CS 498PS Audio Computing Lab. Audio Restoration. Paris Smaragdis. paris.cs.illinois.edu U NIVERSITY OF URBANA-CHAMPAIGN

Size: px
Start display at page:

Download "CS 498PS Audio Computing Lab. Audio Restoration. Paris Smaragdis. paris.cs.illinois.edu U NIVERSITY OF URBANA-CHAMPAIGN"

Transcription

1 CS 498PS Audio Computing Lab Audio Restoration Paris Smaragdis paris.cs.illinois.edu

2 Today s lecture Audio restoration Gap filling Click removal Clip recovery 2

3 Missing data approach When restoring audio you often need to make up data e.g. fill-in network drops, replace scratches on disks, etc. How do we treat such problems? 3

4 General classification of cases Missing completely at random (MCAR) Missingness is really random E.g. dropping samples unpredictably Missing at random (MAR) Missingness of x depends on another variable E.g. buffer drops in network Not missing at random (NMAR) None of the above E.g. clipping 4

5 MCAR case Random samples are dropped? How do we fix this?

6 Take advantage of signal smoothness Use linear interpolation For all missing data x(t) replace with: x(t 1)+ x(t +1) 2 You can also see this as some sort of a filter applied only on the data that was missing 6

7 Result Looks (and sounds) pretty good Missing Samples Recovered signal

8 A slightly worse case MAR data on simple waveform How do we deal with this case?

9 Same thing Only this time we will extrapolate Our signal is predictable Use a bandpass filter centered on this tone s frequency Filter only the missing parts given the past samples This imposes the sinusoid s continuity 9

10 What will this do? Frequency (Hz) Time (sec) 1

11 Result Perfect reconstruction Of course, we could do this in easier ways (but it won t scale)

12 A less simple example Now the data is not as predictable How can we find the missing values?

13 Key observations Temporal structure The signal is somewhat periodic We could predict the future from the past How do we formalize this?

14 A predictive model Predict current sample from the past Using a weighted average of preceding samples x t = Autoregressive (AR) model a i x t 1 + e t 14

15 Rewriting the model Linear algebra notation A = e = A x a p! a 1 1! a p! a 1 1! " " # # # # # " "! a p! a 1 1! a p! a 1 1! a p! a

16 Filling gaps Model the input sequence as: e = A x = A U x u + K x k ( ) = A u x u + A k x k x u and x k are the unknown and known samples U and K are sample positioning matrices x = x 1 x 2 x 3 x 4,U x = U u x 1 x 3 = x 1 x 3,K x = K k x 2 x 4 = x 2 x 4 16

17 Find x u to minimize e Set the derivative to zero e e = 2e e x u Solve for unknown samples ( ) A u = x u = 2 A x u + A k x k ( ) 1 A u A k x k ˆx u = A u A u 17

18 Results Works pretty well! Input data blue/cyan real red restoration

19 Some real-life uses Filling in missing data from damaged CDs Minor scratches cause loss of data that needs to be made up This isn t for catastrophic damage, pretty much every CD has scratches Network dropouts When missing a small buffer, we can make up the data that way 19

20 But not for large windows! Input data blue/cyan real red restoration

21 Looking for a new idea We should move away from the sample level, and look at a coarser scale e.g. a time-frequency view 21

22 A simpler idea Find sections most similar to the gap edges Replace missing sections with their neighbors?? x 1 x 2 x 3?? x 6 x 7 x 8?? Iterate until all gaps are closed Match sections using a nearest neighbors scheme 22

23 In action First iteration 23

24 In action Second iteration 24

25 In action Third iteration 25

26 In action Fourth iteration 26

27 In action Final iteration Input Output 27

28 Some examples Out In Out In Speech Music Sound effects In Out 28

29 A model-based viewpoint Nearest-neighbor search was local We ignore global data structure Missing data should conform to a model of the input i.e. they shouldn t be outliers 29

30 NMF-based imputation Simple global approach Replace missing data with some values x = E{x} or x U(µ) or... u u Perform an NMF approximation of the data Replace missing data with NMF approximation Repeat! X W H, X,W,H ( ) u x u = W H 3

31 Why? Known data will dominate model Assuming they are enough! Each approximation will try to conform to the global model of the input i.e. made up values will not be random With each new iteration that conformance to global model will increase 31

32 Variations We don t have to use NMF e.g. our data might have negative values So you can use eigen-decompositions, probabilistic models, etc. Any global model would work Just make sure that it fits the data well 32

33 Example Learn from input and fill-in missing values Input NMF 33

34 Learning from outside Bandwidth expansion Learn model from other recordings Input NMF 34

35 Glitch removal What happens when we have lots of glitches in a track? E.g. vinyl scratches, network glitches, etc. Use missing data methods to replace glitches But how do we know where they are? 35

36 A simple example Signal with multiple clicks and glitches

37 Detecting abnormalities We can use an AR model once again x t = Prediction a i x t 1 + e t Current sample Prediction error The model The past Glitches are rare events, and will be poorly predicted Therefore e t will be large during a glitch 37

