APPLICATION OF A COMPUTATIONALLY EFFICIENT GEOSTATISTICAL APPROACH TO CHARACTERIZING VARIABLY SPACED WATER-TABLE DATA

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "APPLICATION OF A COMPUTATIONALLY EFFICIENT GEOSTATISTICAL APPROACH TO CHARACTERIZING VARIABLY SPACED WATER-TABLE DATA"

Transcription

1 RFr"W/FZD JAN OST control # 1385 John J Q U ~ M Argonne Natonal Laboratory Argonne, L Tel: , Fax: APPLCATON OF A COMPUTATONALLY EFFCENT GEOSTATSTCAL APPROACH TO CHARACTERZNG VARABLY SPACED WATER-TABLE DATA - ABSTRACT Geostatstcal-andyss of hydraulc head data s useful n producng unbased contour plots of head estmates and relatve errors However, at most stes beng characterzed, montorng wells are generally present at dfferent denstes, wth clusters of wells n some areas and few wells elsewhere The problem that arses when krgng data at dfferent denstes s n achevng adequate resoluton of the grd whle mantanng computatonal effcency and workng wthn software lmtatons For the ste consdered, 113 data ponts were avalable over a 14-m2 study area, ncludng 57 montorng wells wthn an area of concern of 15 m' Varogram analyses of the data ndcate a lnear model wth a neglgble nugget effect The geostatstcal package used n the study allows a maxmum grd of 100 by 100 cells Two-dmensonal krgng was performed for the entre study area wth a 500-ft grd spacng, whle the smaller zone was modeled separately wth a spacng n ths mamer, grd cells for the dense area and the sparse area remaned small relatve to the well separaton dstances, and the maxmum dmensons of the program were not exceeded The spatal head results for the detaled zone were then nested nto the regonal output by use of a graphcal, object-orented database that performed the contourng of the geostatstcal output Ths study beneftted from the two-scale approach and from very fne geostatstcal grd spacngs relatve to typcal data separaton dstances The combnng of the sparse, regonal results wth those from the fner-resoluton area of concern yelded contours that honored the actual data at every measurement locaton The method appled n ths study can also be used to generate reproducble, unbased representatons of other types of spatal data NTRODUCTON AND OBJECTVE Spatally correlated envronmental data are abundant at many US Department of Energy (DOE) stes Examples of such data nclude water-level measurements, contamnant dstrbutons, stratgraphc contacts, ranfall records, and ar qualty measurements Geostatstcal methods may be appled on these data to characterze the ste; however, the densty of the data locatons may affect the analyss Data ponts are often dstrbuted as clusters separated by broad areas wth only sparse data The problem wth krgng a data set of ths nature s n achevng an adequate resoluton of the grd Detals n an area of nterest would be smoothed out f the grd were too 1

2 control # 1385 John J Qunn Argonne Natonal Laboratory Argonne, L Tel: , Fax: coarse, whle a grd that were too fne would be computatonally neffcent n areas of sparse data The maxmum grd sze allowed by the software s a related factor that plays a sgnfcant role n grd desgn Ths paper reports on a case study of the characterzaton of an unconfned aqufer's potentometrc surface at a DOE faclty and ts surroundng area 30 mles west of St Lous, Mssour The goal of the study was to produce an unbased, best e&nate contour map of the water-table surface - The local geology conssts of patchy resduum over Burlngton-Keokuk lmestone (Kleeschulte and mes 1994) The upper porton of the lmestone s fractured and hghly weathered Throughout the 14- m2 study area are 113 data ponts pretanng to the weathered lmestone, ncludng 92 shallow montorng wells and 21 sprngs (Fgure 1) Ffty-seven of the montorng wells are, however, confned to an area of nterest of 15 m2 Average head data for the perod were calculated for use n ths characterzaton METHODS Geostatstcs provdes a set of tools specally desgned to handle spatally correlated data (see, for example, saaks and Srvastava 1989) n a geostatstcal characterzaton, the structure of the data s explored by way of a varogrk analyss A grd s desgned for the study area, and varogram parameters are used as nput n a krgng program to determne the mnmum varance, unbased estmate for each grd cell Relatve errors are also determned for the grd cells The geostatstcs software used n ths study was Geo-EAS (Englund and Sparks 1991), a two-dmensonal geostatstcal package produced by the US Envronmental Protecton Agency A lmtaton of Geo-EAS s that the grd has maxmum dmensons of 100 by 100 cells StePlannerm (ConSolve 1993), a graphcal, object-orented database, s used to contour the krgng output StePlannerm contours data by lnear nterpolaton (trangulated rregular network surface), whch works well wth regularly spaced data Because of the dstrbuton of data n ths study, two grds were desgned and separate lugng runs were performed for each One grd covered the entre study area, wth a grd spacng of 500 ft; the other was centered on the DOE ste, wth a grd spacng of 100 ft (Fgure 2) n ths manner, the grd spacngs for the two areas approxmated the typcal data separaton dstances for each zone, and the maxmum grd dmensons of Geo-EAS were not exceeded APPLCATON OF A COMPUTATONALLY EF'J?CENT GEOSTATSTCAL APPROACH TO CHARACTERZNG VARABLY SPACED WATER-TABJX DATA 2

3 control # 1385 JohnJ Qunn Argonne Natonal Laboratory Argonne,L Tel: , Fax: RESULTS ntally, an omndrectonal varogram was analyzed wth Geo-EAS Throughout the separaton dstances of the data locatons, the results ndcated a lnear vaogram model, wth a neglgble nugget effect (Fgure 3) Drectonal varograms were attempted, but too few data were avalable to provde adequate nformaton on possble ansotropy Ordnary JSrgng was performed on the data set twce to generate results for each of the grds The krgng results were dependent on the search parameters specfed For both the coarse and the fne grds, reasonable results were acheved usng a maxmum search radus of 8,000 ft wth a maxmum of 6 data ponts and a mnmum of 3 data ponts n the calculaton of each grd cell value The management of Geo-EAS output was handled by StePlannerm Krged output for the hgh-resoluton area was nested nto the larger grd's output Concdent grd ponts from the coarse grd were deleted The data from the actual 113 data ponts were added n, and StePlannerm contoured the combned data set (Fgure 4) The resultng contours show desred hgh resoluton n the man area of nterest and reasonable contours n outlyng areas Star-step patterns n the contours of Fgure 4 are a functon of the search parameters used, because they dctate whether sprng data ponts were ncluded n the determnaton of 'ndvdual grd ponts CONCLUSONS AND APPLCATONS Use of the nested grd technque and careful manpulaton of krgng output acheved the desred outcome of a reasonably accurate, unbased map of the water-table surface, ncludng detaled resoluton n the man area of nterest Computer run tme was kept to a mnmum, and the approach overcame a lmtaton of the software The methods demonstrated n ths case study can be appled to other DOE stes and can be used to characterze any avalable spatally correlated data The resultng contour maps are unbased and defendable, and show detals where justfed by the data REFERENCES ConSolve, nc, 1993, StePZannerm, verson 12, Lexngton, MA Englund, E, and A Sparks, 1991, Geo-EAS 121 User's Gude, US Envronmental Protecton APPLCATON OF A COMPUTATONALLY EFFCENT GEOSTATSTCAL APPROACH TO CHARACTERZNG VARABLY SPACED WATER-TABLE DATA 3

