NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS"

Transcription

1 ARPN Journal of Engneerng and Appled Scences Asan Research Publshng Network (ARPN). All rghts reserved. NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS Igor Grgoryev, Svetlana Mustafna and Vladmr Vaytev Bashkr State Unversty, Address: 3, Valdy Str., Ufa, Russa E-Mal: ABSTRACT In the artcle based on the method of varatons n the space of controls the algorthm s developed and program was mplemented to determne the optmal control problems wth free rght end. As an llustraton method, presents the results of numercal soluton of the three examples wth constrants on the control and phase varables. The advantage of ths algorthm s the lack of requrements for the selecton of the ntal approxmaton control parameter and phase varables. The algorthm has good convergence and can be used to solve a large class of applcatons n varous branches of the economy. By usng the developed algorthm determned the optmum trajectory and the numercal values of the control parameter for the test problems. A comparatve analyss of the results of the numercal soluton of the examples for dfferent values of ntal approxmaton control and precson. Keywords: method of varatons, optmal control, phase varables. 1. INTRODUCTION Methods of the optmum control theory are ntensvely used n varous applcaton areas. Control theory s applcaton-orented mathematcs that deals wth the basc prncples underlyng the analyss and desgn of (control) systems. Systems can be engneerng systems, economc systems, bologcal systems and so on. To control means that one has to nfluence the behavour of the system n a desrable way: for example, n the case of an ar condtoner, the am s to control the temperature of a room and mantan t at a desred level, whle n the case of an arcraft, we wsh to control ts alttude at each pont of tme so that t follows a desred trajectory. As a result, more and more people wll beneft greatly by learnng to solve the optmal control problems numercally. Ths work s devoted to an actual problem - development of effcent and unversal algorthms of numercal problem solvng of optmal control.. PROBLEM STATEMENT Consder the followng optmal control mnnmze I u Subject to G x t (1) dx f ( t, x( t), u( t)), t t 0, T, x(0) x0, () dt u 0 (3) Where u t R s the functon characterzng the n operatng nfluence, x t R s functon descrbng a condton of process and t s tme. Let s consder varous algorthms for problem solvng of optmal control..1 Performance crteron A performance crteron (also called cost functonal or smply cost) must be specfed for evaluatng the performance of a system quanttatvely. By analogy to the problems of the calculus of varatons, the cost functonal I : U[ t0, t1] R may be defned n the socalled Lagrange form: t1 I ( u) f ( t, x( t), u( t)) dt. (4) t THE ALGORITHM OF THE METHOD OF VARIATIONS The algorthm conssts of 9 steps: 1. Guess an ntal approxmaton of control U 0.. Break nterval [ t 0, t k ] to n parts, consttutng a unform system of unts. 3. Select startng node t 0, whch wll be a varaton of controls. 4. Compute U ( t 0 ) U. 5. Compute x (t), u(t) by solvng (3). 6. Calculate I (u) accordng to (4). 7. Go to t 1 and go to step 4 for all remanng ponts t. 8. Determne the mnmum value of the crteron calculated for all ponts t and defne a new control U1 corresponds to the lowest value crteron. 9. Set U U. Then, wth the control U 1, go to step 3 untl wll not fnd varaton n whch the performance crteron wll not be mproved. 4. DISCUSSIONS The software for the numercal calculatons presented below n ths artcle was developed n Borland 30

2 ARPN Journal of Engneerng and Appled Scences Asan Research Publshng Network (ARPN). All rghts reserved. Delph envronment. For each of the followng cases, we wll compute the Eucldean norm of the soluton error: x x ( t ), x x ( t ), x1 u 1 u u ( t). 1 x Example-1: Consder the followng optmal x u( t), x(0) 0, x(1) 0.5, x R, u R, t 0,1. (5) 1 I u t x t dt mn. (6) 0 The optmal control problem s to fnd a control law u whch mnmzes cost functonal (6). The analytcal soluton of ths problem s presented n []. Fgure-1 show the comparson between numercal soluton and approxmate soluton for u Table-1 presents smulaton results for dfferent ntal guess and accuracy of ths problem. The performance measure s: Fgure-1. Comparson between numercal soluton and approxmate soluton, Example 1. Table-1. Smulaton results for dfferent ntal guess and accuracy, Example 1.. u0 Accuracy Elapsed tme, s. u 1 0 0,1 0,36 1,4 0,93 0 0,01 0,74 0,99 0, ,001 1, 0,083 0, ,6 0,001 1,4 0,004 0,00 5-0,9 0,0001 4,75 0,0004 0, ,1 0, ,43 0, ,00013 x Example-: Consder the followng optmal x 1t x t, x t u t 0.5 u t ; x 0 0, 0 0, 1 x 0 t 1, 0 u 1. (7) 31

3 ARPN Journal of Engneerng and Appled Scences Asan Research Publshng Network (ARPN). All rghts reserved. The performance measure s: x x x 1 max. I (8) 1, 1 The optmal control problem s to fnd a control law u whch mnmzes cost functonal (8). The analytcal soluton of ths problem s presented n [3]. Fgure- shows the comparson between numercal soluton and approxmate soluton for u Table- presents smulaton results for dfferent ntal guess and accuracy of ths problem. At the same tme the estmated value of the control parameter n the range 0 t 1 has a constant value equal to 1. Fgure-. The suboptmal states. Table-. Smulaton results for dfferent ntal guess and accuracy, Example.. u0 Accuracy Elapsed tme, s. u x 1 1 0,6 0,1,3 1,06 1,105 0,85 0,6 0,01 6,43 1,009 0,04 0, ,6 0,001 9,45 1 0,001 0, ,8 0,001 11,58 1 0,003 0, ,8 0, ,3 1 0,0033 0, ,6 0, ,85 1 0,0000 0,00007 x Example-3: Consder the followng optmal x 1t x t, x t x1 t u t ; x 0 0, 0 0, 1 x 0 t, u 1. The performance measure s: x x x mn. 1, (9) I (10) The optmal control problem s to fnd a control law u whch mnmzes cost functonal (10). 1, t 0.5, The exact soluton are: u ( t) 0, 0.5 t, 1, t.5. Fgure-3, Fgure-4 shows the comparson between numercal soluton and approxmate soluton for u Table 3 presents smulaton results for dfferent ntal guess and accuracy of ths problem. 3