38 Prediction error And in action it does pretty well 6 Input signal Prediction error Glitch Threshold

39 Glitch removal Identify the location of problems spots Use prediction error peaks and treat their neighborhood as missing If there s clipping, look for clipped values Use aforementioned methods to fill in the data Remove glitchy region and use the AR model to replace the data 39

40 A real-world example Lots of glitches due to hardware issues 4

41 Finding the glitches Prediction error reveals trouble spots 41

42 Filling in the missing data No glitches and no gaps! 42

43 What about NMAR data? Samples are not missing at random i.e. they depend on the values of the signal Most common audio example of this is clipping Values outside than the dynamic range clip to fixed values Resulting effect is known as distortion 43

44 The toy case Clipping at extreme values How do we recover the clipped peaks? 44

45 What does clipping do? Clipping adds new harmonics in the signal Makes the spectrum busier Frequency (normalized) Frequency (normalized) Original Time (samples) Clipped Time (samples)

46 A plan Fill in values for the missing data such that the spectrum becomes more sparse Can be formalized as a linear optimization problem: y = IDFT(Y) minimize: Y such that: y(k)= x(k) y(u + ) c + k is index of unclipped samples u + is index of positive clipped samples c + is largest sample value (clip point) 46 y(u ) c u is index of negative clipped samples c is smallest sample value (clip point)

47 Result Does a good job in recovering clipped samples Original Clipped Recovered

48 Result 48 And produces the desired spectral effect Frequency (normalized) Frequency (normalized) Frequency (normalized) Original Time (samples) Clipped Time (samples) Recovered Time (samples)

49 With a more challenging case Speech with severe clipping Original sound Clipped sound Recovered sound 49

50 Results 5 Distortion harmonics are suppressed Frequency (normalized) Frequency (normalized) Frequency (normalized) Original Time (samples) Clipped Time (samples) Recovered Time (samples)

51 Recap Missing data techniques AR models Nearest neighbors, NMF Glitch removal Minimizing clipping effects 51

52 Reading A fantastic book on audio restoration (and general audio): 52

Shift- and Transform-Invariant Representations Denoising Speech Signals

Shift- and Transform-Invariant Representations Denoising Speech Signals 11-755 Machine Learning for Signal Processing Shift- and Transform-Invariant Representations Denoising Speech Signals Class 18. 22 Oct 2009 Summary So Far PLCA: The basic mixture-multinomial model for

More information

Lecture 26: Missing data

Lecture 26: Missing data Lecture 26: Missing data Reading: ESL 9.6 STATS 202: Data mining and analysis December 1, 2017 1 / 10 Missing data is everywhere Survey data: nonresponse. 2 / 10 Missing data is everywhere Survey data:

More information

Online PLCA for Real-time Semi-supervised Source Separation

Online PLCA for Real-time Semi-supervised Source Separation Online PLCA for Real-time Semi-supervised Source Separation Zhiyao Duan 1, Gautham J. Mysore 2 and Paris Smaragdis 2,3 1 EECS Department, Northwestern University, 2 Advanced Technology Labs, Adobe Systems

More information

Lecture 3: Linear Classification

Lecture 3: Linear Classification Lecture 3: Linear Classification Roger Grosse 1 Introduction Last week, we saw an example of a learning task called regression. There, the goal was to predict a scalar-valued target from a set of features.

More information

FACTORSYNTH user manual

FACTORSYNTH user manual FACTORSYNTH user manual www.jjburred.com - software@jjburred.com J.J. Burred, 2018-2019 factorsynth version: 1.4, 28/2/2019 Introduction Factorsynth is a Max For Live device that uses machine learning

More information

LOESS curve fitted to a population sampled from a sine wave with uniform noise added. The LOESS curve approximates the original sine wave.

LOESS curve fitted to a population sampled from a sine wave with uniform noise added. The LOESS curve approximates the original sine wave. LOESS curve fitted to a population sampled from a sine wave with uniform noise added. The LOESS curve approximates the original sine wave. http://en.wikipedia.org/wiki/local_regression Local regression

More information

Lecture 5: Compression I. This Week s Schedule

Lecture 5: Compression I. This Week s Schedule Lecture 5: Compression I Reading: book chapter 6, section 3 &5 chapter 7, section 1, 2, 3, 4, 8 Today: This Week s Schedule The concept behind compression Rate distortion theory Image compression via DCT

More information

Interpolation, extrapolation, etc.

Interpolation, extrapolation, etc. Interpolation, extrapolation, etc. Prof. Ramin Zabih http://cs100r.cs.cornell.edu Administrivia Assignment 5 is out, due Wednesday A6 is likely to involve dogs again Monday sections are now optional Will

More information

CART. Classification and Regression Trees. Rebecka Jörnsten. Mathematical Sciences University of Gothenburg and Chalmers University of Technology

CART. Classification and Regression Trees. Rebecka Jörnsten. Mathematical Sciences University of Gothenburg and Chalmers University of Technology CART Classification and Regression Trees Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology CART CART stands for Classification And Regression Trees.