4 control # 1385 John J Qunn Argonne Natonal Laboratory Argonne,L Tel: , Fax: Agency, EPA 600/8-91/008, Washngton, DC saaks, EC, and Srvastava, RM, 1989, Appled Geostatstcs, Oxford Unversty Press, New York Kleeschulte, MJ; and mes, JL, 1994, Geohydrology, Water Qualtyy>nd Smulaton of GroundWater Flow at the -Weldon Sprng Chemcal Plant and Vcnty, St Charles CountyyMssour, ,US Geologcal Survey Open-Fle Report ACKNOWLEDGMENT Ths work was supported n part by the US Department of Energy, Offce of Envronmental Restoraton, under contract W ENG-38 AUTHORS John J Qunn Tel: , Fax: , E-mal: Lsa A Durham Tel: , Fax: Robert L Johnson Tel: , Fax: Envronmental Assessment Dvson Argonne Natonal Laboratory 9700 S Cass Avenue Argonne, L APPLCATON OF A COMPUTATONALLY EFFlCENT GEOSTATSTCAL APPROACH TO CHARACTERZNG VARABLY SPACED WATER-TABLE DATA 4

5 control # 1385 John J Qunn Argonne Natonal Laboratory Argonne, L Tel: , Fax: FlGURE CAPTONS 1 Ste layout showng locatons of montorng wells and sprngs 2 Combned geostatstcal grds and actual data locatons 3 Model sotropc varogram 4 Krgng results Contour nterval = 10 ft APPLCATON OF A COMPUTATONALLY EFFCENT GEOSTATSTCAL APPROACH TO CHARACTERZNG VARABLY SPACED WATER-TABLE DATA 5

6 8 e e 8, e 8 e

7 ; / *;* / ' /7 - *,l / * / ; /' - 1 f -:- : J, "Y - - ' $ ; * " ' f "; '/- ; --< - ' : : j ; --, ; - -!, /: ' 7/' j - e, -"*', --_ / b ; - g - *3: 'j A 5 * ' - 2 ;* j? ; '% /'* / 1 J * * ', ',-* ---,*; - ; '- ' ', * '? 1 ;=:

8 4000 ' n c v E 2000 ' Lag h, n feet

9 , :, >? ; :!-_ J

A mathematical programming approach to the analysis, design and scheduling of offshore oilfields

A mathematical programming approach to the analysis, design and scheduling of offshore oilfields 17 th European Symposum on Computer Aded Process Engneerng ESCAPE17 V. Plesu and P.S. Agach (Edtors) 2007 Elsever B.V. All rghts reserved. 1 A mathematcal programmng approach to the analyss, desgn and

More information

NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS

NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS ARPN Journal of Engneerng and Appled Scences 006-017 Asan Research Publshng Network (ARPN). All rghts reserved. NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS Igor Grgoryev, Svetlana

More information

S1 Note. Basis functions.

S1 Note. Basis functions. S1 Note. Bass functons. Contents Types of bass functons...1 The Fourer bass...2 B-splne bass...3 Power and type I error rates wth dfferent numbers of bass functons...4 Table S1. Smulaton results of type

More information

USING GRAPHING SKILLS

USING GRAPHING SKILLS Name: BOLOGY: Date: _ Class: USNG GRAPHNG SKLLS NTRODUCTON: Recorded data can be plotted on a graph. A graph s a pctoral representaton of nformaton recorded n a data table. t s used to show a relatonshp

More information

Subspace clustering. Clustering. Fundamental to all clustering techniques is the choice of distance measure between data points;

Subspace clustering. Clustering. Fundamental to all clustering techniques is the choice of distance measure between data points; Subspace clusterng Clusterng Fundamental to all clusterng technques s the choce of dstance measure between data ponts; D q ( ) ( ) 2 x x = x x, j k = 1 k jk Squared Eucldean dstance Assumpton: All features

More information

Lecture #15 Lecture Notes

Lecture #15 Lecture Notes Lecture #15 Lecture Notes The ocean water column s very much a 3-D spatal entt and we need to represent that structure n an economcal way to deal wth t n calculatons. We wll dscuss one way to do so, emprcal

More information

Classifier Selection Based on Data Complexity Measures *

Classifier Selection Based on Data Complexity Measures * Classfer Selecton Based on Data Complexty Measures * Edth Hernández-Reyes, J.A. Carrasco-Ochoa, and J.Fco. Martínez-Trndad Natonal Insttute for Astrophyscs, Optcs and Electroncs, Lus Enrque Erro No.1 Sta.

More information

TN348: Openlab Module - Colocalization

TN348: Openlab Module - Colocalization TN348: Openlab Module - Colocalzaton Topc The Colocalzaton module provdes the faclty to vsualze and quantfy colocalzaton between pars of mages. The Colocalzaton wndow contans a prevew of the two mages

More information

An Iterative Solution Approach to Process Plant Layout using Mixed Integer Optimisation

An Iterative Solution Approach to Process Plant Layout using Mixed Integer Optimisation 17 th European Symposum on Computer Aded Process Engneerng ESCAPE17 V. Plesu and P.S. Agach (Edtors) 2007 Elsever B.V. All rghts reserved. 1 An Iteratve Soluton Approach to Process Plant Layout usng Mxed

More information

Lobachevsky State University of Nizhni Novgorod. Polyhedron. Quick Start Guide

Lobachevsky State University of Nizhni Novgorod. Polyhedron. Quick Start Guide Lobachevsky State Unversty of Nzhn Novgorod Polyhedron Quck Start Gude Nzhn Novgorod 2016 Contents Specfcaton of Polyhedron software... 3 Theoretcal background... 4 1. Interface of Polyhedron... 6 1.1.