4 ARPN Journal of Engneerng and Appled Scences Asan Research Publshng Network (ARPN). All rghts reserved. Fgure-3. The suboptmal states. Fgure-4. The suboptmal control. Table-3. Smulaton results for dfferent ntal guess and accuracy, Example 3.. u0 Accuracy Elapsed tme, s. u x ,1,06 3,06 1,11 1,1 0 0,01,85,99 0,14 0, ,001 4,1,987 0,018 0, ,6 0,001 3,94,854 0,019 0, ,9 0,0001 1,06,004 0,1086 0, ,1 0, ,35,003 0,1093 0,1088 x 33

5 ARPN Journal of Engneerng and Appled Scences Asan Research Publshng Network (ARPN). All rghts reserved. 5. CONCLUSIONS For many optmal control problems, the method of varatons s the best opton we have. The advantage of ths algorthm s that t does not have requrements wth ntal guess. The algorthm has good convergence and can be used to solve a large class of applcatons n varous felds of natonal economy. REFERENCES Igor Grgoryev, Svetlana Mustafna, Oleg Larn «Numercal soluton of optmal control problems by the method of successve approxmatons». Internatonal Journal of Pure and Appled Mathematcs. 111(4): do:10.173/jpam.v Igor Grgoryev, Svetlana Mustafna «Global optmzaton of functons of several varables usng parallel technologes». Internatonal Journal of Pure and Appled Mathematcs. 106(1): do: /jpam.v Gulnaz Shangareeva, Igor Grgoryev, Svetlana Mustafna «Comparatve Analyss of Numercal Soluton of Optmal Control Problems». Internatonal Journal of Pure and Appled Mathematcs. 110(4): do: /j-pam.v Igor Grgoryev, Eldar Mftakhov, Svetlana Mustafna «Mathematcal Modellng of the Copolymerzaton of Styrene wth Malec Anhydrde n a Homogeneous Envronment». Internatonal Journal of Chemcal Scences. 14(1): Mustafna S., Mftakhov E., Mkhalova T «Solvng the drect problem of butadene-styrene copolymerzaton». Internatonal Journal of Chemcal Scences. 1():

Solving two-person zero-sum game by Matlab

Solving two-person zero-sum game by Matlab Appled Mechancs and Materals Onlne: 2011-02-02 ISSN: 1662-7482, Vols. 50-51, pp 262-265 do:10.4028/www.scentfc.net/amm.50-51.262 2011 Trans Tech Publcatons, Swtzerland Solvng two-person zero-sum game by

More information

Determining the Optimal Bandwidth Based on Multi-criterion Fusion

Determining the Optimal Bandwidth Based on Multi-criterion Fusion Proceedngs of 01 4th Internatonal Conference on Machne Learnng and Computng IPCSIT vol. 5 (01) (01) IACSIT Press, Sngapore Determnng the Optmal Bandwdth Based on Mult-crteron Fuson Ha-L Lang 1+, Xan-Mn

More information

A mathematical programming approach to the analysis, design and scheduling of offshore oilfields

A mathematical programming approach to the analysis, design and scheduling of offshore oilfields 17 th European Symposum on Computer Aded Process Engneerng ESCAPE17 V. Plesu and P.S. Agach (Edtors) 2007 Elsever B.V. All rghts reserved. 1 A mathematcal programmng approach to the analyss, desgn and

More information

Sum of Linear and Fractional Multiobjective Programming Problem under Fuzzy Rules Constraints

Sum of Linear and Fractional Multiobjective Programming Problem under Fuzzy Rules Constraints Australan Journal of Basc and Appled Scences, 2(4): 1204-1208, 2008 ISSN 1991-8178 Sum of Lnear and Fractonal Multobjectve Programmng Problem under Fuzzy Rules Constrants 1 2 Sanjay Jan and Kalash Lachhwan

More information

LECTURE NOTES Duality Theory, Sensitivity Analysis, and Parametric Programming

LECTURE NOTES Duality Theory, Sensitivity Analysis, and Parametric Programming CEE 60 Davd Rosenberg p. LECTURE NOTES Dualty Theory, Senstvty Analyss, and Parametrc Programmng Learnng Objectves. Revew the prmal LP model formulaton 2. Formulate the Dual Problem of an LP problem (TUES)

More information

A New Approach For the Ranking of Fuzzy Sets With Different Heights

A New Approach For the Ranking of Fuzzy Sets With Different Heights New pproach For the ankng of Fuzzy Sets Wth Dfferent Heghts Pushpnder Sngh School of Mathematcs Computer pplcatons Thapar Unversty, Patala-7 00 Inda pushpndersnl@gmalcom STCT ankng of fuzzy sets plays

More information

GSLM Operations Research II Fall 13/14

GSLM Operations Research II Fall 13/14 GSLM 58 Operatons Research II Fall /4 6. Separable Programmng Consder a general NLP mn f(x) s.t. g j (x) b j j =. m. Defnton 6.. The NLP s a separable program f ts objectve functon and all constrants are

More information

Mathematics 256 a course in differential equations for engineering students

Mathematics 256 a course in differential equations for engineering students Mathematcs 56 a course n dfferental equatons for engneerng students Chapter 5. More effcent methods of numercal soluton Euler s method s qute neffcent. Because the error s essentally proportonal to the

More information

Intra-Parametric Analysis of a Fuzzy MOLP

Intra-Parametric Analysis of a Fuzzy MOLP Intra-Parametrc Analyss of a Fuzzy MOLP a MIAO-LING WANG a Department of Industral Engneerng and Management a Mnghsn Insttute of Technology and Hsnchu Tawan, ROC b HSIAO-FAN WANG b Insttute of Industral

More information

Maximum Variance Combined with Adaptive Genetic Algorithm for Infrared Image Segmentation

Maximum Variance Combined with Adaptive Genetic Algorithm for Infrared Image Segmentation Internatonal Conference on Logstcs Engneerng, Management and Computer Scence (LEMCS 5) Maxmum Varance Combned wth Adaptve Genetc Algorthm for Infrared Image Segmentaton Huxuan Fu College of Automaton Harbn

More information

Biostatistics 615/815

Biostatistics 615/815 The E-M Algorthm Bostatstcs 615/815 Lecture 17 Last Lecture: The Smplex Method General method for optmzaton Makes few assumptons about functon Crawls towards mnmum Some recommendatons Multple startng ponts

