Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Size: px
Start display at page:

Download "Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo"

Transcription

1 Computer Graphic Bing-Yu Chen National Taiwan Univerit The Univerit of Toko

2 Geometrical Tranformation Mathematical reliminarie 2D Tranformation Homogeneou Coorinate & Matri Repreentation 3D Tranformation Quaternion

3 Vector A vector i an entit that poee magnitue an irection. A ra irecte line egment, that poee poition, magnitue, an irection.

4 Vector vector an n-tuple of real number calar two operation: aition & multiplication Commutative Law a + b = b + a a b = b a Ientitie a + = a a = a Aociative Law a + b + c = a + b + c a b c = a b c Ditributive Law a b + c = a b + a c a + b c = a c + b c Invere a + b = b = -a

5 Aition of Vector parallelogram rule w v v w

6 The Vector Dot rouct length = n v n n n v u u u u u

7 ropertie of the Dot rouct mmetric v w w v nonegenerate vv v onl when bilinear v u w vu v unit vector normalizing v v / v angle between the vector co v w/ v w w

8 rojection w u w co u v v w w v w vw

9 Matri Baic Definition Tranpoe Aition a a n A aij am a mn a an T C A cij aji C a m a nm C A B cij aij bij

10 Matri Baic Scalar-matri multiplication CA c ij a ij Matri-matri multiplication C AB c n a b ij ik kj k

11 Cro rouct of Vector Definition vw v2w3 v3w2 i v3w vw 3 j vw 2 v2w k i j k i,, j,, k,, where,, an are tanar unit vector: Application A normal vector to a polgon i calculate from 3 non-collinear vertice of the polgon. N vw N v w

12 General Tranformation A tranformation map point to other point an/or vector to other vector u v v T u T Q Q T

13 ipeline Implementation v u u v T tranformation from application program Tu Tv Tv Tu raterizer Tu vertice vertice piel frame buffer Tv

14 Repreentation We can repreent a point, in the plane a a column vector a a row vector p,

15 2D Tranformation 2D Tranlation 2D Scaling 2D Reflection 2D Shearing 2D Rotation

16 Tranlation Move tranlate, iplace a point to a new location Diplacement etermine b a vector Three egree of freeom =+

17 2D Tranlation 4,5 7,5 7,, ' T ' '

18 2D Scaling 4,5 7,5 7/2,5/4 2,5/4 ' ' ' S

19 2D Reflection 4,5 7,5-7,5-4,5 ' RE ' '

20 2D Shearing 4,5 7,5 9,5 2,5 ' SH ' h '

21 2D Rotation 4,5 7,5 2., ,7.8 R co in in co ' ' '

22 2D Rotation Conier rotation about the origin b egree raiu ta the ame, angle increae b = r co f = r in f = co in = in + co = r co f = r in f

23 Limitation of a 2X2 matri Scaling Rotation Reflection Shearing What o we mi?

24 Homogeneou Coorinate Wh & What i homogeneou coorinate? if point are epree in homogeneou coorinate, all three tranformation can be treate a multiplication.,,, W uuall can not be

25 Homogeneou Coorinate W X W= plane Y

26 Homogeneou Coorinate for 2D Tranlation T ' ' ' ' ', ' T T T,, 2 2

27 Homogeneou Coorinate for 2D Tranlation,, T T T T T T,,,,

28 Homogeneou Coorinate for 2D Scaling S ' ' ' ' ', ' S,, S S

29 Homogeneou Coorinate for 2D Rotation co in in co ' ' ' R R co in in co ' ' '

30 ropertie of Tranformation rigi-bo tranformation rotation & tranlation preerving angle an length affine tranformation rotation & tranlation & caling preerving parallelim of line

31 Compoition of 2D Tranformation Original, After tranlation of to origin T, After rotation R After tranlation to original T,

32 Compoition of 2D Tranformation in co co in in co in co co in in co,, T R T

33 Right-hane Coorinate Stem z

34 3D Tranlation & 3D Scaling,, z z T,, z z S

35 3D Reflection & 3D Shearing RE RE SH h, h h h

36 3D Rotation co in in co R z co in in co R co in in co R z R R R z

37 Rotation About a Fie oint other than the Origin Move fie point to origin Rotate Move fie point back M T R T f f

38 Rotation About an Arbitrar Ai A rotation b about an arbitrar ai can be ecompoe into the concatenation of rotation about the,, an z ae,, are calle the Euler angle z R R R R z z z Note that rotation o not commute We can ue rotation in another orer but with ifferent angle. v

39 Euler Angle An Euler angle i a rotation about a ingle ai. A rotation i ecribe a a equence of rotation about three mutuall orthogonal coorinate ae fie in pace X-roll, Y-roll, Z-roll There are 6 poible wa to efine a rotation. 3! 42