More information

Parallelism for Nested Loops with Non-uniform and Flow Dependences

Parallelism for Nested Loops with Non-uniform and Flow Dependences Parallelsm for Nested Loops wth Non-unform and Flow Dependences Sam-Jn Jeong Dept. of Informaton & Communcaton Engneerng, Cheonan Unversty, 5, Anseo-dong, Cheonan, Chungnam, 330-80, Korea. seong@cheonan.ac.kr

More information

FEATURE EXTRACTION. Dr. K.Vijayarekha. Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur

FEATURE EXTRACTION. Dr. K.Vijayarekha. Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur FEATURE EXTRACTION Dr. K.Vjayarekha Assocate Dean School of Electrcal and Electroncs Engneerng SASTRA Unversty, Thanjavur613 41 Jont Intatve of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents

More information

Content Based Image Retrieval Using 2-D Discrete Wavelet with Texture Feature with Different Classifiers

Content Based Image Retrieval Using 2-D Discrete Wavelet with Texture Feature with Different Classifiers IOSR Journal of Electroncs and Communcaton Engneerng (IOSR-JECE) e-issn: 78-834,p- ISSN: 78-8735.Volume 9, Issue, Ver. IV (Mar - Apr. 04), PP 0-07 Content Based Image Retreval Usng -D Dscrete Wavelet wth

More information

Feature Reduction and Selection

Feature Reduction and Selection Feature Reducton and Selecton Dr. Shuang LIANG School of Software Engneerng TongJ Unversty Fall, 2012 Today s Topcs Introducton Problems of Dmensonalty Feature Reducton Statstc methods Prncpal Components

More information

Design of a Real Time FPGA-based Three Dimensional Positioning Algorithm

Design of a Real Time FPGA-based Three Dimensional Positioning Algorithm Desgn of a Real Tme FPGA-based Three Dmensonal Postonng Algorthm Nathan G. Johnson-Wllams, Student Member IEEE, Robert S. Myaoka, Member IEEE, Xaol L, Student Member IEEE, Tom K. Lewellen, Fellow IEEE,

More information

A MOVING MESH APPROACH FOR SIMULATION BUDGET ALLOCATION ON CONTINUOUS DOMAINS

A MOVING MESH APPROACH FOR SIMULATION BUDGET ALLOCATION ON CONTINUOUS DOMAINS Proceedngs of the Wnter Smulaton Conference M E Kuhl, N M Steger, F B Armstrong, and J A Jones, eds A MOVING MESH APPROACH FOR SIMULATION BUDGET ALLOCATION ON CONTINUOUS DOMAINS Mark W Brantley Chun-Hung

More information

A Binarization Algorithm specialized on Document Images and Photos

A Binarization Algorithm specialized on Document Images and Photos A Bnarzaton Algorthm specalzed on Document mages and Photos Ergna Kavalleratou Dept. of nformaton and Communcaton Systems Engneerng Unversty of the Aegean kavalleratou@aegean.gr Abstract n ths paper, a

More information

Support Vector Machines

Support Vector Machines /9/207 MIST.6060 Busness Intellgence and Data Mnng What are Support Vector Machnes? Support Vector Machnes Support Vector Machnes (SVMs) are supervsed learnng technques that analyze data and recognze patterns.

More information

Some Advanced SPC Tools 1. Cumulative Sum Control (Cusum) Chart For the data shown in Table 9-1, the x chart can be generated.

Some Advanced SPC Tools 1. Cumulative Sum Control (Cusum) Chart For the data shown in Table 9-1, the x chart can be generated. Some Advanced SP Tools 1. umulatve Sum ontrol (usum) hart For the data shown n Table 9-1, the x chart can be generated. However, the shft taken place at sample #21 s not apparent. 92 For ths set samples,

More information

SLAM Summer School 2006 Practical 2: SLAM using Monocular Vision

SLAM Summer School 2006 Practical 2: SLAM using Monocular Vision SLAM Summer School 2006 Practcal 2: SLAM usng Monocular Vson Javer Cvera, Unversty of Zaragoza Andrew J. Davson, Imperal College London J.M.M Montel, Unversty of Zaragoza. josemar@unzar.es, jcvera@unzar.es,

More information

Cell Count Method on a Network with SANET

Cell Count Method on a Network with SANET CSIS Dscusson Paper No.59 Cell Count Method on a Network wth SANET Atsuyuk Okabe* and Shno Shode** Center for Spatal Informaton Scence, Unversty of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

More information

Loop Permutation. Loop Transformations for Parallelism & Locality. Legality of Loop Interchange. Loop Interchange (cont)

Loop Permutation. Loop Transformations for Parallelism & Locality. Legality of Loop Interchange. Loop Interchange (cont) Loop Transformatons for Parallelsm & Localty Prevously Data dependences and loops Loop transformatons Parallelzaton Loop nterchange Today Loop nterchange Loop transformatons and transformaton frameworks

More information

D DAVID PUBLISHING. Advances in Ordinary Kriging Using the Stampede and Bridges Supercomputers. 1. Introduction. 2. Definitions from Ordinary Kriging

D DAVID PUBLISHING. Advances in Ordinary Kriging Using the Stampede and Bridges Supercomputers. 1. Introduction. 2. Definitions from Ordinary Kriging Journal of Geologcal Resource and Engneerng 6 (018) 14-18 do:10.1765/38-193/018.01.00 D DAVID PUBLISHING Advances n Ordnary Krgng Usng the Stampede and Brdges Supercomputers Ern M. Hodgess and Kendra Mhoon

More information

Topology Design using LS-TaSC Version 2 and LS-DYNA

Topology Design using LS-TaSC Version 2 and LS-DYNA Topology Desgn usng LS-TaSC Verson 2 and LS-DYNA Wllem Roux Lvermore Software Technology Corporaton, Lvermore, CA, USA Abstract Ths paper gves an overvew of LS-TaSC verson 2, a topology optmzaton tool