More information

Why study algorithms? CS 561, Lecture 1. Today s Outline. Why study algorithms? (II)

Why study algorithms? CS 561, Lecture 1. Today s Outline. Why study algorithms? (II) Why study algorithms? CS 561, Lecture 1 Jared Saia University of New Mexico Seven years of College down the toilet - John Belushi in Animal House Q: Can I get a programming job without knowing something

More information

MPEG-4 Version 2 Audio Workshop: HILN - Parametric Audio Coding

MPEG-4 Version 2 Audio Workshop: HILN - Parametric Audio Coding MPEG-4 Version 2 Audio Workshop: HILN - Parametric Audio Coding Heiko Purnhagen Laboratorium für Informationstechnologie University of Hannover, Germany Outline Introduction What is "Parametric Audio Coding"?

More information

CBS For Windows CDROM Backup System Quick Start Guide Installation Preparation:

CBS For Windows CDROM Backup System Quick Start Guide Installation Preparation: CBS For Windows CDROM Backup System Quick Start Guide Installation If you have your CBS CD Writer Backup system on CD, simply insert the CD. It will automatically start and install the software. If you

More information

D. Richard Brown III Professor Worcester Polytechnic Institute Electrical and Computer Engineering Department

D. Richard Brown III Professor Worcester Polytechnic Institute Electrical and Computer Engineering Department D. Richard Brown III Professor Worcester Polytechnic Institute Electrical and Computer Engineering Department drb@ece.wpi.edu Lecture 2 Some Challenges of Real-Time DSP Analog to digital conversion Are

More information

Image Features: Local Descriptors. Sanja Fidler CSC420: Intro to Image Understanding 1/ 58

Image Features: Local Descriptors. Sanja Fidler CSC420: Intro to Image Understanding 1/ 58 Image Features: Local Descriptors Sanja Fidler CSC420: Intro to Image Understanding 1/ 58 [Source: K. Grauman] Sanja Fidler CSC420: Intro to Image Understanding 2/ 58 Local Features Detection: Identify

More information

Module 5: Performance Issues in Shared Memory and Introduction to Coherence Lecture 9: Performance Issues in Shared Memory. The Lecture Contains:

Module 5: Performance Issues in Shared Memory and Introduction to Coherence Lecture 9: Performance Issues in Shared Memory. The Lecture Contains: The Lecture Contains: Data Access and Communication Data Access Artifactual Comm. Capacity Problem Temporal Locality Spatial Locality 2D to 4D Conversion Transfer Granularity Worse: False Sharing Contention

More information

Audio-coding standards

Audio-coding standards Audio-coding standards The goal is to provide CD-quality audio over telecommunications networks. Almost all CD audio coders are based on the so-called psychoacoustic model of the human auditory system.

More information

Compressed Audio Demystified by Hendrik Gideonse and Connor Smith. All Rights Reserved.

Compressed Audio Demystified by Hendrik Gideonse and Connor Smith. All Rights Reserved. Compressed Audio Demystified Why Music Producers Need to Care About Compressed Audio Files Download Sales Up CD Sales Down High-Definition hasn t caught on yet Consumers don t seem to care about high fidelity

More information

Image Processing and Analysis

Image Processing and Analysis Image Processing and Analysis 3 stages: Image Restoration - correcting errors and distortion. Warping and correcting systematic distortion related to viewing geometry Correcting "drop outs", striping and

More information

EECS 556 Image Processing W 09

EECS 556 Image Processing W 09 EECS 556 Image Processing W 09 Motion estimation Global vs. Local Motion Block Motion Estimation Optical Flow Estimation (normal equation) Man slides of this lecture are courtes of prof Milanfar (UCSC)

More information

COS 116 The Computational Universe Laboratory 4: Digital Sound and Music

COS 116 The Computational Universe Laboratory 4: Digital Sound and Music COS 116 The Computational Universe Laboratory 4: Digital Sound and Music In this lab you will learn about digital representations of sound and music, especially focusing on the role played by frequency

More information

The Sensitivity Matrix

The Sensitivity Matrix The Sensitivity Matrix Integrating Perception into the Flexcode Project Jan Plasberg Flexcode Seminar Lannion June 6, 2007 SIP - Sound and Image Processing Lab, EE, KTH Stockholm 1 SIP - Sound and Image

More information

Missing Data. Where did it go?

Missing Data. Where did it go? Missing Data Where did it go? 1 Learning Objectives High-level discussion of some techniques Identify type of missingness Single vs Multiple Imputation My favourite technique 2 Problem Uh data are missing

More information

Simulation of Imputation Effects Under Different Assumptions. Danny Rithy

Simulation of Imputation Effects Under Different Assumptions. Danny Rithy Simulation of Imputation Effects Under Different Assumptions Danny Rithy ABSTRACT Missing data is something that we cannot always prevent. Data can be missing due to subjects' refusing to answer a sensitive

More information

PROBLEM SOLVING 11. July 24, 2012

PROBLEM SOLVING 11. July 24, 2012 PROBLEM SOLVING 11 COMPUTER SCIENCE 61A July 24, 2012 Today s section will be a kind of Meta-Section, we are going to walk through some medium to hard-ish problems in Scheme, and we will discuss some methods