40 Euler Angle & Interpolation Interpolation happening on each angle Multiple route for interpolation More ke for contrain R z z R 43

41 Interpolating Euler Angle c Natural orientation repreentation: 3 angle for 3 egree of freeom Unnatural interpolation: A rotation of 9 o firt aroun Z an then aroun Y = 2 o aroun,,. But 3 o aroun Z then Y iffer from 4 o aroun,,. b a b c a b a c = c b a b a c b b b c a c a c a 44

42 Solution: Quaternion Interpolation Interpolate orientation on the unit phere B analog: -, 2-, 3-DOF rotation a contraine point on -, 2-, 3- phere 47

43 Quaternion v Quaternion are unit vector on 3- phere in 4D Right-han rotation of raian about i q [co / 2,in / 2 v] often note [ wv, ] Require one real an three imaginar component i, j, k q q qi q2j q3k [ w, v]; w q, v q, q2, q where i j k ijk w i calle calar an v i calle vector v 49

44 Baic Operation Uing Quaternion Aition Multiplication * Conjugate Length Norm Invere Unit Quaternion q q [ w w, v v] qq [ w w v v, v v w v w v] q [ w, v] q w v 2 2 / N q q w v * 2 * q q / q q / N q q i a unit quaternion if q an then q * Ientit [,,, ] when involving multiplication [,,, ] when involving aition q 5

45 SLER-Spherical Linear interolation Interpolate between two quaternion rotation along the hortet arc. SLER p, q, t p in t q in t in p where co w p wq v p vq t q If two orientation are too cloe, ue linear interpolation to avoi an iviion b zero. 55

Geometric Transformations Hearn & Baker Chapter 5. Some slides are taken from Robert Thomsons notes.

Geometric Transformations Hearn & Baker Chapter 5. Some slides are taken from Robert Thomsons notes. Geometric Tranformation Hearn & Baker Chapter 5 Some lie are taken from Robert Thomon note. OVERVIEW Two imenional tranformation Matri repreentation Invere tranformation Three imenional tranformation OpenGL

More information

Representations and Transformations. Objectives

Representations and Transformations. Objectives Repreentation and Tranformation Objective Derive homogeneou coordinate tranformation matrice Introduce tandard tranformation - Rotation - Tranlation - Scaling - Shear Scalar, Point, Vector Three baic element

More information

Note 2: Transformation (modeling and viewing)

Note 2: Transformation (modeling and viewing) Note : Tranformation (modeling and viewing Reading: tetbook chapter 4 (geometric tranformation and chapter 5 (viewing.. Introduction (model tranformation modeling coordinate modeling tranformation world

More information

Rotation Matrices Three interpretations of rotational matrices Representing the coordinates of a point in two different frames

Rotation Matrices Three interpretations of rotational matrices Representing the coordinates of a point in two different frames From Lat Cla Numerial Integration Stabilit v. hoie of te ie Firt orer v. higher orer metho obot Kinemati obot onfiguration Configuration ae Joint oorinate v. workae oorinate Poition Kinemati otation Tranlation

More information

Computer Graphics. Transformation

Computer Graphics. Transformation (SBE 36) Dr. Aman Eldeib Spring 2 SBE 36 i a fundamental corner tone of computer graphic and i a central to OpenGL a well a mot other graphic tem.(2d and 3D ) Given an object, tranformation i to change

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical descriptions of geometric changes,

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Computer Graphics Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical

More information

CS 428: Fall Introduction to. Geometric Transformations (continued) Andrew Nealen, Rutgers, /20/2010 1

CS 428: Fall Introduction to. Geometric Transformations (continued) Andrew Nealen, Rutgers, /20/2010 1 CS 428: Fall 2 Inroducion o Compuer Graphic Geomeric Tranformaion (coninued) Andrew Nealen, Ruger, 2 9/2/2 Tranlaion Tranlaion are affine ranformaion The linear par i he ideni mari The 44 mari for he ranlaion

More information

CS770/870 Spring 2017 Transformations

CS770/870 Spring 2017 Transformations CS770/870 Spring 2017 Transformations Coordinate sstems 2D Transformations Homogeneous coordinates Matrices, vectors, points Coordinate Sstems Coordinate sstems used in graphics Screen coordinates: the

More information

Homogeneous Coordinates

Homogeneous Coordinates COMS W4172 3D Math 2 Steven Feiner Department of Computer Science Columbia Universit New York, NY 127 www.cs.columbia.edu/graphics/courses/csw4172 Februar 1, 218 1 Homogeneous Coordinates w X W Y X W Y