More information

THE THEORY OF REGIONALIZED VARIABLES

THE THEORY OF REGIONALIZED VARIABLES CHAPTER 4 THE THEORY OF REGIONALIZED VARIABLES 4.1 Introducton It s ponted out by Armstrong (1998 : 16) that Matheron (1963b), realzng the sgnfcance of the spatal aspect of geostatstcal data, coned the

More information

A Fast Content-Based Multimedia Retrieval Technique Using Compressed Data

A Fast Content-Based Multimedia Retrieval Technique Using Compressed Data A Fast Content-Based Multmeda Retreval Technque Usng Compressed Data Borko Furht and Pornvt Saksobhavvat NSF Multmeda Laboratory Florda Atlantc Unversty, Boca Raton, Florda 3343 ABSTRACT In ths paper,

More information

Life Tables (Times) Summary. Sample StatFolio: lifetable times.sgp

Life Tables (Times) Summary. Sample StatFolio: lifetable times.sgp Lfe Tables (Tmes) Summary... 1 Data Input... 2 Analyss Summary... 3 Survval Functon... 5 Log Survval Functon... 6 Cumulatve Hazard Functon... 7 Percentles... 7 Group Comparsons... 8 Summary The Lfe Tables

More information

Smoothing Spline ANOVA for variable screening

Smoothing Spline ANOVA for variable screening Smoothng Splne ANOVA for varable screenng a useful tool for metamodels tranng and mult-objectve optmzaton L. Rcco, E. Rgon, A. Turco Outlne RSM Introducton Possble couplng Test case MOO MOO wth Game Theory

More information

Image Representation & Visualization Basic Imaging Algorithms Shape Representation and Analysis. outline

Image Representation & Visualization Basic Imaging Algorithms Shape Representation and Analysis. outline mage Vsualzaton mage Vsualzaton mage Representaton & Vsualzaton Basc magng Algorthms Shape Representaton and Analyss outlne mage Representaton & Vsualzaton Basc magng Algorthms Shape Representaton and

More information

Loop Transformations for Parallelism & Locality. Review. Scalar Expansion. Scalar Expansion: Motivation

Loop Transformations for Parallelism & Locality. Review. Scalar Expansion. Scalar Expansion: Motivation Loop Transformatons for Parallelsm & Localty Last week Data dependences and loops Loop transformatons Parallelzaton Loop nterchange Today Scalar expanson for removng false dependences Loop nterchange Loop

More information

X- Chart Using ANOM Approach

X- Chart Using ANOM Approach ISSN 1684-8403 Journal of Statstcs Volume 17, 010, pp. 3-3 Abstract X- Chart Usng ANOM Approach Gullapall Chakravarth 1 and Chaluvad Venkateswara Rao Control lmts for ndvdual measurements (X) chart are

More information

Simulation: Solving Dynamic Models ABE 5646 Week 11 Chapter 2, Spring 2010

Simulation: Solving Dynamic Models ABE 5646 Week 11 Chapter 2, Spring 2010 Smulaton: Solvng Dynamc Models ABE 5646 Week Chapter 2, Sprng 200 Week Descrpton Readng Materal Mar 5- Mar 9 Evaluatng [Crop] Models Comparng a model wth data - Graphcal, errors - Measures of agreement

More information

Cluster Analysis of Electrical Behavior

Cluster Analysis of Electrical Behavior Journal of Computer and Communcatons, 205, 3, 88-93 Publshed Onlne May 205 n ScRes. http://www.scrp.org/ournal/cc http://dx.do.org/0.4236/cc.205.350 Cluster Analyss of Electrcal Behavor Ln Lu Ln Lu, School

More information

Quality Improvement Algorithm for Tetrahedral Mesh Based on Optimal Delaunay Triangulation

Quality Improvement Algorithm for Tetrahedral Mesh Based on Optimal Delaunay Triangulation Intellgent Informaton Management, 013, 5, 191-195 Publshed Onlne November 013 (http://www.scrp.org/journal/m) http://dx.do.org/10.36/m.013.5601 Qualty Improvement Algorthm for Tetrahedral Mesh Based on

More information

Analysis of 3D Cracks in an Arbitrary Geometry with Weld Residual Stress

Analysis of 3D Cracks in an Arbitrary Geometry with Weld Residual Stress Analyss of 3D Cracks n an Arbtrary Geometry wth Weld Resdual Stress Greg Thorwald, Ph.D. Ted L. Anderson, Ph.D. Structural Relablty Technology, Boulder, CO Abstract Materals contanng flaws lke nclusons

More information

Page 0 of 0 SPATIAL INTERPOLATION METHODS

Page 0 of 0 SPATIAL INTERPOLATION METHODS Page 0 of 0 SPATIAL INTERPOLATION METHODS 2018 1. Introducton Spatal nterpolaton s the procedure to predct the value of attrbutes at unobserved ponts wthn a study regon usng exstng observatons (Waters,

More information

REFRACTIVE INDEX SELECTION FOR POWDER MIXTURES

REFRACTIVE INDEX SELECTION FOR POWDER MIXTURES REFRACTIVE INDEX SELECTION FOR POWDER MIXTURES Laser dffracton s one of the most wdely used methods for partcle sze analyss of mcron and submcron sze powders and dspersons. It s quck and easy and provdes

More information

LINE ARRAYS CONCEPTS AND MODELING TOOLS. Jeff Berryman May 29, 2010 / Rev. 1

LINE ARRAYS CONCEPTS AND MODELING TOOLS. Jeff Berryman May 29, 2010 / Rev. 1 LINE ARRAYS CONCEPTS AND MODELING TOOLS Jeff Berryman May 29, 2010 / Rev. 1 A lne array s a stack of loudspeaker systems n a sngle lne. The lne s usually curved. Uncurved lnes do not have desrable drectonal

More information

Comparison Study of Textural Descriptors for Training Neural Network Classifiers

Comparison Study of Textural Descriptors for Training Neural Network Classifiers Comparson Study of Textural Descrptors for Tranng Neural Network Classfers G.D. MAGOULAS (1) S.A. KARKANIS (1) D.A. KARRAS () and M.N. VRAHATIS (3) (1) Department of Informatcs Unversty of Athens GR-157.84