More information

Cluster Analysis of Electrical Behavior

Cluster Analysis of Electrical Behavior Journal of Computer and Communcatons, 205, 3, 88-93 Publshed Onlne May 205 n ScRes. http://www.scrp.org/ournal/cc http://dx.do.org/0.4236/cc.205.350 Cluster Analyss of Electrcal Behavor Ln Lu Ln Lu, School

More information

Life Tables (Times) Summary. Sample StatFolio: lifetable times.sgp

Life Tables (Times) Summary. Sample StatFolio: lifetable times.sgp Lfe Tables (Tmes) Summary... 1 Data Input... 2 Analyss Summary... 3 Survval Functon... 5 Log Survval Functon... 6 Cumulatve Hazard Functon... 7 Percentles... 7 Group Comparsons... 8 Summary The Lfe Tables

More information

An Optimal Algorithm for Prufer Codes *

An Optimal Algorithm for Prufer Codes * J. Software Engneerng & Applcatons, 2009, 2: 111-115 do:10.4236/jsea.2009.22016 Publshed Onlne July 2009 (www.scrp.org/journal/jsea) An Optmal Algorthm for Prufer Codes * Xaodong Wang 1, 2, Le Wang 3,

More information

Kent State University CS 4/ Design and Analysis of Algorithms. Dept. of Math & Computer Science LECT-16. Dynamic Programming

Kent State University CS 4/ Design and Analysis of Algorithms. Dept. of Math & Computer Science LECT-16. Dynamic Programming CS 4/560 Desgn and Analyss of Algorthms Kent State Unversty Dept. of Math & Computer Scence LECT-6 Dynamc Programmng 2 Dynamc Programmng Dynamc Programmng, lke the dvde-and-conquer method, solves problems

More information

A Binarization Algorithm specialized on Document Images and Photos

A Binarization Algorithm specialized on Document Images and Photos A Bnarzaton Algorthm specalzed on Document mages and Photos Ergna Kavalleratou Dept. of nformaton and Communcaton Systems Engneerng Unversty of the Aegean kavalleratou@aegean.gr Abstract n ths paper, a

More information

Outline. Type of Machine Learning. Examples of Application. Unsupervised Learning

Outline. Type of Machine Learning. Examples of Application. Unsupervised Learning Outlne Artfcal Intellgence and ts applcatons Lecture 8 Unsupervsed Learnng Professor Danel Yeung danyeung@eee.org Dr. Patrck Chan patrckchan@eee.org South Chna Unversty of Technology, Chna Introducton

More information

An Application of the Dulmage-Mendelsohn Decomposition to Sparse Null Space Bases of Full Row Rank Matrices

An Application of the Dulmage-Mendelsohn Decomposition to Sparse Null Space Bases of Full Row Rank Matrices Internatonal Mathematcal Forum, Vol 7, 2012, no 52, 2549-2554 An Applcaton of the Dulmage-Mendelsohn Decomposton to Sparse Null Space Bases of Full Row Rank Matrces Mostafa Khorramzadeh Department of Mathematcal

More information

AC : TEACHING SPREADSHEET-BASED NUMERICAL ANAL- YSIS WITH VISUAL BASIC FOR APPLICATIONS AND VIRTUAL IN- STRUMENTS

AC : TEACHING SPREADSHEET-BASED NUMERICAL ANAL- YSIS WITH VISUAL BASIC FOR APPLICATIONS AND VIRTUAL IN- STRUMENTS AC 2011-1615: TEACHING SPREADSHEET-BASED NUMERICAL ANAL- YSIS WITH VISUAL BASIC FOR APPLICATIONS AND VIRTUAL IN- STRUMENTS Nkunja Swan, South Carolna State Unversty Dr. Swan s currently a Professor at

More information

Programming in Fortran 90 : 2017/2018

Programming in Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Exercse 1 : Evaluaton of functon dependng on nput Wrte a program who evaluate the functon f (x,y) for any two user specfed values

More information

Course Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms

Course Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms Course Introducton Course Topcs Exams, abs, Proects A quc loo at a few algorthms 1 Advanced Data Structures and Algorthms Descrpton: We are gong to dscuss algorthm complexty analyss, algorthm desgn technques

More information

Machine Learning. Topic 6: Clustering

Machine Learning. Topic 6: Clustering Machne Learnng Topc 6: lusterng lusterng Groupng data nto (hopefully useful) sets. Thngs on the left Thngs on the rght Applcatons of lusterng Hypothess Generaton lusters mght suggest natural groups. Hypothess

More information

An Iterative Solution Approach to Process Plant Layout using Mixed Integer Optimisation

An Iterative Solution Approach to Process Plant Layout using Mixed Integer Optimisation 17 th European Symposum on Computer Aded Process Engneerng ESCAPE17 V. Plesu and P.S. Agach (Edtors) 2007 Elsever B.V. All rghts reserved. 1 An Iteratve Soluton Approach to Process Plant Layout usng Mxed

More information

Tsinghua University at TAC 2009: Summarizing Multi-documents by Information Distance

Tsinghua University at TAC 2009: Summarizing Multi-documents by Information Distance Tsnghua Unversty at TAC 2009: Summarzng Mult-documents by Informaton Dstance Chong Long, Mnle Huang, Xaoyan Zhu State Key Laboratory of Intellgent Technology and Systems, Tsnghua Natonal Laboratory for

More information

Smoothing Spline ANOVA for variable screening

Smoothing Spline ANOVA for variable screening Smoothng Splne ANOVA for varable screenng a useful tool for metamodels tranng and mult-objectve optmzaton L. Rcco, E. Rgon, A. Turco Outlne RSM Introducton Possble couplng Test case MOO MOO wth Game Theory

More information

Problem Definitions and Evaluation Criteria for Computational Expensive Optimization

Problem Definitions and Evaluation Criteria for Computational Expensive Optimization Problem efntons and Evaluaton Crtera for Computatonal Expensve Optmzaton B. Lu 1, Q. Chen and Q. Zhang 3, J. J. Lang 4, P. N. Suganthan, B. Y. Qu 6 1 epartment of Computng, Glyndwr Unversty, UK Faclty

More information

Unsupervised Learning

Unsupervised Learning Pattern Recognton Lecture 8 Outlne Introducton Unsupervsed Learnng Parametrc VS Non-Parametrc Approach Mxture of Denstes Maxmum-Lkelhood Estmates Clusterng Prof. Danel Yeung School of Computer Scence and

More information

EVALUATION OF THE PERFORMANCES OF ARTIFICIAL BEE COLONY AND INVASIVE WEED OPTIMIZATION ALGORITHMS ON THE MODIFIED BENCHMARK FUNCTIONS

EVALUATION OF THE PERFORMANCES OF ARTIFICIAL BEE COLONY AND INVASIVE WEED OPTIMIZATION ALGORITHMS ON THE MODIFIED BENCHMARK FUNCTIONS Academc Research Internatonal ISS-L: 3-9553, ISS: 3-9944 Vol., o. 3, May 0 EVALUATIO OF THE PERFORMACES OF ARTIFICIAL BEE COLOY AD IVASIVE WEED OPTIMIZATIO ALGORITHMS O THE MODIFIED BECHMARK FUCTIOS Dlay

More information

S1 Note. Basis functions.