More information

3D Kinematics. Consists of two parts

3D Kinematics. Consists of two parts D Kinematics Consists of two parts D rotation D translation The same as D D rotation is more complicated than D rotation (restricted to z-ais) Net, we will discuss the treatment for spatial (D) rotation

More information

Chapter 3 : Computer Animation

Chapter 3 : Computer Animation Chapter 3 : Computer Animation Histor First animation films (Disne) 30 drawings / second animator in chief : ke frames others : secondar drawings Use the computer to interpolate? positions orientations

More information

CS354 Computer Graphics Rotations and Quaternions

CS354 Computer Graphics Rotations and Quaternions Slide Credit: Don Fussell CS354 Computer Graphics Rotations and Quaternions Qixing Huang April 4th 2018 Orientation Position and Orientation The position of an object can be represented as a translation

More information

Computer Graphics. P04 Transformations. Aleksandra Pizurica Ghent University

Computer Graphics. P04 Transformations. Aleksandra Pizurica Ghent University Computer Graphics P4 Transformations Aleksandra Pizurica Ghent Universit Telecommunications and Information Processing Image Processing and Interpretation Group Transformations in computer graphics Goal:

More information

Quaternion Interpolation

Quaternion Interpolation Quaternion Interpolation 3D Rotation Repreentation (reiew) Rotation Matrix orthornormal column/row bad for interpolation Fixed Angle rotate about global axe bad for interpolation, gimbal lock Euler Angle

More information

CT5510: Computer Graphics. Transformation BOCHANG MOON

CT5510: Computer Graphics. Transformation BOCHANG MOON CT5510: Computer Graphics Transformation BOCHANG MOON 2D Translation Transformations such as rotation and scale can be represented using a matrix M.., How about translation? No way to express this using

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics CS56 and Quaternions Piar s Luo Jr. A New Dimension - Time 3 4 Principles of Traditional Specifing Anticipation Suash/Stretch Secondar Action 5 6 C. Gotsman, G. Elber,. Ben-Chen Page CS56 Keframes anual

More information

Quaternions & Rotation in 3D Space

Quaternions & Rotation in 3D Space Quaternions & Rotation in 3D Space 1 Overview Quaternions: definition Quaternion properties Quaternions and rotation matrices Quaternion-rotation matrices relationship Spherical linear interpolation Concluding

More information

Orientation & Quaternions

Orientation & Quaternions Orientation & Quaternions Orientation Position and Orientation The position of an object can be represented as a translation of the object from the origin The orientation of an object can be represented

More information

CS559: Computer Graphics

CS559: Computer Graphics CS559: Computer Graphics Lecture 8: 3D Transforms Li Zhang Spring 28 Most Slides from Stephen Chenne Finish Color space Toda 3D Transforms and Coordinate sstem Reading: Shirle ch 6 RGB and HSV Green(,,)

More information

Figure 1: 2D arm. Figure 2: 2D arm with labelled angles

Figure 1: 2D arm. Figure 2: 2D arm with labelled angles 2D Kinematics Consier a robotic arm. We can sen it commans like, move that joint so it bens at an angle θ. Once we ve set each joint, that s all well an goo. More interesting, though, is the question of

More information

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo Computer Graphics Bing-Yu Chen National Taiwan Universit The Universit of Toko Viewing in 3D 3D Viewing Process Classical Viewing and Projections 3D Snthetic Camera Model Parallel Projection Perspective

More information

Announcements. Equation of Perspective Projection. Image Formation and Cameras

Announcements. Equation of Perspective Projection. Image Formation and Cameras Announcements Image ormation and Cameras Introduction to Computer Vision CSE 52 Lecture 4 Read Trucco & Verri: pp. 22-4 Irfanview: http://www.irfanview.com/ is a good Windows utilit for manipulating images.

More information

CS F-07 Objects in 2D 1

CS F-07 Objects in 2D 1 CS420-2010F-07 Objects in 2D 1 07-0: Representing Polgons We want to represent a simple polgon Triangle, rectangle, square, etc Assume for the moment our game onl uses these simple shapes No curves for

More information

1 Historical Notes. Kinematics 5: Quaternions

1 Historical Notes. Kinematics 5: Quaternions 1 Historical Notes Quaternions were invented by the Irish mathematician William Rowan Hamilton in the late 1890s. The story goes 1 that Hamilton has pondered the problem of dividing one vector by another

More information

MAP. Vectors and Transforms. Reading instructions Quick Repetition of Vector Algebra. In 3D Graphics. Repetition of the Rendering Pipeline

MAP. Vectors and Transforms. Reading instructions Quick Repetition of Vector Algebra. In 3D Graphics. Repetition of the Rendering Pipeline 79 MAP Skämtbil om matte å KTHanimationskurs Vectors an Transforms In 3D Grahics Reetition of the Renering Pieline Geometr er verte: Lighting (colors) Screen sace ositions Reetition of the Renering Pieline