More information

Parallel matrix-vector multiplication

Parallel matrix-vector multiplication Appendx A Parallel matrx-vector multplcaton The reduced transton matrx of the three-dmensonal cage model for gel electrophoress, descrbed n secton 3.2, becomes excessvely large for polymer lengths more

More information

A New MPS Simulation Algorithm Based on Gibbs Sampling

A New MPS Simulation Algorithm Based on Gibbs Sampling A New MPS Smulaton Algorthm Based on Gbbs Samplng Steven Lyster, Clayton V. Deutsch, and Thes Dose 2 Centre for Computatonal Geostatstcs Edmonton, Alberta 2 RWE Dea Aktengsellschaft Hamburg, Germany The

More information

C2 Training: June 8 9, Combining effect sizes across studies. Create a set of independent effect sizes. Introduction to meta-analysis

C2 Training: June 8 9, Combining effect sizes across studies. Create a set of independent effect sizes. Introduction to meta-analysis C2 Tranng: June 8 9, 2010 Introducton to meta-analyss The Campbell Collaboraton www.campbellcollaboraton.org Combnng effect szes across studes Compute effect szes wthn each study Create a set of ndependent

More information

Lecture 13: High-dimensional Images

Lecture 13: High-dimensional Images Lec : Hgh-dmensonal Images Grayscale Images Lecture : Hgh-dmensonal Images Math 90 Prof. Todd Wttman The Ctadel A grayscale mage s an nteger-valued D matrx. An 8-bt mage takes on values between 0 and 55.

More information

y and the total sum of

y and the total sum of Lnear regresson Testng for non-lnearty In analytcal chemstry, lnear regresson s commonly used n the constructon of calbraton functons requred for analytcal technques such as gas chromatography, atomc absorpton

More information

Steps for Computing the Dissimilarity, Entropy, Herfindahl-Hirschman and. Accessibility (Gravity with Competition) Indices

Steps for Computing the Dissimilarity, Entropy, Herfindahl-Hirschman and. Accessibility (Gravity with Competition) Indices Steps for Computng the Dssmlarty, Entropy, Herfndahl-Hrschman and Accessblty (Gravty wth Competton) Indces I. Dssmlarty Index Measurement: The followng formula can be used to measure the evenness between

More information

REMOTE SENSING REQUIREMENTS DEVELOPMENT: A SIMULATION-BASED APPROACH

REMOTE SENSING REQUIREMENTS DEVELOPMENT: A SIMULATION-BASED APPROACH REMOTE SENSING REQUIREMENTS DEVEOPMENT: A SIMUATION-BASED APPROAC V. Zanon a, B. Davs a, R. Ryan b, G. Gasser c, S. Blonsk b a Earth Scence Applcatons Drectorate, Natonal Aeronautcs and Space Admnstraton,

More information

Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009.

Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009. Farrukh Jabeen Algorthms 51 Assgnment #2 Due Date: June 15, 29. Assgnment # 2 Chapter 3 Dscrete Fourer Transforms Implement the FFT for the DFT. Descrbed n sectons 3.1 and 3.2. Delverables: 1. Concse descrpton

More information

Automatic selection of reference velocities for recursive depth migration

Automatic selection of reference velocities for recursive depth migration Automatc selecton of mgraton veloctes Automatc selecton of reference veloctes for recursve depth mgraton Hugh D. Geger and Gary F. Margrave ABSTRACT Wave equaton depth mgraton methods such as phase-shft

More information

MULTISTAGE OPTIMIZATION OF AUTOMOTIVE CONTROL ARM THROUGH TOPOLOGY AND SHAPE OPTIMIZATION. 1 Duane Detwiler, 2 Emily Nutwell*, 2 Deepak Lokesha

MULTISTAGE OPTIMIZATION OF AUTOMOTIVE CONTROL ARM THROUGH TOPOLOGY AND SHAPE OPTIMIZATION. 1 Duane Detwiler, 2 Emily Nutwell*, 2 Deepak Lokesha 6 th BETA CAE Internatonal Conference MULTISTAGE OPTIMIZATION OF AUTOMOTIVE CONTROL ARM THROUGH TOPOLOGY AND SHAPE OPTIMIZATION. 1 Duane Detwler, 2 Emly Nutwell*, 2 Deepak Lokesha 1 Honda R&D Amercas,

More information

SURFACE PROFILE EVALUATION BY FRACTAL DIMENSION AND STATISTIC TOOLS USING MATLAB

SURFACE PROFILE EVALUATION BY FRACTAL DIMENSION AND STATISTIC TOOLS USING MATLAB SURFACE PROFILE EVALUATION BY FRACTAL DIMENSION AND STATISTIC TOOLS USING MATLAB V. Hotař, A. Hotař Techncal Unversty of Lberec, Department of Glass Producng Machnes and Robotcs, Department of Materal

More information

Type-2 Fuzzy Non-uniform Rational B-spline Model with Type-2 Fuzzy Data

Type-2 Fuzzy Non-uniform Rational B-spline Model with Type-2 Fuzzy Data Malaysan Journal of Mathematcal Scences 11(S) Aprl : 35 46 (2017) Specal Issue: The 2nd Internatonal Conference and Workshop on Mathematcal Analyss (ICWOMA 2016) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

More information

High resolution 3D Tau-p transform by matching pursuit Weiping Cao* and Warren S. Ross, Shearwater GeoServices

High resolution 3D Tau-p transform by matching pursuit Weiping Cao* and Warren S. Ross, Shearwater GeoServices Hgh resoluton 3D Tau-p transform by matchng pursut Wepng Cao* and Warren S. Ross, Shearwater GeoServces Summary The 3D Tau-p transform s of vtal sgnfcance for processng sesmc data acqured wth modern wde

More information

Benchmarking Knowledge-assisted Kriging for Automated Spatial Interpolation of Wind Measurements

Benchmarking Knowledge-assisted Kriging for Automated Spatial Interpolation of Wind Measurements Benchmarkng Knowledge-asssted Krgng for Automated Spatal Interpolaton of Wnd Measurements Zlatko Zlatev, Stuart E. Mddleton, Galna Veres IT Innovaton Centre Unversty of Southampton Southampton, UK {zdz,sem,gvv}@t-nnovaton.soton.ac.uk