S1 Note. Basis functions. S1 Note. Bass functons. Contents Types of bass functons...1 The Fourer bass...2 B-splne bass...3 Power and type I error rates wth dfferent numbers of bass functons...4 Table S1. Smulaton results of type

More information

Network Coding as a Dynamical System

Network Coding as a Dynamical System Network Codng as a Dynamcal System Narayan B. Mandayam IEEE Dstngushed Lecture (jont work wth Dan Zhang and a Su) Department of Electrcal and Computer Engneerng Rutgers Unversty Outlne. Introducton 2.

More information

The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique

The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique //00 :0 AM Outlne and Readng The Greedy Method The Greedy Method Technque (secton.) Fractonal Knapsack Problem (secton..) Task Schedulng (secton..) Mnmum Spannng Trees (secton.) Change Money Problem Greedy

More information

Quality Improvement Algorithm for Tetrahedral Mesh Based on Optimal Delaunay Triangulation

Quality Improvement Algorithm for Tetrahedral Mesh Based on Optimal Delaunay Triangulation Intellgent Informaton Management, 013, 5, 191-195 Publshed Onlne November 013 (http://www.scrp.org/journal/m) http://dx.do.org/10.36/m.013.5601 Qualty Improvement Algorthm for Tetrahedral Mesh Based on

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Decson surface s a hyperplane (lne n 2D) n feature space (smlar to the Perceptron) Arguably, the most mportant recent dscovery n machne learnng In a nutshell: map the data to a predetermned

More information

The Methods of Maximum Flow and Minimum Cost Flow Finding in Fuzzy Network

The Methods of Maximum Flow and Minimum Cost Flow Finding in Fuzzy Network The Methods of Mamum Flow and Mnmum Cost Flow Fndng n Fuzzy Network Aleandr Bozhenyuk, Evgenya Gerasmenko, and Igor Rozenberg 2 Southern Federal Unversty, Taganrog, Russa AVB002@yande.ru, e.rogushna@gmal.com

More information

Network Intrusion Detection Based on PSO-SVM

Network Intrusion Detection Based on PSO-SVM TELKOMNIKA Indonesan Journal of Electrcal Engneerng Vol.1, No., February 014, pp. 150 ~ 1508 DOI: http://dx.do.org/10.11591/telkomnka.v1.386 150 Network Intruson Detecton Based on PSO-SVM Changsheng Xang*

More information

An Improved Image Segmentation Algorithm Based on the Otsu Method

An Improved Image Segmentation Algorithm Based on the Otsu Method 3th ACIS Internatonal Conference on Software Engneerng, Artfcal Intellgence, Networkng arallel/dstrbuted Computng An Improved Image Segmentaton Algorthm Based on the Otsu Method Mengxng Huang, enjao Yu,

More information

Type-2 Fuzzy Non-uniform Rational B-spline Model with Type-2 Fuzzy Data

Type-2 Fuzzy Non-uniform Rational B-spline Model with Type-2 Fuzzy Data Malaysan Journal of Mathematcal Scences 11(S) Aprl : 35 46 (2017) Specal Issue: The 2nd Internatonal Conference and Workshop on Mathematcal Analyss (ICWOMA 2016) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

More information

Load Balancing for Hex-Cell Interconnection Network

Load Balancing for Hex-Cell Interconnection Network Int. J. Communcatons, Network and System Scences,,, - Publshed Onlne Aprl n ScRes. http://www.scrp.org/journal/jcns http://dx.do.org/./jcns.. Load Balancng for Hex-Cell Interconnecton Network Saher Manaseer,

More information

Accounting for the Use of Different Length Scale Factors in x, y and z Directions

Accounting for the Use of Different Length Scale Factors in x, y and z Directions 1 Accountng for the Use of Dfferent Length Scale Factors n x, y and z Drectons Taha Soch (taha.soch@kcl.ac.uk) Imagng Scences & Bomedcal Engneerng, Kng s College London, The Rayne Insttute, St Thomas Hosptal,

More information

Structural Optimization Using OPTIMIZER Program

Structural Optimization Using OPTIMIZER Program SprngerLnk - Book Chapter http://www.sprngerlnk.com/content/m28478j4372qh274/?prnt=true ق.ظ 1 of 2 2009/03/12 11:30 Book Chapter large verson Structural Optmzaton Usng OPTIMIZER Program Book III European

More information

Parallelism for Nested Loops with Non-uniform and Flow Dependences

Parallelism for Nested Loops with Non-uniform and Flow Dependences Parallelsm for Nested Loops wth Non-unform and Flow Dependences Sam-Jn Jeong Dept. of Informaton & Communcaton Engneerng, Cheonan Unversty, 5, Anseo-dong, Cheonan, Chungnam, 330-80, Korea. seong@cheonan.ac.kr

More information

An Indian Journal FULL PAPER ABSTRACT KEYWORDS. Trade Science Inc.