More information

CS4670: Computer Vision

CS4670: Computer Vision CS467: Computer Vision Noah Snavely Lecture 8: Geometric transformations Szeliski: Chapter 3.6 Reading Announcements Project 2 out today, due Oct. 4 (demo at end of class today) Image alignment Why don

More information

Today. Today. Introduction. Matrices. Matrices. Computergrafik. Transformations & matrices Introduction Matrices

Today. Today. Introduction. Matrices. Matrices. Computergrafik. Transformations & matrices Introduction Matrices Computergrafik Matthias Zwicker Universität Bern Herbst 2008 Today Transformations & matrices Introduction Matrices Homogeneous Affine transformations Concatenating transformations Change of Common coordinate

More information

Computer Graphics. 2D transformations. Transforma3ons in computer graphics. Overview. Basic classes of geometric transforma3ons

Computer Graphics. 2D transformations. Transforma3ons in computer graphics. Overview. Basic classes of geometric transforma3ons Transforma3ons in computer graphics omputer Graphics Transforma3ons leksandra Piurica Goal: introduce methodolog to hange coordinate sstem Move and deform objects Principle: transforma3ons are applied

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theor, Algorithms, and Applications Hong Qin State Universit of New York at Ston Brook (Ston Brook Universit) Ston Brook, New York 794--44 Tel: (63)632-845; Fa: (63)632-8334 qin@cs.sunsb.edu

More information

Image Warping CSE399b, Spring 07 Computer Vision

Image Warping CSE399b, Spring 07 Computer Vision Image Warping CSE399b, Spring 7 Computer Vision http://maps.a9.com http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html Autostiching on A9.com

More information

CS 335 Graphics and Multimedia. Geometric Warping

CS 335 Graphics and Multimedia. Geometric Warping CS 335 Graphics and Multimedia Geometric Warping Geometric Image Operations Eample transformations Straightforward methods and their problems The affine transformation Transformation algorithms: Forward

More information

Determining the 2d transformation that brings one image into alignment (registers it) with another. And

Determining the 2d transformation that brings one image into alignment (registers it) with another. And Last two lectures: Representing an image as a weighted combination of other images. Toda: A different kind of coordinate sstem change. Solving the biggest problem in using eigenfaces? Toda Recognition

More information

CMSC 425: Lecture 6 Affine Transformations and Rotations

CMSC 425: Lecture 6 Affine Transformations and Rotations CMSC 45: Lecture 6 Affine Transformations and Rotations Affine Transformations: So far we have been stepping through the basic elements of geometric programming. We have discussed points, vectors, and

More information

Motion Control (wheeled robots)

Motion Control (wheeled robots) 3 Motion Control (wheeled robot) Requirement for Motion Control Kinematic / dynamic model of the robot Model of the interaction between the wheel and the ground Definition of required motion -> peed control,

More information

Transformations. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Transformations. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Transformations Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Angel: Interactive Computer Graphics 4E Addison-Wesley 25 1 Objectives

More information

8. Wavelength measurement with a grating spectrometer

8. Wavelength measurement with a grating spectrometer Spm 8. Wavelength meaurement with a grating pectrometer 8.1 Introuction A very exact examination of the chemical compoition of a ubtance can be unertaken by analying the electromagnetic raiation it emit

More information

Transformations: 2D Transforms

Transformations: 2D Transforms 1. Translation Transformations: 2D Transforms Relocation of point WRT frame Given P = (x, y), translation T (dx, dy) Then P (x, y ) = T (dx, dy) P, where x = x + dx, y = y + dy Using matrix representation

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Michael Kazhdan (601.457/657) HB Ch. 5 FvDFH Ch. 5 Overview Ra-Tracing so far Modeling transformations Ra Tracing Image RaTrace(Camera camera, Scene scene, int width, int heigh,

More information

What and Why Transformations?

What and Why Transformations? 2D transformations What and Wh Transformations? What? : The geometrical changes of an object from a current state to modified state. Changing an object s position (translation), orientation (rotation)

More information

Realtime 3D Computer Graphics Virtual Reality

Realtime 3D Computer Graphics Virtual Reality Realtime 3D Comuter Grahics Virtual Realit Viewing an rojection Classical an General Viewing Transformation Pieline CPU CPU Pol. Pol. DL DL Piel Piel Per Per Verte Verte Teture Teture Raster Raster Frag

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Michael Kazhdan (601.457/657) HB Ch. 5 FvDFH Ch. 5 Announcement Assignment 2 has been posted: Due: 10/24 ASAP: Download the code and make sure it compiles» On windows: just build