More information

GSLM Operations Research II Fall 13/14

GSLM Operations Research II Fall 13/14 GSLM 58 Operatons Research II Fall /4 6. Separable Programmng Consder a general NLP mn f(x) s.t. g j (x) b j j =. m. Defnton 6.. The NLP s a separable program f ts objectve functon and all constrants are

More information

A Workflow for Spatial Uncertainty Quantification using Distances and Kernels

A Workflow for Spatial Uncertainty Quantification using Distances and Kernels A Workflow for Spatal Uncertanty Quantfcaton usng Dstances and Kernels Célne Schedt and Jef Caers Stanford Center for Reservor Forecastng Stanford Unversty Abstract Assessng uncertanty n reservor performance

More information

Computation of Ex-Core Detector Weighting Functions for VVER-440 Using MCNP5

Computation of Ex-Core Detector Weighting Functions for VVER-440 Using MCNP5 Computaton of Ex-Core Detector Weghtng Functons for VVER-440 Usng MCNP5 Gabrel Farkas, Jozef Lpka, Ján Haščík, Vladmír Slugeň Slovak Unversty of Technology, Faculty of Electrcal Engneerng and Informaton

More information

User Authentication Based On Behavioral Mouse Dynamics Biometrics

User Authentication Based On Behavioral Mouse Dynamics Biometrics User Authentcaton Based On Behavoral Mouse Dynamcs Bometrcs Chee-Hyung Yoon Danel Donghyun Km Department of Computer Scence Department of Computer Scence Stanford Unversty Stanford Unversty Stanford, CA

More information

SCALABLE AND VISUALIZATION-ORIENTED CLUSTERING FOR EXPLORATORY SPATIAL ANALYSIS

SCALABLE AND VISUALIZATION-ORIENTED CLUSTERING FOR EXPLORATORY SPATIAL ANALYSIS SCALABLE AND VISUALIZATION-ORIENTED CLUSTERING FOR EXPLORATORY SPATIAL ANALYSIS J.H.Guan, F.B.Zhu, F.L.Ban a School of Computer, Spatal Informaton & Dgtal Engneerng Center, Wuhan Unversty, Wuhan, 430079,

More information

Improvement of Spatial Resolution Using BlockMatching Based Motion Estimation and Frame. Integration

Improvement of Spatial Resolution Using BlockMatching Based Motion Estimation and Frame. Integration Improvement of Spatal Resoluton Usng BlockMatchng Based Moton Estmaton and Frame Integraton Danya Suga and Takayuk Hamamoto Graduate School of Engneerng, Tokyo Unversty of Scence, 6-3-1, Nuku, Katsuska-ku,

More information

Simplification of 3D Meshes

Simplification of 3D Meshes Smplfcaton of 3D Meshes Addy Ngan /4/00 Outlne Motvaton Taxonomy of smplfcaton methods Hoppe et al, Mesh optmzaton Hoppe, Progressve meshes Smplfcaton of 3D Meshes 1 Motvaton Hgh detaled meshes becomng

More information

An Optimal Algorithm for Prufer Codes *

An Optimal Algorithm for Prufer Codes * J. Software Engneerng & Applcatons, 2009, 2: 111-115 do:10.4236/jsea.2009.22016 Publshed Onlne July 2009 (www.scrp.org/journal/jsea) An Optmal Algorthm for Prufer Codes * Xaodong Wang 1, 2, Le Wang 3,

More information

An Entropy-Based Approach to Integrated Information Needs Assessment

An Entropy-Based Approach to Integrated Information Needs Assessment Dstrbuton Statement A: Approved for publc release; dstrbuton s unlmted. An Entropy-Based Approach to ntegrated nformaton Needs Assessment June 8, 2004 Wllam J. Farrell Lockheed Martn Advanced Technology

More information

Programming in Fortran 90 : 2017/2018

Programming in Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Exercse 1 : Evaluaton of functon dependng on nput Wrte a program who evaluate the functon f (x,y) for any two user specfed values

More information

The Codesign Challenge

The Codesign Challenge ECE 4530 Codesgn Challenge Fall 2007 Hardware/Software Codesgn The Codesgn Challenge Objectves In the codesgn challenge, your task s to accelerate a gven software reference mplementaton as fast as possble.

More information

A New Token Allocation Algorithm for TCP Traffic in Diffserv Network

A New Token Allocation Algorithm for TCP Traffic in Diffserv Network A New Token Allocaton Algorthm for TCP Traffc n Dffserv Network A New Token Allocaton Algorthm for TCP Traffc n Dffserv Network S. Sudha and N. Ammasagounden Natonal Insttute of Technology, Truchrappall,

More information

Classification Based Mode Decisions for Video over Networks

Classification Based Mode Decisions for Video over Networks Classfcaton Based Mode Decsons for Vdeo over Networks Deepak S. Turaga and Tsuhan Chen Advanced Multmeda Processng Lab Tranng data for Inter-Intra Decson Inter-Intra Decson Regons pdf 6 5 6 5 Energy 4

More information

An accurate nleasurenlent of densities of snowflakes using 3-D nticrophotographs

An accurate nleasurenlent of densities of snowflakes using 3-D nticrophotographs Annals of Glacology 18 1993 nternatonal Glacologcal Socety An accurate nleasurenlent of denstes of snowflakes usng 3-D ntcrophotographs MASAAK SHZAKA Toyama Scence Museum, 1-8-31, Nsh-Nakano, Toyama 939,

More information

Simulation Based Analysis of FAST TCP using OMNET++

Simulation Based Analysis of FAST TCP using OMNET++ Smulaton Based Analyss of FAST TCP usng OMNET++ Umar ul Hassan 04030038@lums.edu.pk Md Term Report CS678 Topcs n Internet Research Sprng, 2006 Introducton Internet traffc s doublng roughly every 3 months

More information

Summarizing Data using Bottom-k Sketches

Summarizing Data using Bottom-k Sketches Summarzng Data usng Bottom-k Sketches Edth Cohen AT&T Labs Research 8 Park Avenue Florham Park, NJ 7932, USA edth@research.att.com Ham Kaplan School of Computer Scence Tel Avv Unversty Tel Avv, Israel

More information

Development of a Local GPS-Leveling Geoid Model for

Development of a Local GPS-Leveling Geoid Model for Development of a Local GPS-Levelng Geod Model for the Gaza Strp Area Maher A. El-Hallaq Assstant Professor, Cvl Engneerng Department, Islamc Unversty of Gaza, Palestne mhallaq@ugaza.edu.ps Abstract Geod