An Indian Journal FULL PAPER ABSTRACT KEYWORDS. Trade Science Inc. [Type text] [Type text] [Type text] ISSN : 97-735 Volume Issue 9 BoTechnology An Indan Journal FULL PAPER BTAIJ, (9), [333-3] Matlab mult-dmensonal model-based - 3 Chnese football assocaton super league

More information

A MOVING MESH APPROACH FOR SIMULATION BUDGET ALLOCATION ON CONTINUOUS DOMAINS

A MOVING MESH APPROACH FOR SIMULATION BUDGET ALLOCATION ON CONTINUOUS DOMAINS Proceedngs of the Wnter Smulaton Conference M E Kuhl, N M Steger, F B Armstrong, and J A Jones, eds A MOVING MESH APPROACH FOR SIMULATION BUDGET ALLOCATION ON CONTINUOUS DOMAINS Mark W Brantley Chun-Hung

More information

A NOTE ON FUZZY CLOSURE OF A FUZZY SET

A NOTE ON FUZZY CLOSURE OF A FUZZY SET (JPMNT) Journal of Process Management New Technologes, Internatonal A NOTE ON FUZZY CLOSURE OF A FUZZY SET Bhmraj Basumatary Department of Mathematcal Scences, Bodoland Unversty, Kokrajhar, Assam, Inda,

More information

Optimum Synthesis of Mechanisms For Path Generation Using a New Curvature Based Deflection Based Objective Function

Optimum Synthesis of Mechanisms For Path Generation Using a New Curvature Based Deflection Based Objective Function Proceedngs of the 6th WSEAS Internatonal Conference on Smulaton, Modellng and Optmzaton, Lsbon, Portugal, September -4, 6 67 Optmum Synthess of Mechansms For Path Generaton Usng a ew Curvature Based Deflecton

More information

Virtual Memory. Background. No. 10. Virtual Memory: concept. Logical Memory Space (review) Demand Paging(1) Virtual Memory

Virtual Memory. Background. No. 10. Virtual Memory: concept. Logical Memory Space (review) Demand Paging(1) Virtual Memory Background EECS. Operatng System Fundamentals No. Vrtual Memory Prof. Hu Jang Department of Electrcal Engneerng and Computer Scence, York Unversty Memory-management methods normally requres the entre process

More information

Learning the Kernel Parameters in Kernel Minimum Distance Classifier

Learning the Kernel Parameters in Kernel Minimum Distance Classifier Learnng the Kernel Parameters n Kernel Mnmum Dstance Classfer Daoqang Zhang 1,, Songcan Chen and Zh-Hua Zhou 1* 1 Natonal Laboratory for Novel Software Technology Nanjng Unversty, Nanjng 193, Chna Department

More information

SLAM Summer School 2006 Practical 2: SLAM using Monocular Vision

SLAM Summer School 2006 Practical 2: SLAM using Monocular Vision SLAM Summer School 2006 Practcal 2: SLAM usng Monocular Vson Javer Cvera, Unversty of Zaragoza Andrew J. Davson, Imperal College London J.M.M Montel, Unversty of Zaragoza. josemar@unzar.es, jcvera@unzar.es,

More information

Predator-Prey Pigeon-Inspired Optimization for UAV Three-Dimensional Path Planning

Predator-Prey Pigeon-Inspired Optimization for UAV Three-Dimensional Path Planning Predator-Prey Pgeon-Inspred Optmzaton for UAV Three-Dmensonal Path Plannng Bo Zhang 1 and Habn Duan 1,2,* 1 Scence and Technology on Arcraft Control Laboratory, School of Automaton Scence and Electrcal

More information

OPTIMIZATION OF FUZZY RULE BASES USING CONTINUOUS ANT COLONY SYSTEM

OPTIMIZATION OF FUZZY RULE BASES USING CONTINUOUS ANT COLONY SYSTEM Proceedng of the Frst Internatonal Conference on Modelng, Smulaton and Appled Optmzaton, Sharah, U.A.E. February -3, 005 OPTIMIZATION OF FUZZY RULE BASES USING CONTINUOUS ANT COLONY SYSTEM Had Nobahar

More information

Numerical model describing optimization of fibres winding process on open and closed frame

Numerical model describing optimization of fibres winding process on open and closed frame Journal of Physcs: Conference Seres PAPER OPEN ACCESS Numercal model descrbng optmzaton of fbres wndng process on open and closed frame To cte ths artcle: M Petr et al 06 J Phys: Conf Ser 738 0094 Vew

More information

Optimization of integrated circuits by means of simulated annealing. Jernej Olenšek, Janez Puhan, Árpád Bűrmen, Sašo Tomažič, Tadej Tuma

Optimization of integrated circuits by means of simulated annealing. Jernej Olenšek, Janez Puhan, Árpád Bűrmen, Sašo Tomažič, Tadej Tuma Optmzaton of ntegrated crcuts by means of smulated annealng Jernej Olenšek, Janez Puhan, Árpád Bűrmen, Sašo Tomažč, Tadej Tuma Unversty of Ljubljana, Faculty of Electrcal Engneerng, Tržaška 25, Ljubljana,

More information

Support Vector Machines

Support Vector Machines /9/207 MIST.6060 Busness Intellgence and Data Mnng What are Support Vector Machnes? Support Vector Machnes Support Vector Machnes (SVMs) are supervsed learnng technques that analyze data and recognze patterns.

More information

A Statistical Model Selection Strategy Applied to Neural Networks

A Statistical Model Selection Strategy Applied to Neural Networks A Statstcal Model Selecton Strategy Appled to Neural Networks Joaquín Pzarro Elsa Guerrero Pedro L. Galndo joaqun.pzarro@uca.es elsa.guerrero@uca.es pedro.galndo@uca.es Dpto Lenguajes y Sstemas Informátcos

More information

Comparison of Heuristics for Scheduling Independent Tasks on Heterogeneous Distributed Environments

Comparison of Heuristics for Scheduling Independent Tasks on Heterogeneous Distributed Environments Comparson of Heurstcs for Schedulng Independent Tasks on Heterogeneous Dstrbuted Envronments Hesam Izakan¹, Ath Abraham², Senor Member, IEEE, Václav Snášel³ ¹ Islamc Azad Unversty, Ramsar Branch, Ramsar,

More information

Cracking of the Merkle Hellman Cryptosystem Using Genetic Algorithm

Cracking of the Merkle Hellman Cryptosystem Using Genetic Algorithm Crackng of the Merkle Hellman Cryptosystem Usng Genetc Algorthm Zurab Kochladze 1 * & Lal Besela 2 1 Ivane Javakhshvl Tbls State Unversty, 1, I.Chavchavadze av 1, 0128, Tbls, Georga 2 Sokhum State Unversty,

More information

Lobachevsky State University of Nizhni Novgorod. Polyhedron. Quick Start Guide

Lobachevsky State University of Nizhni Novgorod. Polyhedron. Quick Start Guide Lobachevsky State Unversty of Nzhn Novgorod Polyhedron Quck Start Gude Nzhn Novgorod 2016 Contents Specfcaton of Polyhedron software... 3 Theoretcal background... 4 1. Interface of Polyhedron... 6 1.1.