More information

4. Two Dimensional Transformations

4. Two Dimensional Transformations 4. Two Dimensional Transformations CS362 Introduction to Computer Graphics Helena Wong, 2 In man applications, changes in orientations, sizes, and shapes are accomplished with geometric transformations

More information

CS770/870 Spring 2017 Transformations

CS770/870 Spring 2017 Transformations CS770/870 Spring 2017 Transformations Coordinate sstems 2D Transformations Homogeneous coordinates Matrices, vectors, points 01/29/2017 1 Coordinate Sstems Coordinate sstems used in graphics Screen coordinates:

More information

CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications

CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications CSE328 Fundamentals of Computer Graphics: Theor, Algorithms, and Applications Hong in State Universit of New York at Ston Brook (Ston Brook Universit) Ston Brook, New York 794-44 Tel: (63)632-845; Fa:

More information

CS770/870 Spring 2017 Quaternions

CS770/870 Spring 2017 Quaternions CS770/870 Spring 2017 Quaternions Primary resources used in preparing these notes: 1. van Osten, 3D Game Engine Programming: Understanding Quaternions, https://www.3dgep.com/understanding-quaternions 2.

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Fall 2017 Structural Manipulation November 22, 2017 Rapid Structural Analysis Methods Emergence of large structural databases which do not allow manual (visual) analysis and require efficient 3-D search

More information

Image Warping. Some slides from Steve Seitz

Image Warping.   Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Spring 2 Image Transformations image filtering: change range of image g() = T(f())

More information

Animation. Keyframe animation. CS4620/5620: Lecture 30. Rigid motion: the simplest deformation. Controlling shape for animation

Animation. Keyframe animation. CS4620/5620: Lecture 30. Rigid motion: the simplest deformation. Controlling shape for animation Keyframe animation CS4620/5620: Lecture 30 Animation Keyframing is the technique used for pose-to-pose animation User creates key poses just enough to indicate what the motion is supposed to be Interpolate

More information

Visual Recognition: Image Formation

Visual Recognition: Image Formation Visual Recognition: Image Formation Raquel Urtasun TTI Chicago Jan 5, 2012 Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 1 / 61 Today s lecture... Fundamentals of image formation You should know

More information

Advanced Encryption Standard and Modes of Operation

Advanced Encryption Standard and Modes of Operation Advanced Encryption Standard and Mode of Operation G. Bertoni L. Breveglieri Foundation of Cryptography - AES pp. 1 / 50 AES Advanced Encryption Standard (AES) i a ymmetric cryptographic algorithm AES

More information

IMPLEMENTATION OF AREA, VOLUME AND LINE SOURCES

IMPLEMENTATION OF AREA, VOLUME AND LINE SOURCES December 01 ADMS 5 P503I1 IMPEMENTATION OF AREA, VOUME AND INE SOURCES The Met. Office (D J Thomon) and CERC 1. INTRODUCTION ADMS model line ource, and area and volume ource with conve polgon bae area.

More information

(x, y) (ρ, θ) ρ θ. Polar Coordinates. Cartesian Coordinates

(x, y) (ρ, θ) ρ θ. Polar Coordinates. Cartesian Coordinates Coordinate Sstems Point Representation in two dimensions Cartesian Coordinates: (; ) Polar Coordinates: (; ) (, ) ρ θ (ρ, θ) Cartesian Coordinates Polar Coordinates p = CPS1, 9: Computer Graphics D Geometric

More information

Image warping. image filtering: change range of image. image warping: change domain of image g(x) = f(h(x)) h(y)=0.5y+0.5. h([x,y])=[x,y/2] f h

Image warping. image filtering: change range of image. image warping: change domain of image g(x) = f(h(x)) h(y)=0.5y+0.5. h([x,y])=[x,y/2] f h Image warping Image warping image filtering: change range of image g() () = h(f()) h(f()) f h g h()=0.5+0.5 image warping: change domain of image g() = f(h()) f h g h([,])=[,/2] Parametric (global) warping

More information

Computer Graphics. Jeng-Sheng Yeh 葉正聖 Ming Chuan University (modified from Bing-Yu Chen s slides)

Computer Graphics. Jeng-Sheng Yeh 葉正聖 Ming Chuan University (modified from Bing-Yu Chen s slides) Computer Graphics Jeng-Sheng Yeh 葉正聖 Ming Chuan Universit (modified from Bing-Yu Chen s slides) Viewing in 3D 3D Viewing Process Specification of an Arbitrar 3D View Orthographic Parallel Projection Perspective

More information

Lighting and Shading

Lighting and Shading ighting an Shaing 4 th ~ 5 th Week, 29 Why We Nee Shaing Suppoe we buil a moel of a phere uing many polygon an color it with glcolor We get omething like But we want Why oe the image of a real phere look

