advanced Robotics Fall 2009 Announcements PS2: due Friday 23:59pm. Final project: 45% of the grade, 10% presentation, 35% write-up Presentations: in lecture Dec 1 and 3 --- schedule: CS 287: Advanced Robotics Fall 2009 Lecture 24:

More information

Robot Mapping. SLAM Front-Ends. Cyrill Stachniss. Partial image courtesy: Edwin Olson 1

Robot Mapping. SLAM Front-Ends. Cyrill Stachniss. Partial image courtesy: Edwin Olson 1 Robot Mapping SLAM Front-Ends Cyrill Stachniss Partial image courtesy: Edwin Olson 1 Graph-Based SLAM Constraints connect the nodes through odometry and observations Robot pose Constraint 2 Graph-Based

More information

Practical Course WS 2010 Simultaneous Localization and Mapping

Practical Course WS 2010 Simultaneous Localization and Mapping Practical Course WS 2010 Simultaneous Localization and Mapping Cyrill Stachniss University of Freiburg, Germany Topics of this Course SLAM - simultaneous localization and mapping What does the world look

More information

Data Association for SLAM

Data Association for SLAM CALIFORNIA INSTITUTE OF TECHNOLOGY ME/CS 132a, Winter 2011 Lab #2 Due: Mar 10th, 2011 Part I Data Association for SLAM 1 Introduction For this part, you will experiment with a simulation of an EKF SLAM

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 2 Don t you just invert

More information

IROS 05 Tutorial. MCL: Global Localization (Sonar) Monte-Carlo Localization. Particle Filters. Rao-Blackwellized Particle Filters and Loop Closing

IROS 05 Tutorial. MCL: Global Localization (Sonar) Monte-Carlo Localization. Particle Filters. Rao-Blackwellized Particle Filters and Loop Closing IROS 05 Tutorial SLAM - Getting it Working in Real World Applications Rao-Blackwellized Particle Filters and Loop Closing Cyrill Stachniss and Wolfram Burgard University of Freiburg, Dept. of Computer

More information

Factor Graph Based Incremental Smoothing in Inertial Navigation Systems

Factor Graph Based Incremental Smoothing in Inertial Navigation Systems Factor Graph Based Incremental in Inertial Navigation Systems Vadim Indelman, Stephen Williams, Michael Kaess and Frank Dellaert College of Computing, Georgia Institute of Technology, Atlanta, GA 3332,

More information

Robot Mapping. TORO Gradient Descent for SLAM. Cyrill Stachniss

Robot Mapping. TORO Gradient Descent for SLAM. Cyrill Stachniss Robot Mapping TORO Gradient Descent for SLAM Cyrill Stachniss 1 Stochastic Gradient Descent Minimize the error individually for each constraint (decomposition of the problem into sub-problems) Solve one

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Bayes Filter Implementations Discrete filters, Particle filters Piecewise Constant Representation of belief 2 Discrete Bayes Filter Algorithm 1. Algorithm Discrete_Bayes_filter(

More information

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu

More information

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz Humanoid Robotics Monte Carlo Localization Maren Bennewitz 1 Basis Probability Rules (1) If x and y are independent: Bayes rule: Often written as: The denominator is a normalizing constant that ensures

More information

Robotic Perception and Action: Vehicle SLAM Assignment

Robotic Perception and Action: Vehicle SLAM Assignment Robotic Perception and Action: Vehicle SLAM Assignment Mariolino De Cecco Mariolino De Cecco, Mattia Tavernini 1 CONTENTS Vehicle SLAM Assignment Contents Assignment Scenario 3 Odometry Localization...........................................