More information

Complex System Reliability Evaluation using Support Vector Machine for Incomplete Data-set

Complex System Reliability Evaluation using Support Vector Machine for Incomplete Data-set Internatonal Journal of Performablty Engneerng, Vol. 7, No. 1, January 2010, pp.32-42. RAMS Consultants Prnted n Inda Complex System Relablty Evaluaton usng Support Vector Machne for Incomplete Data-set

More information

On Some Entertaining Applications of the Concept of Set in Computer Science Course

On Some Entertaining Applications of the Concept of Set in Computer Science Course On Some Entertanng Applcatons of the Concept of Set n Computer Scence Course Krasmr Yordzhev *, Hrstna Kostadnova ** * Assocate Professor Krasmr Yordzhev, Ph.D., Faculty of Mathematcs and Natural Scences,

More information

SHAPE OPTIMIZATION OF STRUCTURES BY MODIFIED HARMONY SEARCH

SHAPE OPTIMIZATION OF STRUCTURES BY MODIFIED HARMONY SEARCH INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING Int. J. Optm. Cvl Eng., 2011; 3:485-494 SHAPE OPTIMIZATION OF STRUCTURES BY MODIFIED HARMONY SEARCH S. Gholzadeh *,, A. Barzegar and Ch. Gheyratmand

More information

APPLICATION OF MULTIVARIATE LOSS FUNCTION FOR ASSESSMENT OF THE QUALITY OF TECHNOLOGICAL PROCESS MANAGEMENT

APPLICATION OF MULTIVARIATE LOSS FUNCTION FOR ASSESSMENT OF THE QUALITY OF TECHNOLOGICAL PROCESS MANAGEMENT 3. - 5. 5., Brno, Czech Republc, EU APPLICATION OF MULTIVARIATE LOSS FUNCTION FOR ASSESSMENT OF THE QUALITY OF TECHNOLOGICAL PROCESS MANAGEMENT Abstract Josef TOŠENOVSKÝ ) Lenka MONSPORTOVÁ ) Flp TOŠENOVSKÝ

More information

Positive Semi-definite Programming Localization in Wireless Sensor Networks

Positive Semi-definite Programming Localization in Wireless Sensor Networks Postve Sem-defnte Programmng Localzaton n Wreless Sensor etworks Shengdong Xe 1,, Jn Wang, Aqun Hu 1, Yunl Gu, Jang Xu, 1 School of Informaton Scence and Engneerng, Southeast Unversty, 10096, anjng Computer

More information

Virtual Machine Migration based on Trust Measurement of Computer Node

Virtual Machine Migration based on Trust Measurement of Computer Node Appled Mechancs and Materals Onlne: 2014-04-04 ISSN: 1662-7482, Vols. 536-537, pp 678-682 do:10.4028/www.scentfc.net/amm.536-537.678 2014 Trans Tech Publcatons, Swtzerland Vrtual Machne Mgraton based on

More information

SENSITIVITY ANALYSIS IN LINEAR PROGRAMMING USING A CALCULATOR

SENSITIVITY ANALYSIS IN LINEAR PROGRAMMING USING A CALCULATOR SENSITIVITY ANALYSIS IN LINEAR PROGRAMMING USING A CALCULATOR Judth Aronow Rchard Jarvnen Independent Consultant Dept of Math/Stat 559 Frost Wnona State Unversty Beaumont, TX 7776 Wnona, MN 55987 aronowju@hal.lamar.edu

More information

International Journal of Mathematical Archive-3(11), 2012, Available online through ISSN

International Journal of Mathematical Archive-3(11), 2012, Available online through   ISSN Internatonal Journal of Mathematcal rchve-(), 0, 477-474 valable onlne through www.jma.nfo ISSN 9 5046 FUZZY CRITICL PTH METHOD (FCPM) BSED ON SNGUNST ND CHEN RNKING METHOD ND CENTROID METHOD Dr. S. Narayanamoorthy*

More information

APPLICATION OF A COMPUTATIONALLY EFFICIENT GEOSTATISTICAL APPROACH TO CHARACTERIZING VARIABLY SPACED WATER-TABLE DATA

APPLICATION OF A COMPUTATIONALLY EFFICIENT GEOSTATISTICAL APPROACH TO CHARACTERIZING VARIABLY SPACED WATER-TABLE DATA RFr"W/FZD JAN 2 4 1995 OST control # 1385 John J Q U ~ M Argonne Natonal Laboratory Argonne, L 60439 Tel: 708-252-5357, Fax: 708-252-3 611 APPLCATON OF A COMPUTATONALLY EFFCENT GEOSTATSTCAL APPROACH TO

More information

A Facet Generation Procedure. for solving 0/1 integer programs

A Facet Generation Procedure. for solving 0/1 integer programs A Facet Generaton Procedure for solvng 0/ nteger programs by Gyana R. Parja IBM Corporaton, Poughkeepse, NY 260 Radu Gaddov Emery Worldwde Arlnes, Vandala, Oho 45377 and Wlbert E. Wlhelm Teas A&M Unversty,

More information

International Journal of Industrial Engineering Computations

International Journal of Industrial Engineering Computations Internatonal Journal of Industral Engneerng Computatons 4 (2013) 51 60 Contents lsts avalable at GrowngScence Internatonal Journal of Industral Engneerng Computatons homepage: www.growngscence.com/jec

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Introducton to Algorthms October 4, 2002 Massachusetts Insttute of Technology 6046J/18410J Professors Erk Demane and Shaf Goldwasser Handout 14 Problem Set 3 Solutons (Exercses were not to be turned n,

More information

ON SOME ENTERTAINING APPLICATIONS OF THE CONCEPT OF SET IN COMPUTER SCIENCE COURSE

ON SOME ENTERTAINING APPLICATIONS OF THE CONCEPT OF SET IN COMPUTER SCIENCE COURSE Yordzhev K., Kostadnova H. Інформаційні технології в освіті ON SOME ENTERTAINING APPLICATIONS OF THE CONCEPT OF SET IN COMPUTER SCIENCE COURSE Yordzhev K., Kostadnova H. Some aspects of programmng educaton

More information

A Fast Content-Based Multimedia Retrieval Technique Using Compressed Data

A Fast Content-Based Multimedia Retrieval Technique Using Compressed Data A Fast Content-Based Multmeda Retreval Technque Usng Compressed Data Borko Furht and Pornvt Saksobhavvat NSF Multmeda Laboratory Florda Atlantc Unversty, Boca Raton, Florda 3343 ABSTRACT In ths paper,