More information

CS452/552; EE465/505. Geometry Transformations

CS452/552; EE465/505. Geometry Transformations CS452/552; EE465/505 Geometry Transformations 1-26-15 Outline! Geometry: scalars, points & vectors! Transformations Read: Angel, Chapter 4 (study cube.html/cube.js example) Appendix B: Spaces (vector,

More information

Transformations. Examples of transformations: shear. scaling

Transformations. Examples of transformations: shear. scaling Transformations Eamples of transformations: translation rotation scaling shear Transformations More eamples: reflection with respect to the y-ais reflection with respect to the origin Transformations Linear

More information

Classical Mechanics Examples (Lagrange Multipliers)

Classical Mechanics Examples (Lagrange Multipliers) Classical Mechanics Examples (Lagrange Multipliers) Dipan Kumar Ghosh Physics Department, Inian Institute of Technology Bombay Powai, Mumbai 400076 September 3, 015 1 Introuction We have seen that the

More information

Geometric Model of Camera

Geometric Model of Camera Geometric Model of Camera Dr. Gerhard Roth COMP 42A Winter 25 Version 2 Similar Triangles 2 Geometric Model of Camera Perspective projection P(X,Y,Z) p(,) f X Z f Y Z 3 Parallel lines aren t 4 Figure b

More information

Transformations Week 9, Lecture 18

Transformations Week 9, Lecture 18 CS 536 Computer Graphics Transformations Week 9, Lecture 18 2D Transformations David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University 1 3 2D Affine Transformations

More information

Announcements. The equation of projection. Image Formation and Cameras

Announcements. The equation of projection. Image Formation and Cameras Announcements Image ormation and Cameras Introduction to Computer Vision CSE 52 Lecture 4 Read Trucco & Verri: pp. 5-4 HW will be on web site tomorrow or Saturda. Irfanview: http://www.irfanview.com/ is

More information

Raster Graphics Algorithms

Raster Graphics Algorithms Overview of Grahics Pieline Raster Grahics Algorithms D scene atabase traverse geometric moel transform to worl sace transform to ee sace scan conversion Line rasterization Bresenham s Mioint line algorithm

More information

What does OpenGL do?

What does OpenGL do? Theor behind Geometrical Transform What does OpenGL do? So the user specifies a lot of information Ee Center Up Near, far, UP EE Left, right top, bottom, etc. f b CENTER left right top bottom What does

More information

CS184: Using Quaternions to Represent Rotation

CS184: Using Quaternions to Represent Rotation Page 1 of 5 CS 184 home page A note on these notes: These notes on quaternions were created as a resource for students taking CS184 at UC Berkeley. I am not doing any research related to quaternions and

More information

Log1 Contest Round 2 Theta Geometry. 4 points each 1 What is the area of an isosceles right triangle with legs of length 3?

Log1 Contest Round 2 Theta Geometry. 4 points each 1 What is the area of an isosceles right triangle with legs of length 3? 009 00 Log Contet Round Theta Geometry Name: 4 point each What i the area of an iocele right triangle with leg of length? What i perimeter of a regular heptagon with ide of length 8? Matt built a foot

More information

More on Transformations. COS 426, Spring 2019 Princeton University

More on Transformations. COS 426, Spring 2019 Princeton University More on Transformations COS 426, Spring 2019 Princeton Universit Agenda Grab-bag of topics related to transformations: General rotations! Euler angles! Rodrigues s rotation formula Maintaining camera transformations!

More information

Exercises of PIV. incomplete draft, version 0.0. October 2009

Exercises of PIV. incomplete draft, version 0.0. October 2009 Exercises of PIV incomplete raft, version 0.0 October 2009 1 Images Images are signals efine in 2D or 3D omains. They can be vector value (e.g., color images), real (monocromatic images), complex or binary

More information

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES YINGYING REN Abstract. In this paper, the applications of homogeneous coordinates are discussed to obtain an efficient model

More information

12.1 Quaternions and Rotations

12.1 Quaternions and Rotations Fall 2015 CSCI 420 Computer Graphics 12.1 Quaternions and Rotations Hao Li http://cs420.hao-li.com 1 Rotations Very important in computer animation and robotics Joint angles, rigid body orientations, camera

More information

Uses of Transformations. 2D transformations Homogeneous coordinates. Transformations. Transformations. Transformations. Transformations and matrices

Uses of Transformations. 2D transformations Homogeneous coordinates. Transformations. Transformations. Transformations. Transformations and matrices Uses of Transformations 2D transformations Homogeneous coordinates odeling: position and resie parts of a comple model; Viewing: define and position the virtual camera Animation: define how objects move/change