More information

Artificial Intelligence for Robotics: A Brief Summary

Artificial Intelligence for Robotics: A Brief Summary Artificial Intelligence for Robotics: A Brief Summary This document provides a summary of the course, Artificial Intelligence for Robotics, and highlights main concepts. Lesson 1: Localization (using Histogram

More information

Simultaneous Localization and Mapping with Infinite Planes

Simultaneous Localization and Mapping with Infinite Planes Simultaneous Localization and Mapping with Infinite Planes Michael Kaess Abstract Simultaneous localization and mapping with infinite planes is attractive because of the reduced complexity with respect

More information

Revising Stereo Vision Maps in Particle Filter Based SLAM using Localisation Confidence and Sample History

Revising Stereo Vision Maps in Particle Filter Based SLAM using Localisation Confidence and Sample History Revising Stereo Vision Maps in Particle Filter Based SLAM using Localisation Confidence and Sample History Simon Thompson and Satoshi Kagami Digital Human Research Center National Institute of Advanced

More information

Robot Localization based on Geo-referenced Images and G raphic Methods

Robot Localization based on Geo-referenced Images and G raphic Methods Robot Localization based on Geo-referenced Images and G raphic Methods Sid Ahmed Berrabah Mechanical Department, Royal Military School, Belgium, sidahmed.berrabah@rma.ac.be Janusz Bedkowski, Łukasz Lubasiński,

More information

Multiview Stereo COSC450. Lecture 8

Multiview Stereo COSC450. Lecture 8 Multiview Stereo COSC450 Lecture 8 Stereo Vision So Far Stereo and epipolar geometry Fundamental matrix captures geometry 8-point algorithm Essential matrix with calibrated cameras 5-point algorithm Intersect

More information

Incremental Light Bundle Adjustment for Structure From Motion and Robotics

Incremental Light Bundle Adjustment for Structure From Motion and Robotics Incremental Light Bundle Adjustment for Structure From Motion and Robotics Vadim Indelman*, Richard Roberts, and Frank Dellaert Abstract Bundle adjustment (BA) is essential in many robotics and structurefrom-motion

More information

Vision-based Target Tracking and Ego-Motion Estimation using Incremental Light Bundle Adjustment. Michael Chojnacki

Vision-based Target Tracking and Ego-Motion Estimation using Incremental Light Bundle Adjustment. Michael Chojnacki Vision-based Target Tracking and Ego-Motion Estimation using Incremental Light Bundle Adjustment Michael Chojnacki Vision-based Target Tracking and Ego-Motion Estimation using Incremental Light Bundle

More information

Localization and Map Building

Localization and Map Building Localization and Map Building Noise and aliasing; odometric position estimation To localize or not to localize Belief representation Map representation Probabilistic map-based localization Other examples

More information

CS 231. Inverse Kinematics Intro to Motion Capture

CS 231. Inverse Kinematics Intro to Motion Capture CS 231 Inverse Kinematics Intro to Motion Capture Representation 1) Skeleton Origin (root) Joint centers/ bones lengths 2) Keyframes Pos/Rot Root (x) Joint Angles (q) 3D characters Kinematics study of

More information

Normalized graph cuts for visual SLAM

Normalized graph cuts for visual SLAM The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems October 11-15, 2009 St. Louis, USA Normalized graph cuts for visual SLAM John G. Rogers and Henrik I. Christensen Abstract Simultaneous

More information

Linear-Time Estimation with Tree Assumed Density Filtering and Low-Rank Approximation

Linear-Time Estimation with Tree Assumed Density Filtering and Low-Rank Approximation Linear-Time Estimation with Tree Assumed Density Filtering and Low-Rank Approximation Duy-Nguyen Ta and Frank Dellaert Abstract We present two fast and memory-efficient approximate estimation methods,

More information

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm Computer Vision Group Prof. Daniel Cremers Dense Tracking and Mapping for Autonomous Quadrocopters Jürgen Sturm Joint work with Frank Steinbrücker, Jakob Engel, Christian Kerl, Erik Bylow, and Daniel Cremers

More information

isam2: Incremental Smoothing and Mapping with Fluid Relinearization and Incremental Variable Reordering

isam2: Incremental Smoothing and Mapping with Fluid Relinearization and Incremental Variable Reordering x14 : x139,x141,x181 x141 : x137,x139,x143,x181 x142 : x141,x143 x139,x145 : x13,x134,x136,x143,x171,x179,x181 x285 : x282,x286 x284 : x282,x285 x283 : x282,x284 x137 : x13,x136,x139,x143,x181 x144 : x136,x143,x145