More information

OPL: a modelling language

OPL: a modelling language OPL: a modellng language Carlo Mannno (from OPL reference manual) Unversty of Oslo, INF-MAT60 - Autumn 00 (Mathematcal optmzaton) ILOG Optmzaton Programmng Language OPL s an Optmzaton Programmng Language

More information

A new segmentation algorithm for medical volume image based on K-means clustering

A new segmentation algorithm for medical volume image based on K-means clustering Avalable onlne www.jocpr.com Journal of Chemcal and harmaceutcal Research, 2013, 5(12):113-117 Research Artcle ISSN : 0975-7384 CODEN(USA) : JCRC5 A new segmentaton algorthm for medcal volume mage based

More information

Minimization of the Expected Total Net Loss in a Stationary Multistate Flow Network System

Minimization of the Expected Total Net Loss in a Stationary Multistate Flow Network System Appled Mathematcs, 6, 7, 793-87 Publshed Onlne May 6 n ScRes. http://www.scrp.org/journal/am http://dx.do.org/.436/am.6.787 Mnmzaton of the Expected Total Net Loss n a Statonary Multstate Flow Networ System

More information

Meta-heuristics for Multidimensional Knapsack Problems

Meta-heuristics for Multidimensional Knapsack Problems 2012 4th Internatonal Conference on Computer Research and Development IPCSIT vol.39 (2012) (2012) IACSIT Press, Sngapore Meta-heurstcs for Multdmensonal Knapsack Problems Zhbao Man + Computer Scence Department,

More information

EYE CENTER LOCALIZATION ON A FACIAL IMAGE BASED ON MULTI-BLOCK LOCAL BINARY PATTERNS

EYE CENTER LOCALIZATION ON A FACIAL IMAGE BASED ON MULTI-BLOCK LOCAL BINARY PATTERNS P.G. Demdov Yaroslavl State Unversty Anatoly Ntn, Vladmr Khryashchev, Olga Stepanova, Igor Kostern EYE CENTER LOCALIZATION ON A FACIAL IMAGE BASED ON MULTI-BLOCK LOCAL BINARY PATTERNS Yaroslavl, 2015 Eye

More information

An Accurate Evaluation of Integrals in Convex and Non convex Polygonal Domain by Twelve Node Quadrilateral Finite Element Method

An Accurate Evaluation of Integrals in Convex and Non convex Polygonal Domain by Twelve Node Quadrilateral Finite Element Method Internatonal Journal of Computatonal and Appled Mathematcs. ISSN 89-4966 Volume, Number (07), pp. 33-4 Research Inda Publcatons http://www.rpublcaton.com An Accurate Evaluaton of Integrals n Convex and

More information

Compiler Design. Spring Register Allocation. Sample Exercises and Solutions. Prof. Pedro C. Diniz

Compiler Design. Spring Register Allocation. Sample Exercises and Solutions. Prof. Pedro C. Diniz Compler Desgn Sprng 2014 Regster Allocaton Sample Exercses and Solutons Prof. Pedro C. Dnz USC / Informaton Scences Insttute 4676 Admralty Way, Sute 1001 Marna del Rey, Calforna 90292 pedro@s.edu Regster

More information

LOOP ANALYSIS. The second systematic technique to determine all currents and voltages in a circuit

LOOP ANALYSIS. The second systematic technique to determine all currents and voltages in a circuit LOOP ANALYSS The second systematic technique to determine all currents and voltages in a circuit T S DUAL TO NODE ANALYSS - T FRST DETERMNES ALL CURRENTS N A CRCUT AND THEN T USES OHM S LAW TO COMPUTE

More information

Design for Reliability: Case Studies in Manufacturing Process Synthesis

Design for Reliability: Case Studies in Manufacturing Process Synthesis Desgn for Relablty: Case Studes n Manufacturng Process Synthess Y. Lawrence Yao*, and Chao Lu Department of Mechancal Engneerng, Columba Unversty, Mudd Bldg., MC 473, New York, NY 7, USA * Correspondng

More information

The Research of Support Vector Machine in Agricultural Data Classification

The Research of Support Vector Machine in Agricultural Data Classification The Research of Support Vector Machne n Agrcultural Data Classfcaton Le Sh, Qguo Duan, Xnmng Ma, Me Weng College of Informaton and Management Scence, HeNan Agrcultural Unversty, Zhengzhou 45000 Chna Zhengzhou

More information

Resource and Virtual Function Status Monitoring in Network Function Virtualization Environment

Resource and Virtual Function Status Monitoring in Network Function Virtualization Environment Journal of Physcs: Conference Seres PAPER OPEN ACCESS Resource and Vrtual Functon Status Montorng n Network Functon Vrtualzaton Envronment To cte ths artcle: MS Ha et al 2018 J. Phys.: Conf. Ser. 1087

More information

Two-Stage Data Distribution for Distributed Surveillance Video Processing with Hybrid Storage Architecture

Two-Stage Data Distribution for Distributed Surveillance Video Processing with Hybrid Storage Architecture Two-Stage Data Dstrbuton for Dstrbuted Survellance Vdeo Processng wth Hybrd Storage Archtecture Yangyang Gao, Hatao Zhang, Bngchang Tang, Yanpe Zhu, Huadong Ma Bejng Key Lab of Intellgent Telecomm. Software

More information

Review of approximation techniques

Review of approximation techniques CHAPTER 2 Revew of appromaton technques 2. Introducton Optmzaton problems n engneerng desgn are characterzed by the followng assocated features: the objectve functon and constrants are mplct functons evaluated

More information

VISUAL SELECTION OF SURFACE FEATURES DURING THEIR GEOMETRIC SIMULATION WITH THE HELP OF COMPUTER TECHNOLOGIES

VISUAL SELECTION OF SURFACE FEATURES DURING THEIR GEOMETRIC SIMULATION WITH THE HELP OF COMPUTER TECHNOLOGIES UbCC 2011, Volume 6, 5002981-x manuscrpts OPEN ACCES UbCC Journal ISSN 1992-8424 www.ubcc.org VISUAL SELECTION OF SURFACE FEATURES DURING THEIR GEOMETRIC SIMULATION WITH THE HELP OF COMPUTER TECHNOLOGIES

More information

TECHNIQUE OF FORMATION HOMOGENEOUS SAMPLE SAME OBJECTS. Muradaliyev A.Z.