More information

MEM380 Applied Autonomous Robots Winter Robot Kinematics

MEM380 Applied Autonomous Robots Winter Robot Kinematics MEM38 Applied Autonomous obots Winter obot Kinematics Coordinate Transformations Motivation Ultimatel, we are interested in the motion of the robot with respect to a global or inertial navigation frame

More information

Image Warping, mesh, and triangulation CSE399b, Spring 07 Computer Vision

Image Warping, mesh, and triangulation CSE399b, Spring 07 Computer Vision http://grail.cs.washington.edu/projects/rotoscoping/ Image Warping, mesh, and triangulation CSE399b, Spring 7 Computer Vision Man of the slides from A. Efros. Parametric (global) warping Eamples of parametric

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 420 Computer Graphics Lecture 20 and Rotations Rotations Motion Capture [Angel Ch. 3.14] Rotations Very important in computer animation and robotics Joint angles, rigid body orientations, camera parameters

More information

Image Warping : Computational Photography Alexei Efros, CMU, Fall Some slides from Steve Seitz

Image Warping : Computational Photography Alexei Efros, CMU, Fall Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Fall 2 Image Transformations image filtering: change range of image g() T(f())

More information

CS 445 / 645 Introduction to Computer Graphics. Lecture 21 Representing Rotations

CS 445 / 645 Introduction to Computer Graphics. Lecture 21 Representing Rotations CS 445 / 645 Introduction to Computer Graphics Lecture 21 Representing Rotations Parameterizing Rotations Straightforward in 2D A scalar, θ, represents rotation in plane More complicated in 3D Three scalars

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 520 Computer Animation and Simulation Quaternions and Rotations Jernej Barbic University of Southern California 1 Rotations Very important in computer animation and robotics Joint angles, rigid body

More information

To Do. Computer Graphics (Fall 2004) Course Outline. Course Outline. Motivation. Motivation

To Do. Computer Graphics (Fall 2004) Course Outline. Course Outline. Motivation. Motivation Comuter Grahics (Fall 24) COMS 416, Lecture 3: ransformations 1 htt://www.cs.columbia.edu/~cs416 o Do Start (thinking about) assignment 1 Much of information ou need is in this lecture (slides) Ask A NOW

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 520 Computer Animation and Simulation Quaternions and Rotations Jernej Barbic University of Southern California 1 Rotations Very important in computer animation and robotics Joint angles, rigid body

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 480 Computer Graphics Lecture 20 and Rotations April 6, 2011 Jernej Barbic Rotations Motion Capture [Ch. 4.12] University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s11/ 1 Rotations

More information

CS 548: COMPUTER GRAPHICS QUATERNIONS SPRING 2015 DR. MICHAEL J. REALE

CS 548: COMPUTER GRAPHICS QUATERNIONS SPRING 2015 DR. MICHAEL J. REALE CS 548: COMPUTER GRAPHICS QUATERNIONS SPRING 5 DR. MICHAEL J. REALE http://common.ikimedia.og/iki/fi le%3awilliam_roan_hamilton_pot ait_oal_combined.png INTRODUCTION Quatenion inented b Si William Roan

More information

Perspective Projection Transformation

Perspective Projection Transformation Perspective Projection Transformation Where does a point of a scene appear in an image?? p p Transformation in 3 steps:. scene coordinates => camera coordinates. projection of camera coordinates into image

More information

KS3 Maths Assessment Objectives

KS3 Maths Assessment Objectives KS3 Math Aement Objective Tranition Stage 9 Ratio & Proportion Probabilit y & Statitic Appreciate the infinite nature of the et of integer, real and rational number Can interpret fraction and percentage

More information

1. We ll look at: Types of geometrical transformation. Vector and matrix representations

1. We ll look at: Types of geometrical transformation. Vector and matrix representations Tob Howard COMP272 Computer Graphics and Image Processing 3: Transformations Tob.Howard@manchester.ac.uk Introduction We ll look at: Tpes of geometrical transformation Vector and matri representations

More information

Viewing Transformations I Comp 535

Viewing Transformations I Comp 535 Viewing Transformations I Comp 535 Motivation Want to see our virtual 3-D worl on a 2-D screen 2 Graphics Pipeline Moel Space Moel Transformations Worl Space Viewing Transformation Ee/Camera Space Projection

More information

Modeling Transformations Revisited

Modeling Transformations Revisited Modeling Transformations Revisited Basic 3D Transformations Translation Scale Shear Rotation 3D Transformations Same idea as 2D transformations o Homogeneous coordinates: (,,z,w) o 44 transformation matrices