More information

Cluster Analysis (b) Lijun Zhang

Cluster Analysis (b) Lijun Zhang Cluster Analysis (b) Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Grid-Based and Density-Based Algorithms Graph-Based Algorithms Non-negative Matrix Factorization Cluster Validation Summary

More information

Machine Learning in the Wild. Dealing with Messy Data. Rajmonda S. Caceres. SDS 293 Smith College October 30, 2017

Machine Learning in the Wild. Dealing with Messy Data. Rajmonda S. Caceres. SDS 293 Smith College October 30, 2017 Machine Learning in the Wild Dealing with Messy Data Rajmonda S. Caceres SDS 293 Smith College October 30, 2017 Analytical Chain: From Data to Actions Data Collection Data Cleaning/ Preparation Analysis

More information

DSP-CIS. Part-IV : Filter Banks & Subband Systems. Chapter-10 : Filter Bank Preliminaries. Marc Moonen

DSP-CIS. Part-IV : Filter Banks & Subband Systems. Chapter-10 : Filter Bank Preliminaries. Marc Moonen DSP-CIS Part-IV Filter Banks & Subband Systems Chapter-0 Filter Bank Preliminaries Marc Moonen Dept. E.E./ESAT-STADIUS, KU Leuven marc.moonen@esat.kuleuven.be www.esat.kuleuven.be/stadius/ Part-III Filter

More information

Intro to Modelling and UML

Intro to Modelling and UML CSCD01 Engineering Large Software Systems Intro to Modelling and UML Joe Bettridge Winter 2018 With thanks to Anya Tafliovich and Steve Easterbrook Getting Started So, you ve just started working on a

More information

SOS3003 Applied data analysis for social science Lecture note Erling Berge Department of sociology and political science NTNU.

SOS3003 Applied data analysis for social science Lecture note Erling Berge Department of sociology and political science NTNU. SOS3003 Applied data analysis for social science Lecture note 04-2009 Erling Berge Department of sociology and political science NTNU Erling Berge 2009 1 Missing data Literature Allison, Paul D 2002 Missing

More information

Lecture 16 Perceptual Audio Coding

Lecture 16 Perceptual Audio Coding EECS 225D Audio Signal Processing in Humans and Machines Lecture 16 Perceptual Audio Coding 2012-3-14 Professor Nelson Morgan today s lecture by John Lazzaro www.icsi.berkeley.edu/eecs225d/spr12/ Hero

More information

Introducing working with sounds in Audacity

Introducing working with sounds in Audacity Introducing working with sounds in Audacity A lot of teaching programs makes it possible to add sound to your production. The student can either record her or his own voice and/or add different sound effects

More information

Special Topic: Missing Values. Missing Can Mean Many Things. Missing Values Common in Real Data

Special Topic: Missing Values. Missing Can Mean Many Things. Missing Values Common in Real Data Special Topic: Missing Values Missing Values Common in Real Data Pneumonia: 6.3% of attribute values are missing one attribute is missing in 61% of cases C-Section: only about 1/2% of attribute values

More information

Organising . page 1 of 8. bbc.co.uk/webwise/accredited-courses/level-one/using- /lessons/your- s/organising-

Organising  . page 1 of 8. bbc.co.uk/webwise/accredited-courses/level-one/using- /lessons/your- s/organising- Organising email Reading emails When someone sends you an email it gets delivered to your inbox, which is where all your emails are stored. Naturally the first thing you ll want to do is read it. In your

More information

Working with Apple Loops

Working with Apple Loops 7 Working with Apple Loops So you want to create a complete song, but you don t know how to play every instrument? An Apple Loop is a short piece of music that you can add to your song. It can be either

More information

Curve fitting. Lab. Formulation. Truncation Error Round-off. Measurement. Good data. Not as good data. Least squares polynomials.

Curve fitting. Lab. Formulation. Truncation Error Round-off. Measurement. Good data. Not as good data. Least squares polynomials. Formulating models We can use information from data to formulate mathematical models These models rely on assumptions about the data or data not collected Different assumptions will lead to different models.

More information

CSC 101: Lab #8 Digital Video Lab due date: 5:00pm, day after lab session

CSC 101: Lab #8 Digital Video Lab due date: 5:00pm, day after lab session Name: Lab Date and Time: Email Username: Partner s Name: CSC 101: Lab #8 Digital Video Lab due date: 5:00pm, day after lab session Pledged Assignment: This lab document should be considered a pledged graded

More information

Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets

Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets Saul Glasman 14 September 2016 Let s give the definition of an open subset of R. Definition 1. Let U R. We

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Priority Queues / Heaps Date: 9/27/17

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Priority Queues / Heaps Date: 9/27/17 01.433/33 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Priority Queues / Heaps Date: 9/2/1.1 Introduction In this lecture we ll talk about a useful abstraction, priority queues, which are

More information

CS 153 Design of Operating Systems Winter 2016

CS 153 Design of Operating Systems Winter 2016 CS 153 Design of Operating Systems Winter 2016 Lecture 18: Page Replacement Terminology in Paging A virtual page corresponds to physical page/frame Segment should not be used anywhere Page out = Page eviction