More information

Problem Definitions and Evaluation Criteria for Computational Expensive Optimization

Problem Definitions and Evaluation Criteria for Computational Expensive Optimization Problem efntons and Evaluaton Crtera for Computatonal Expensve Optmzaton B. Lu 1, Q. Chen and Q. Zhang 3, J. J. Lang 4, P. N. Suganthan, B. Y. Qu 6 1 epartment of Computng, Glyndwr Unversty, UK Faclty

More information

Detection of Outliers in the Adjustment of Accurate Geodetic Measurements

Detection of Outliers in the Adjustment of Accurate Geodetic Measurements 105 Detecton of Outlers n the Adjustment of Accurate Geodetc Measurements asák, P. and Štroner, M. Department of Specal Geodesy, Faculty of Cvl Engneerng, CU n Prague, hákurova 7, Prague, Czech Republc,

More information

Data Mining For Multi-Criteria Energy Predictions

Data Mining For Multi-Criteria Energy Predictions Data Mnng For Mult-Crtera Energy Predctons Kashf Gll and Denns Moon Abstract We present a data mnng technque for mult-crtera predctons of wnd energy. A mult-crtera (MC) evolutonary computng method has

More information

A COMPARISON OF TWO METHODS FOR FITTING HIGH DIMENSIONAL RESPONSE SURFACES

A COMPARISON OF TWO METHODS FOR FITTING HIGH DIMENSIONAL RESPONSE SURFACES Mam, Florda, U.S.A., Aprl 6-8, 7 A COMPARISON OF TWO METHODS FOR FITTING HIGH DIMENSIONAL RESPONSE SURFACES Marcelo J. Colaço Department of Mechancal and Materals Eng. Mltary Insttute of Engneerng Ro de

More information

Virtual Memory. Background. No. 10. Virtual Memory: concept. Logical Memory Space (review) Demand Paging(1) Virtual Memory

Virtual Memory. Background. No. 10. Virtual Memory: concept. Logical Memory Space (review) Demand Paging(1) Virtual Memory Background EECS. Operatng System Fundamentals No. Vrtual Memory Prof. Hu Jang Department of Electrcal Engneerng and Computer Scence, York Unversty Memory-management methods normally requres the entre process

More information

We Two Seismic Interference Attenuation Methods Based on Automatic Detection of Seismic Interference Moveout

We Two Seismic Interference Attenuation Methods Based on Automatic Detection of Seismic Interference Moveout We 14 15 Two Sesmc Interference Attenuaton Methods Based on Automatc Detecton of Sesmc Interference Moveout S. Jansen* (Unversty of Oslo), T. Elboth (CGG) & C. Sanchs (CGG) SUMMARY The need for effcent

More information

Mining User Similarity Using Spatial-temporal Intersection

Mining User Similarity Using Spatial-temporal Intersection www.ijcsi.org 215 Mnng User Smlarty Usng Spatal-temporal Intersecton Ymn Wang 1, Rumn Hu 1, Wenhua Huang 1 and Jun Chen 1 1 Natonal Engneerng Research Center for Multmeda Software, School of Computer,

More information

Convolutional interleaver for unequal error protection of turbo codes

Convolutional interleaver for unequal error protection of turbo codes Convolutonal nterleaver for unequal error protecton of turbo codes Sna Vaf, Tadeusz Wysock, Ian Burnett Unversty of Wollongong, SW 2522, Australa E-mal:{sv39,wysock,an_burnett}@uow.edu.au Abstract: Ths

More information

DLK Pro the all-rounder for mobile data downloading. Tailor-made for various requirements.

DLK Pro the all-rounder for mobile data downloading. Tailor-made for various requirements. DLK Pro the all-rounder for moble data downloadng Talor-made for varous requrements www.dtco.vdo.com Smply brllant, brllantly smple Always the rght soluton The DLK Pro s the VDO product famly, whch sets

More information

Accuracy Assessment and Comparative Analysis of IDW, Spline and Kriging in Spatial Interpolation of Landform (Topography): An Experimental Study

Accuracy Assessment and Comparative Analysis of IDW, Spline and Kriging in Spatial Interpolation of Landform (Topography): An Experimental Study Journal of Geographc Informaton System, 207, 9, 354-37 http://www.scrp.org/journal/jgs ISSN Onlne: 25-969 ISSN Prnt: 25-950 Accuracy Assessment and Comparatve Analyss of IDW, Splne and Krgng n Spatal Interpolaton

More information

Compiler Design. Spring Register Allocation. Sample Exercises and Solutions. Prof. Pedro C. Diniz

Compiler Design. Spring Register Allocation. Sample Exercises and Solutions. Prof. Pedro C. Diniz Compler Desgn Sprng 2014 Regster Allocaton Sample Exercses and Solutons Prof. Pedro C. Dnz USC / Informaton Scences Insttute 4676 Admralty Way, Sute 1001 Marna del Rey, Calforna 90292 pedro@s.edu Regster

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervsed Learnng and Clusterng Why consder unlabeled samples?. Collectng and labelng large set of samples s costly Gettng recorded speech s free, labelng s tme consumng 2. Classfer could be desgned

More information

Wishing you all a Total Quality New Year!

Wishing you all a Total Quality New Year! Total Qualty Management and Sx Sgma Post Graduate Program 214-15 Sesson 4 Vnay Kumar Kalakband Assstant Professor Operatons & Systems Area 1 Wshng you all a Total Qualty New Year! Hope you acheve Sx sgma

More information

A Bilinear Model for Sparse Coding

A Bilinear Model for Sparse Coding A Blnear Model for Sparse Codng Davd B. Grmes and Rajesh P. N. Rao Department of Computer Scence and Engneerng Unversty of Washngton Seattle, WA 98195-2350, U.S.A. grmes,rao @cs.washngton.edu Abstract

More information

Array transposition in CUDA shared memory

Array transposition in CUDA shared memory Array transposton n CUDA shared memory Mke Gles February 19, 2014 Abstract Ths short note s nspred by some code wrtten by Jeremy Appleyard for the transposton of data through shared memory. I had some

More information

Brushlet Features for Texture Image Retrieval

Brushlet Features for Texture Image Retrieval DICTA00: Dgtal Image Computng Technques and Applcatons, 1 January 00, Melbourne, Australa 1 Brushlet Features for Texture Image Retreval Chbao Chen and Kap Luk Chan Informaton System Research Lab, School