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 5: Sparse Linear Systems and Factorization Methods Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 18 Sparse

More information

(W: 12:05-1:50, 50-N202)

(W: 12:05-1:50, 50-N202) 2016 School of Information Technology and Electrical Engineering at the University of Queensland Schedule of Events Week Date Lecture (W: 12:05-1:50, 50-N202) 1 27-Jul Introduction 2 Representing Position

More information

A novel approach to motion tracking with wearable sensors based on Probabilistic Graphical Models

A novel approach to motion tracking with wearable sensors based on Probabilistic Graphical Models A novel approach to motion tracking with wearable sensors based on Probabilistic Graphical Models Emanuele Ruffaldi Lorenzo Peppoloni Alessandro Filippeschi Carlo Alberto Avizzano 2014 IEEE International

More information

Optimization of the Simultaneous Localization and Map-Building Algorithm for Real-Time Implementation

Optimization of the Simultaneous Localization and Map-Building Algorithm for Real-Time Implementation 242 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 3, JUNE 2001 Optimization of the Simultaneous Localization and Map-Building Algorithm for Real-Time Implementation José E. Guivant and Eduardo

More information

SLAM: Robotic Simultaneous Location and Mapping

SLAM: Robotic Simultaneous Location and Mapping SLAM: Robotic Simultaneous Location and Mapping William Regli Department of Computer Science (and Departments of ECE and MEM) Drexel University Acknowledgments to Sebastian Thrun & others SLAM Lecture

More information

7630 Autonomous Robotics Probabilities for Robotics

7630 Autonomous Robotics Probabilities for Robotics 7630 Autonomous Robotics Probabilities for Robotics Basics of probability theory The Bayes-Filter Introduction to localization problems Monte-Carlo-Localization Based on material from R. Triebel, R. Kästner

More information

Real-Time Vision-Based State Estimation and (Dense) Mapping

Real-Time Vision-Based State Estimation and (Dense) Mapping Real-Time Vision-Based State Estimation and (Dense) Mapping Stefan Leutenegger IROS 2016 Workshop on State Estimation and Terrain Perception for All Terrain Mobile Robots The Perception-Action Cycle in

More information

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization. Wolfram Burgard

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization. Wolfram Burgard Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization Wolfram Burgard 1 Motivation Recall: Discrete filter Discretize the continuous state space High memory complexity

More information

Survey: Simultaneous Localisation and Mapping (SLAM) Ronja Güldenring Master Informatics Project Intellgient Robotics University of Hamburg

Survey: Simultaneous Localisation and Mapping (SLAM) Ronja Güldenring Master Informatics Project Intellgient Robotics University of Hamburg Survey: Simultaneous Localisation and Mapping (SLAM) Ronja Güldenring Master Informatics Project Intellgient Robotics University of Hamburg Introduction EKF-SLAM FastSLAM Loop Closure 01.06.17 Ronja Güldenring

More information

Gaussian Processes, SLAM, Fast SLAM and Rao-Blackwellization

Gaussian Processes, SLAM, Fast SLAM and Rao-Blackwellization Statistical Techniques in Robotics (16-831, F11) Lecture#20 (November 21, 2011) Gaussian Processes, SLAM, Fast SLAM and Rao-Blackwellization Lecturer: Drew Bagnell Scribes: Junier Oliva 1 1 Comments on

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 1 Don t you just invert

More information

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018 CS 395T Lecture 12: Feature Matching and Bundle Adjustment Qixing Huang October 10 st 2018 Lecture Overview Dense Feature Correspondences Bundle Adjustment in Structure-from-Motion Image Matching Algorithm

More information

Evaluation of Pose Only SLAM

Evaluation of Pose Only SLAM The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems October 18-22, 2010, Taipei, Taiwan Evaluation of Pose Only SLAM Gibson Hu, Shoudong Huang and Gamini Dissanayake Abstract In

More information