More information

INTERACTIVE REFINEMENT OF SUPERVISED AND SEMI-SUPERVISED SOUND SOURCE SEPARATION ESTIMATES

INTERACTIVE REFINEMENT OF SUPERVISED AND SEMI-SUPERVISED SOUND SOURCE SEPARATION ESTIMATES INTERACTIVE REFINEMENT OF SUPERVISED AND SEMI-SUPERVISED SOUND SOURCE SEPARATION ESTIMATES Nicholas J. Bryan Gautham J. Mysore Center for Computer Research in Music and Acoustics, Stanford University Adobe

More information

_APP B_549_10/31/06. Appendix B. Producing for Multimedia and the Web

_APP B_549_10/31/06. Appendix B. Producing for Multimedia and the Web 1-59863-307-4_APP B_549_10/31/06 Appendix B Producing for Multimedia and the Web In addition to enabling regular music production, SONAR includes a number of features to help you create music for multimedia

More information

Introduction to LAN/WAN. Application Layer 4

Introduction to LAN/WAN. Application Layer 4 Introduction to LAN/WAN Application Layer 4 Multimedia Multimedia: Audio + video Human ear: 20Hz 20kHz, Dogs hear higher freqs DAC converts audio waves to digital E.g PCM uses 8-bit samples 8000 times

More information

Feature Descriptors. CS 510 Lecture #21 April 29 th, 2013

Feature Descriptors. CS 510 Lecture #21 April 29 th, 2013 Feature Descriptors CS 510 Lecture #21 April 29 th, 2013 Programming Assignment #4 Due two weeks from today Any questions? How is it going? Where are we? We have two umbrella schemes for object recognition

More information

Drawing in 3D (viewing, projection, and the rest of the pipeline)

Drawing in 3D (viewing, projection, and the rest of the pipeline) Drawing in 3D (viewing, projection, and the rest of the pipeline) CS559 Spring 2017 Lecture 6 February 2, 2017 The first 4 Key Ideas 1. Work in convenient coordinate systems. Use transformations to get

More information

COS 116 The Computational Universe Laboratory 4: Digital Sound and Music

COS 116 The Computational Universe Laboratory 4: Digital Sound and Music COS 116 The Computational Universe Laboratory 4: Digital Sound and Music In this lab you will learn about digital representations of sound and music, especially focusing on the role played by frequency

More information

Ensemble methods in machine learning. Example. Neural networks. Neural networks

Ensemble methods in machine learning. Example. Neural networks. Neural networks Ensemble methods in machine learning Bootstrap aggregating (bagging) train an ensemble of models based on randomly resampled versions of the training set, then take a majority vote Example What if you

More information

Spatial Outlier Detection

Spatial Outlier Detection Spatial Outlier Detection Chang-Tien Lu Department of Computer Science Northern Virginia Center Virginia Tech Joint work with Dechang Chen, Yufeng Kou, Jiang Zhao 1 Spatial Outlier A spatial data point

More information

Modeling the Spectral Envelope of Musical Instruments

Modeling the Spectral Envelope of Musical Instruments Modeling the Spectral Envelope of Musical Instruments Juan José Burred burred@nue.tu-berlin.de IRCAM Équipe Analyse/Synthèse Axel Röbel / Xavier Rodet Technical University of Berlin Communication Systems

More information

Backup vs.. Archive A Practical Approach

Backup vs.. Archive A Practical Approach Backup vs.. Archive A Practical Approach Kelly J. Lipp Storage Solutions Specialists, Inc. copyright Storage Solutions Specialists, Inc. 1999 February 24, 2005 Agenda Definitions Backup as an Archive Tool

More information

Filtering and Enhancing Images

Filtering and Enhancing Images KECE471 Computer Vision Filtering and Enhancing Images Chang-Su Kim Chapter 5, Computer Vision by Shapiro and Stockman Note: Some figures and contents in the lecture notes of Dr. Stockman are used partly.

More information

Classification and Vowel Recognition

Classification and Vowel Recognition Laboratory 8 Classification and Vowel Recognition 8.1 Introduction The ability to recognize and categorize things is fundamental to human cognition. A large part of our ability to understand and deal with

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 24: Online Algorithms

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 24: Online Algorithms princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 24: Online Algorithms Lecturer: Matt Weinberg Scribe:Matt Weinberg Lecture notes sourced from Avrim Blum s lecture notes here: http://www.cs.cmu.edu/

More information

08 Sound. Multimedia Systems. Nature of Sound, Store Audio, Sound Editing, MIDI

08 Sound. Multimedia Systems. Nature of Sound, Store Audio, Sound Editing, MIDI Multimedia Systems 08 Sound Nature of Sound, Store Audio, Sound Editing, MIDI Imran Ihsan Assistant Professor, Department of Computer Science Air University, Islamabad, Pakistan www.imranihsan.com Lectures