More information

Machine Learning: Algorithms and Applications

Machine Learning: Algorithms and Applications 14/05/1 Machne Learnng: Algorthms and Applcatons Florano Zn Free Unversty of Bozen-Bolzano Faculty of Computer Scence Academc Year 011-01 Lecture 10: 14 May 01 Unsupervsed Learnng cont Sldes courtesy of

More information

Review of approximation techniques

Review of approximation techniques CHAPTER 2 Revew of appromaton technques 2. Introducton Optmzaton problems n engneerng desgn are characterzed by the followng assocated features: the objectve functon and constrants are mplct functons evaluated

More information

Multi-view 3D Position Estimation of Sports Players

Multi-view 3D Position Estimation of Sports Players Mult-vew 3D Poston Estmaton of Sports Players Robbe Vos and Wlle Brnk Appled Mathematcs Department of Mathematcal Scences Unversty of Stellenbosch, South Afrca Emal: vosrobbe@gmal.com Abstract The problem

More information

EFFECT OF GROUNDWATER PUMPING SCHEDULE VARIATION ON ARRIVAL OF TETRACHLOROETHYLENE (PCE) AT WATER-SUPPLY WELLS AND THE WATER TREATMENT PLANT

EFFECT OF GROUNDWATER PUMPING SCHEDULE VARIATION ON ARRIVAL OF TETRACHLOROETHYLENE (PCE) AT WATER-SUPPLY WELLS AND THE WATER TREATMENT PLANT EFFECT OF GROUNDWATER PUMPING SCHEDULE VARIATION ON ARRIVAL OF TETRACHLOROETHYLENE (PCE) AT WATER-SUPPLY WELLS AND THE WATER TREATMENT PLANT Jnjun Wang and Mustafa M. Aral Multmeda Envronmental Smulatons

More information

Modeling Local Uncertainty accounting for Uncertainty in the Data

Modeling Local Uncertainty accounting for Uncertainty in the Data Modelng Local Uncertanty accontng for Uncertanty n the Data Olena Babak and Clayton V Detsch Consder the problem of estmaton at an nsampled locaton sng srrondng samples The standard approach to ths problem

More information

Modeling of Airfoil Trailing Edge Flap with Immersed Boundary Method

Modeling of Airfoil Trailing Edge Flap with Immersed Boundary Method Downloaded from orbt.dtu.dk on: Sep 27, 2018 Modelng of Arfol Tralng Edge Flap wth Immersed Boundary Method Zhu, We Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær Publshed n: ICOWEOE-2011 Publcaton date:

More information

Positive Semi-definite Programming Localization in Wireless Sensor Networks

Positive Semi-definite Programming Localization in Wireless Sensor Networks Postve Sem-defnte Programmng Localzaton n Wreless Sensor etworks Shengdong Xe 1,, Jn Wang, Aqun Hu 1, Yunl Gu, Jang Xu, 1 School of Informaton Scence and Engneerng, Southeast Unversty, 10096, anjng Computer

More information

Six-Band HDTV Camera System for Color Reproduction Based on Spectral Information

Six-Band HDTV Camera System for Color Reproduction Based on Spectral Information IS&T's 23 PICS Conference Sx-Band HDTV Camera System for Color Reproducton Based on Spectral Informaton Kenro Ohsawa )4), Hroyuk Fukuda ), Takeyuk Ajto 2),Yasuhro Komya 2), Hdeak Hanesh 3), Masahro Yamaguch

More information

Base Station Location Protection in Wireless Sensor Networks: Attacks and Defense

Base Station Location Protection in Wireless Sensor Networks: Attacks and Defense Base Staton Locaton Protecton n Wreless Sensor Networks: Attacks and Defense Juan Chen, Hongl Zhang, Xaojang Du 2, Bnxng Fang, Yan Lu 3, Hanng Yu Research Center of Computer Network and Informaton Securty

More information

RESEARCH ON EQUIVALNCE OF SPATIAL RELATIONS IN AUTOMATIC PROGRESSIVE CARTOGRAPHIC GENERALIZATION

RESEARCH ON EQUIVALNCE OF SPATIAL RELATIONS IN AUTOMATIC PROGRESSIVE CARTOGRAPHIC GENERALIZATION RESEARCH ON EQUIVALNCE OF SPATIAL RELATIONS IN AUTOMATIC PROGRESSIVE CARTOGRAPHIC GENERALIZATION Guo Qngsheng Du Xaochu Wuhan Unversty Wuhan Unversty ABSTRCT: In automatc cartographc generalzaton, the

More information

Empirical Distributions of Parameter Estimates. in Binary Logistic Regression Using Bootstrap

Empirical Distributions of Parameter Estimates. in Binary Logistic Regression Using Bootstrap Int. Journal of Math. Analyss, Vol. 8, 4, no. 5, 7-7 HIKARI Ltd, www.m-hkar.com http://dx.do.org/.988/jma.4.494 Emprcal Dstrbutons of Parameter Estmates n Bnary Logstc Regresson Usng Bootstrap Anwar Ftranto*

More information

Course Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms

Course Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms Course Introducton Course Topcs Exams, abs, Proects A quc loo at a few algorthms 1 Advanced Data Structures and Algorthms Descrpton: We are gong to dscuss algorthm complexty analyss, algorthm desgn technques

More information

Cluster-Based Profile Monitoring in Phase I Analysis. Yajuan Chen. Doctor of Philosophy In Statistics

Cluster-Based Profile Monitoring in Phase I Analysis. Yajuan Chen. Doctor of Philosophy In Statistics Cluster-Based Profle Montorng n Phase I Analyss Yajuan Chen Dssertaton submtted to the faculty of the Vrgna Polytechnc Insttute and State Unversty n partal fulfllment of the requrements for the degree

More information

Bangalore Electricity Supply Company Limited (wholly owned Government of Karnataka undertaking)

Bangalore Electricity Supply Company Limited (wholly owned Government of Karnataka undertaking) Format - 5 Bangalore Electrcty Supply Company Lmted (wholly owned Government of Karnataka undertakng) Telephone : Emal ID : Ref No.: Offce of the.. Date: To, (Name & address of the applcant) Madam/Sr,

More information