More information

Chap 7, 2009 Spring Yeong Gil Shin

Chap 7, 2009 Spring Yeong Gil Shin Three-Dimensional i Viewingi Chap 7, 29 Spring Yeong Gil Shin Viewing i Pipeline H d fi i d? How to define a window? How to project onto the window? Rendering "Create a picture (in a snthetic camera) Specification

More information

General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing)

General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing) ME 29-R: General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing) Sara McMains Spring 29 lecture 2 Toda s GPU eample: moldabilit feedback Two-part mold [The Complete Sculptor

More information

3D Transformations World Window to Viewport Transformation Week 2, Lecture 4

3D Transformations World Window to Viewport Transformation Week 2, Lecture 4 CS 430/536 Computer Graphics I 3D Transformations World Window to Viewport Transformation Week 2, Lecture 4 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometr and Camera Calibration 3D Coordinate Sstems Right-handed vs. left-handed 2D Coordinate Sstems ais up vs. ais down Origin at center vs. corner Will often write (u, v) for image coordinates v

More information

Interactive Computer Graphics. Warping and morphing. Warping and Morphing. Warping and Morphing. Lecture 14+15: Warping and Morphing. What is.

Interactive Computer Graphics. Warping and morphing. Warping and Morphing. Warping and Morphing. Lecture 14+15: Warping and Morphing. What is. Interactive Computer Graphics Warping and morphing Lecture 14+15: Warping and Morphing Lecture 14: Warping and Morphing: Slide 1 Lecture 14: Warping and Morphing: Slide 2 Warping and Morphing What is Warping

More information

Viewing and Modeling

Viewing and Modeling Viewing and Modeling Computer Science Department The Universit of Texas at Austin A Simplified Graphics ipeline Application Vertex batching & assembl Triangle assembl Triangle clipping NDC to window space

More information

Advanced Computer Graphics Transformations. Matthias Teschner

Advanced Computer Graphics Transformations. Matthias Teschner Advanced Computer Graphics Transformations Matthias Teschner Motivation Transformations are used To convert between arbitrary spaces, e.g. world space and other spaces, such as object space, camera space

More information

CS 450: COMPUTER GRAPHICS QUATERNIONS SPRING 2016 DR. MICHAEL J. REALE

CS 450: COMPUTER GRAPHICS QUATERNIONS SPRING 2016 DR. MICHAEL J. REALE CS 45: COMPUTER GRAPHICS QUATERNIONS SPRING 6 DR. MICHAEL J. REALE http://common.ikimedia.og/iki/fi le%3awilliam_roan_hamilton_pot ait_oal_combined.png INTRODUCTION Quatenion inented b Si William Roan

More information

Dual Arm Robot Research Report

Dual Arm Robot Research Report Dual Arm Robot Research Report Analytical Inverse Kinematics Solution for Moularize Dual-Arm Robot With offset at shouler an wrist Motivation an Abstract Generally, an inustrial manipulator such as PUMA

More information

Today s class. Geometric objects and transformations. Informationsteknologi. Wednesday, November 7, 2007 Computer Graphics - Class 5 1

Today s class. Geometric objects and transformations. Informationsteknologi. Wednesday, November 7, 2007 Computer Graphics - Class 5 1 Toda s class Geometric objects and transformations Wednesda, November 7, 27 Computer Graphics - Class 5 Vector operations Review of vector operations needed for working in computer graphics adding two

More information

Camera model & image formation SINA 07/08

Camera model & image formation SINA 07/08 Camera mdel & image rmatin SINA 7/8 Image rmatin, camera mdel Cnider a pinhle camera, rce all ra t g thrugh the ptical center X [ X, Y, ] [, ] λ X λy z λ See: An Invitatin t 3-D Viin, Ma, Satt, Kecka,

More information

USING ARTIFICIAL NEURAL NETWORKS TO APPROXIMATE A DISCRETE EVENT STOCHASTIC SIMULATION MODEL

USING ARTIFICIAL NEURAL NETWORKS TO APPROXIMATE A DISCRETE EVENT STOCHASTIC SIMULATION MODEL USING ARTIFICIAL NEURAL NETWORKS TO APPROXIMATE A DISCRETE EVENT STOCHASTIC SIMULATION MODEL Robert A. Kilmer Department of Sytem Engineering Unite State Military Acaemy Wet Point, NY 1996 Alice E. Smith

More information

Image Warping (Szeliski Sec 2.1.2)

Image Warping (Szeliski Sec 2.1.2) Image Warping (Szeliski Sec 2..2) http://www.jeffre-martin.com CS94: Image Manipulation & Computational Photograph Aleei Efros, UC Berkele, Fall 7 Some slides from Steve Seitz Image Transformations image

More information

Image Warping. Some slides from Steve Seitz

Image Warping.   Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Fall 26 Image Warping image filtering: change range of image g() T(f()) f T f image

More information