More information

D. Richard Brown III Associate Professor Worcester Polytechnic Institute Electrical and Computer Engineering Department

D. Richard Brown III Associate Professor Worcester Polytechnic Institute Electrical and Computer Engineering Department D. Richard Brown III Associate Professor Worcester Polytechnic Institute Electrical and Computer Engineering Department drb@ece.wpi.edu 3-November-2008 Analog To Digital Conversion analog signal ADC digital

More information

2.4 Audio Compression

2.4 Audio Compression 2.4 Audio Compression 2.4.1 Pulse Code Modulation Audio signals are analog waves. The acoustic perception is determined by the frequency (pitch) and the amplitude (loudness). For storage, processing and

More information

Missing Data Analysis for the Employee Dataset

Missing Data Analysis for the Employee Dataset Missing Data Analysis for the Employee Dataset 67% of the observations have missing values! Modeling Setup Random Variables: Y i =(Y i1,...,y ip ) 0 =(Y i,obs, Y i,miss ) 0 R i =(R i1,...,r ip ) 0 ( 1

More information

Two-View Geometry (Course 23, Lecture D)

Two-View Geometry (Course 23, Lecture D) Two-View Geometry (Course 23, Lecture D) Jana Kosecka Department of Computer Science George Mason University http://www.cs.gmu.edu/~kosecka General Formulation Given two views of the scene recover the

More information

Intro to Algorithms. Professor Kevin Gold

Intro to Algorithms. Professor Kevin Gold Intro to Algorithms Professor Kevin Gold What is an Algorithm? An algorithm is a procedure for producing outputs from inputs. A chocolate chip cookie recipe technically qualifies. An algorithm taught in

More information

_CH17_525_10/31/06 CAL 101

_CH17_525_10/31/06 CAL 101 1-59863-307-4_CH17_525_10/31/06 17 One advantage that SONAR has over any other music-sequencing product I ve worked with is that it enables the user to extend its functionality. If you find yourself in

More information

Chapter 8 DOMINATING SETS

Chapter 8 DOMINATING SETS Chapter 8 DOMINATING SETS Distributed Computing Group Mobile Computing Summer 2004 Overview Motivation Dominating Set Connected Dominating Set The Greedy Algorithm The Tree Growing Algorithm The Marking

More information

Multimedia Database Systems. Retrieval by Content

Multimedia Database Systems. Retrieval by Content Multimedia Database Systems Retrieval by Content MIR Motivation Large volumes of data world-wide are not only based on text: Satellite images (oil spill), deep space images (NASA) Medical images (X-rays,

More information

Singular Value Decomposition, and Application to Recommender Systems

Singular Value Decomposition, and Application to Recommender Systems Singular Value Decomposition, and Application to Recommender Systems CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 Recommendation

More information

Block Device Scheduling. Don Porter CSE 506

Block Device Scheduling. Don Porter CSE 506 Block Device Scheduling Don Porter CSE 506 Logical Diagram Binary Formats Memory Allocators System Calls Threads User Kernel RCU File System Networking Sync Memory Management Device Drivers CPU Scheduler

More information

IMAGE DENOISING USING NL-MEANS VIA SMOOTH PATCH ORDERING

IMAGE DENOISING USING NL-MEANS VIA SMOOTH PATCH ORDERING IMAGE DENOISING USING NL-MEANS VIA SMOOTH PATCH ORDERING Idan Ram, Michael Elad and Israel Cohen Department of Electrical Engineering Department of Computer Science Technion - Israel Institute of Technology

More information

Block Device Scheduling

Block Device Scheduling Logical Diagram Block Device Scheduling Don Porter CSE 506 Binary Formats RCU Memory Management File System Memory Allocators System Calls Device Drivers Interrupts Net Networking Threads Sync User Kernel

More information

Parametric curves. Reading. Curves before computers. Mathematical curve representation. CSE 457 Winter Required:

Parametric curves. Reading. Curves before computers. Mathematical curve representation. CSE 457 Winter Required: Reading Required: Angel 10.1-10.3, 10.5.2, 10.6-10.7, 10.9 Parametric curves CSE 457 Winter 2014 Optional Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric

More information

Learning from Data: Adaptive Basis Functions

Learning from Data: Adaptive Basis Functions Learning from Data: Adaptive Basis Functions November 21, 2005 http://www.anc.ed.ac.uk/ amos/lfd/ Neural Networks Hidden to output layer - a linear parameter model But adapt the features of the model.