TECHNIQUE OF FORMATION HOMOGENEOUS SAMPLE SAME OBJECTS. Muradaliyev A.Z. TECHNIQUE OF FORMATION HOMOGENEOUS SAMPLE SAME OBJECTS Muradalyev AZ Azerbajan Scentfc-Research and Desgn-Prospectng Insttute of Energetc AZ1012, Ave HZardab-94 E-mal:aydn_murad@yahoocom Importance of

More information

X- Chart Using ANOM Approach

X- Chart Using ANOM Approach ISSN 1684-8403 Journal of Statstcs Volume 17, 010, pp. 3-3 Abstract X- Chart Usng ANOM Approach Gullapall Chakravarth 1 and Chaluvad Venkateswara Rao Control lmts for ndvdual measurements (X) chart are

More information

An Optimization Approach for Path Synthesis of Four-bar Grashof Mechanisms

An Optimization Approach for Path Synthesis of Four-bar Grashof Mechanisms 5 th Natonal Conference on Machnes and Mechansms NaCoMM0-44 An Optmzaton Approach for Path Synthess of Four-bar Grashof Mechansms A.S.M.Alhajj, J.Srnvas Abstract Ths paper presents an optmzaton scheme

More information

Outline. Self-Organizing Maps (SOM) US Hebbian Learning, Cntd. The learning rule is Hebbian like:

Outline. Self-Organizing Maps (SOM) US Hebbian Learning, Cntd. The learning rule is Hebbian like: Self-Organzng Maps (SOM) Turgay İBRİKÇİ, PhD. Outlne Introducton Structures of SOM SOM Archtecture Neghborhoods SOM Algorthm Examples Summary 1 2 Unsupervsed Hebban Learnng US Hebban Learnng, Cntd 3 A

More information

Classifier Selection Based on Data Complexity Measures *

Classifier Selection Based on Data Complexity Measures * Classfer Selecton Based on Data Complexty Measures * Edth Hernández-Reyes, J.A. Carrasco-Ochoa, and J.Fco. Martínez-Trndad Natonal Insttute for Astrophyscs, Optcs and Electroncs, Lus Enrque Erro No.1 Sta.

More information

Proper Choice of Data Used for the Estimation of Datum Transformation Parameters

Proper Choice of Data Used for the Estimation of Datum Transformation Parameters Proper Choce of Data Used for the Estmaton of Datum Transformaton Parameters Hakan S. KUTOGLU, Turkey Key words: Coordnate systems; transformaton; estmaton, relablty. SUMMARY Advances n technologes and

More information

Research Article. ISSN (Print) s k and. d k rate of k -th flow, source node and

Research Article. ISSN (Print) s k and. d k rate of k -th flow, source node and Scholars Journal of Engneerng and Technology (SJET) Sch. J. Eng. Tech., 2015; 3(4A):343-350 Scholars Academc and Scentfc Publsher (An Internatonal Publsher for Academc and Scentfc Resources) www.saspublsher.com

More information

5 The Primal-Dual Method

5 The Primal-Dual Method 5 The Prmal-Dual Method Orgnally desgned as a method for solvng lnear programs, where t reduces weghted optmzaton problems to smpler combnatoral ones, the prmal-dual method (PDM) has receved much attenton

More information

Circuit Analysis I (ENGR 2405) Chapter 3 Method of Analysis Nodal(KCL) and Mesh(KVL)

Circuit Analysis I (ENGR 2405) Chapter 3 Method of Analysis Nodal(KCL) and Mesh(KVL) Crcut Analyss I (ENG 405) Chapter Method of Analyss Nodal(KCL) and Mesh(KVL) Nodal Analyss If nstead of focusng on the oltages of the crcut elements, one looks at the oltages at the nodes of the crcut,

More information

Multi-objective Design Optimization of MCM Placement

Multi-objective Design Optimization of MCM Placement Proceedngs of the 5th WSEAS Int. Conf. on Instrumentaton, Measurement, Crcuts and Systems, Hangzhou, Chna, Aprl 6-8, 26 (pp56-6) Mult-objectve Desgn Optmzaton of MCM Placement Chng-Ma Ko ab, Yu-Jung Huang

More information

Fast Computation of Shortest Path for Visiting Segments in the Plane

Fast Computation of Shortest Path for Visiting Segments in the Plane Send Orders for Reprnts to reprnts@benthamscence.ae 4 The Open Cybernetcs & Systemcs Journal, 04, 8, 4-9 Open Access Fast Computaton of Shortest Path for Vstng Segments n the Plane Ljuan Wang,, Bo Jang

More information

Non-Split Restrained Dominating Set of an Interval Graph Using an Algorithm

Non-Split Restrained Dominating Set of an Interval Graph Using an Algorithm Internatonal Journal of Advancements n Research & Technology, Volume, Issue, July- ISS - on-splt Restraned Domnatng Set of an Interval Graph Usng an Algorthm ABSTRACT Dr.A.Sudhakaraah *, E. Gnana Deepka,

More information

The Research of Ellipse Parameter Fitting Algorithm of Ultrasonic Imaging Logging in the Casing Hole

The Research of Ellipse Parameter Fitting Algorithm of Ultrasonic Imaging Logging in the Casing Hole Appled Mathematcs, 04, 5, 37-3 Publshed Onlne May 04 n ScRes. http://www.scrp.org/journal/am http://dx.do.org/0.436/am.04.584 The Research of Ellpse Parameter Fttng Algorthm of Ultrasonc Imagng Loggng

More information

Design of Structure Optimization with APDL

Design of Structure Optimization with APDL Desgn of Structure Optmzaton wth APDL Yanyun School of Cvl Engneerng and Archtecture, East Chna Jaotong Unversty Nanchang 330013 Chna Abstract In ths paper, the desgn process of structure optmzaton wth

More information

TESTING AND IMPROVING LOCAL ADAPTIVE IMPORTANCE SAMPLING IN LJF LOCAL-JT IN MULTIPLY SECTIONED BAYESIAN NETWORKS

TESTING AND IMPROVING LOCAL ADAPTIVE IMPORTANCE SAMPLING IN LJF LOCAL-JT IN MULTIPLY SECTIONED BAYESIAN NETWORKS TESTING AND IMPROVING LOCAL ADAPTIVE IMPORTANCE SAMPLING IN LJF LOCAL-JT IN MULTIPLY SECTIONED BAYESIAN NETWORKS Dan Wu 1 and Sona Bhatt 2 1 School of Computer Scence Unversty of Wndsor, Wndsor, Ontaro

More information