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 153 Design of Operating Systems Winter 18 Lecture 18/19: Page Replacement Memory Management Memory management systems Physical and virtual addressing; address translation Techniques: Partitioning,

More information

Image Denoising Based on Hybrid Fourier and Neighborhood Wavelet Coefficients Jun Cheng, Songli Lei

Image Denoising Based on Hybrid Fourier and Neighborhood Wavelet Coefficients Jun Cheng, Songli Lei Image Denoising Based on Hybrid Fourier and Neighborhood Wavelet Coefficients Jun Cheng, Songli Lei College of Physical and Information Science, Hunan Normal University, Changsha, China Hunan Art Professional

More information

Chapter 8 DOMINATING SETS

Chapter 8 DOMINATING SETS Distributed Computing Group Chapter 8 DOMINATING SETS Mobile Computing Summer 2004 Overview Motivation Dominating Set Connected Dominating Set The Greedy Algorithm The Tree Growing Algorithm The Marking

More information

Repairing and Adjusting Audio Clips

Repairing and Adjusting Audio Clips 4 Repairing and Adjusting Audio Clips Adobe Soundbooth lets you edit, optimize, and repair audio using intuitive visual tools. With a few clicks you can rescue old or low quality sound recordings that

More information

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS HOUSEKEEPING Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS CONTOURS! Self-Paced Lab Due Friday! WEEK SIX Lecture RASTER ANALYSES Joe Wheaton YOUR EXCERCISE Integer Elevations Rounded up

More information

Dietrich Paulus Joachim Hornegger. Pattern Recognition of Images and Speech in C++

Dietrich Paulus Joachim Hornegger. Pattern Recognition of Images and Speech in C++ Dietrich Paulus Joachim Hornegger Pattern Recognition of Images and Speech in C++ To Dorothea, Belinda, and Dominik In the text we use the following names which are protected, trademarks owned by a company

More information

Last week: Breadth-First Search

Last week: Breadth-First Search 1 Last week: Breadth-First Search Set L i = [] for i=1,,n L 0 = {w}, where w is the start node For i = 0,, n-1: For u in L i : For each v which is a neighbor of u: If v isn t yet visited: - mark v as visited,

More information

Lecture 19: Generative Adversarial Networks

Lecture 19: Generative Adversarial Networks Lecture 19: Generative Adversarial Networks Roger Grosse 1 Introduction Generative modeling is a type of machine learning where the aim is to model the distribution that a given set of data (e.g. images,

More information

Limits. f(x) and lim. g(x) g(x)

Limits. f(x) and lim. g(x) g(x) Limits Limit Laws Suppose c is constant, n is a positive integer, and f() and g() both eist. Then,. [f() + g()] = f() + g() 2. [f() g()] = f() g() [ ] 3. [c f()] = c f() [ ] [ ] 4. [f() g()] = f() g()

More information

JCM 352: Corporate Video Production. Final Cut Pro HD Overview: Beginning a Project

JCM 352: Corporate Video Production. Final Cut Pro HD Overview: Beginning a Project JCM 352: Corporate Video Production Final Cut Pro HD Overview: Beginning a Project Final Cut Pro HD from Apple Computers is a tremendously powerful nonlinear editing system. In addition, FCPHD has the

More information

Depth First Search A B C D E F G A B C 5 D E F 3 2 G 2 3

Depth First Search A B C D E F G A B C 5 D E F 3 2 G 2 3 Depth First Search A B C D E F G A 4 3 2 B 4 5 4 3 C 5 D 3 4 2 E 2 2 3 F 3 2 G 2 3 Minimum (Weight) Spanning Trees Let G be a graph with weights on the edges. We define the weight of any subgraph of G

More information

Convention Paper Presented at the 120th Convention 2006 May Paris, France

Convention Paper Presented at the 120th Convention 2006 May Paris, France Audio Engineering Society Convention Paper Presented at the 12th Convention 26 May 2 23 Paris, France This convention paper has been reproduced from the author s advance manuscript, without editing, corrections,

More information

Coarse-to-fine image registration

Coarse-to-fine image registration Today we will look at a few important topics in scale space in computer vision, in particular, coarseto-fine approaches, and the SIFT feature descriptor. I will present only the main ideas here to give

More information

Course : Data mining

Course : Data mining Course : Data mining Lecture : Mining data streams Aristides Gionis Department of Computer Science Aalto University visiting in Sapienza University of Rome fall 2016 reading assignment LRU book: chapter

More information

XP: Backup Your Important Files for Safety

XP: Backup Your Important Files for Safety XP: Backup Your Important Files for Safety X 380 / 1 Protect Your Personal Files Against Accidental Loss with XP s Backup Wizard Your computer contains a great many important files, but when it comes to

More information

HW 10 STAT 672, Summer 2018

HW 10 STAT 672, Summer 2018 HW 10 STAT 672, Summer 2018 1) (0 points) Do parts (a), (b), (c), and (e) of Exercise 2 on p. 298 of ISL. 2) (0 points) Do Exercise 3 on p. 298 of ISL. 3) For this problem, try to use the 64 bit version

More information

Convention Paper Presented at the 120th Convention 2006 May Paris, France

Convention Paper Presented at the 120th Convention 2006 May Paris, France Audio Engineering Society Convention Paper Presented at the 12th Convention 26 May 2 23 Paris, France This convention paper has been reproduced from the author s advance manuscript, without editing, corrections,

More information

SEER AKADEMI LINUX PROGRAMMING AND SCRIPTINGPERL 7

SEER AKADEMI LINUX PROGRAMMING AND SCRIPTINGPERL 7 SEER AKADEMI LINUX PROGRAMMING AND SCRIPTINGPERL 7 Hi everyone once again welcome to this lecture we are actually the course is Linux programming and scripting we have been talking about the Perl, Perl

More information

Lecture 5. Treaps Find, insert, delete, split, and join in treaps Randomized search trees Randomized search tree time costs

Lecture 5. Treaps Find, insert, delete, split, and join in treaps Randomized search trees Randomized search tree time costs Lecture 5 Treaps Find, insert, delete, split, and join in treaps Randomized search trees Randomized search tree time costs Reading: Randomized Search Trees by Aragon & Seidel, Algorithmica 1996, http://sims.berkeley.edu/~aragon/pubs/rst96.pdf;

More information

Binary Trees. BSTs. For example: Jargon: Data Structures & Algorithms. root node. level: internal node. edge.

Binary Trees. BSTs. For example: Jargon: Data Structures & Algorithms. root node. level: internal node. edge. Binary Trees 1 A binary tree is either empty, or it consists of a node called the root together with two binary trees called the left subtree and the right subtree of the root, which are disjoint from

More information

Digital Image Processing (CS/ECE 545) Lecture 5: Edge Detection (Part 2) & Corner Detection

Digital Image Processing (CS/ECE 545) Lecture 5: Edge Detection (Part 2) & Corner Detection Digital Image Processing (CS/ECE 545) Lecture 5: Edge Detection (Part 2) & Corner Detection Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Recall: Edge Detection Image processing

More information

Lecture 9: Epipolar Geometry

Lecture 9: Epipolar Geometry Lecture 9: Epipolar Geometry Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Why is stereo useful? Epipolar constraints Essential and fundamental matrix Estimating F (Problem Set 2

More information

(Refer Slide Time: 02:59)

(Refer Slide Time: 02:59) Numerical Methods and Programming P. B. Sunil Kumar Department of Physics Indian Institute of Technology, Madras Lecture - 7 Error propagation and stability Last class we discussed about the representation

More information

A reversible data hiding based on adaptive prediction technique and histogram shifting

A reversible data hiding based on adaptive prediction technique and histogram shifting A reversible data hiding based on adaptive prediction technique and histogram shifting Rui Liu, Rongrong Ni, Yao Zhao Institute of Information Science Beijing Jiaotong University E-mail: rrni@bjtu.edu.cn

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Learning without Class Labels (or correct outputs) Density Estimation Learn P(X) given training data for X Clustering Partition data into clusters Dimensionality Reduction Discover

More information

Audio-coding standards

Audio-coding standards Audio-coding standards The goal is to provide CD-quality audio over telecommunications networks. Almost all CD audio coders are based on the so-called psychoacoustic model of the human auditory system.

More information

Multicomponent f-x seismic random noise attenuation via vector autoregressive operators

Multicomponent f-x seismic random noise attenuation via vector autoregressive operators Multicomponent f-x seismic random noise attenuation via vector autoregressive operators Mostafa Naghizadeh and Mauricio Sacchi ABSTRACT We propose an extension of the traditional frequency-space (f-x)

More information

CS 248 Assignment 2 Polygon Scan Converter. CS248 Presented by Abe Davis Stanford University October 17, 2008

CS 248 Assignment 2 Polygon Scan Converter. CS248 Presented by Abe Davis Stanford University October 17, 2008 CS 248 Assignment 2 Polygon Scan Converter CS248 Presented by Abe Davis Stanford University October 17, 2008 Announcements First thing: read README.animgui. It should tell you everything you need to know

More information

CS570: Introduction to Data Mining

CS570: Introduction to Data Mining CS570: Introduction to Data Mining Classification Advanced Reading: Chapter 8 & 9 Han, Chapters 4 & 5 Tan Anca Doloc-Mihu, Ph.D. Slides courtesy of Li Xiong, Ph.D., 2011 Han, Kamber & Pei. Data Mining.

More information

Challenges in large-scale graph processing on HPC platforms and the Graph500 benchmark. by Nkemdirim Dockery

Challenges in large-scale graph processing on HPC platforms and the Graph500 benchmark. by Nkemdirim Dockery Challenges in large-scale graph processing on HPC platforms and the Graph500 benchmark by Nkemdirim Dockery High Performance Computing Workloads Core-memory sized Floating point intensive Well-structured

More information

Edge Classification in Networks

Edge Classification in Networks Charu C. Aggarwal, Peixiang Zhao, and Gewen He Florida State University IBM T J Watson Research Center Edge Classification in Networks ICDE Conference, 2016 Introduction We consider in this paper the edge

More information

Use of Synthetic Data in Testing Administrative Records Systems

Use of Synthetic Data in Testing Administrative Records Systems Use of Synthetic Data in Testing Administrative Records Systems K. Bradley Paxton and Thomas Hager ADI, LLC 200 Canal View Boulevard, Rochester, NY 14623 brad.paxton@adillc.net, tom.hager@adillc.net Executive

More information

Local features: detection and description May 12 th, 2015

Local features: detection and description May 12 th, 2015 Local features: detection and description May 12 th, 2015 Yong Jae Lee UC Davis Announcements PS1 grades up on SmartSite PS1 stats: Mean: 83.26 Standard Dev: 28.51 PS2 deadline extended to Saturday, 11:59

More information