Lecture 3 Randomized Algorithms

Size: px
Start display at page:

Download "Lecture 3 Randomized Algorithms"

Transcription

1 Lecture 3 Randomized Algorithms Jean-Daniel Boissonnat Winter School on Computational Geometry and Topology University of Nice Sophia Antipolis January 23-27, 2017 Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 1 / 39

2 Outline 1 Combinatorial complexity 2 Deterministic incremental construction of convex hulls 3 Randomized incremental algorithm 4 Fast point location 5 k-order Voronoi Diagrams Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 2 / 39

3 Combinatorial complexity The combinatorial complexity of the Voronoi diagram of n points of R d is the same as the combinatorial complexity of the intersection of n half-spaces of R d+1 The combinatorial complexity of the Delaunay triangulation of n points of R d is the same as the combinatorial complexity of the convex hull of n points of R d+1 Both complexities are the same by duality Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 3 / 39

4 Euler formula for 3-polytopes The numbers of vertices s, edges a and facets f of a polytope of R 3 satisfy Schlegel diagram s a + f = 2 s = s a = a +1 f = f +1 s = s +1 a a +1 f = f Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 4 / 39

5 Euler formula for 3-polytopes : s a + f = 2 Incidences edges-facets 2a 3f = a 3s 6 f 2s 4 with equality when all facets are triangles Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 5 / 39

6 Beyond the 3rd dimension Upper bound theorem [McMullen 1970] If H is the intersection of n half-spaces of R d nb faces of H = Θ(n d 2 ) Hyperplanes in general position any k-face is the intersection of d k hyperplanes defining H all vertices of H are incident to d edges and have distinct x d the affine hull of k < d edges incident to a vertex p contains a k-face of H Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 6 / 39

7 Proof of the upper bound theorem Bounding the number of vertices 1 d 2 edges incident to a vertex p are in h+ p : x d x d (p) or in h p p is a x d -max or x d -min vertex of at least one d -face of H 2 # vertices of H 2 # d -faces of H 2 2 A k-face is the intersection of d k hyperplanes defining H ( ) n # k-faces = = O(n d k ) d k # d 2 -faces = O(n d 2 ) Bounding the total number of faces The number of faces incident to p depends on d but not on n Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 7 / 39

8 1 Combinatorial complexity 2 Deterministic incremental construction of convex hulls 3 Randomized incremental algorithm 4 Fast point location 5 k-order Voronoi Diagrams Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 8 / 39

9 Computing the convex hull of n points of R d Adjacency graph (AG) of the facets In general position, all the facets are (d 1)-simplexes Adjacency graph (V, E) V = set of (d 1)-faces (facets) (f, f ) E iff f f share a (d 2)-face Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 9 / 39

10 Incremental algorithm pi P i : set of the i points that have been inserted first s e conv(p i ) : convex hull at step i O conv(ei) t f = [p 1,..., p d ] is a red facet iff its supporting hyperplane separates p i from conv(p i ) orient(p 1,..., p d, p i ) orient(p 1,..., p d, O) < 0 orient(p 0, p 1,..., p d ) = p 0 p 1... p d = x 01 x x d x 0d x 1d... x dd Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 10 / 39

11 Update of conv(p i ) red facet = facet whose supporting hyperplane separates o and p i+1 horizon : (d 2)-faces shared by a blue and a red facet Update conv(p i ) : 1 find the red facets s pi 2 remove them and create the new facets [p i+1, g], g horizon 3 create the new adjacencies O conv(ei) e t Complexity proportional to the number of red facets Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 11 / 39

12 Updating the adjacency graph We look at the d-simplices to be removed and at their neighbors The number of times a removed d-simplex is considered is equal to the number of its (d 2)-faces ( d + 1 d 1 ) = d(d+1) 2 Update cost = O(# created and deleted simplices ) = O(# created simplices) Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 12 / 39

13 Complexity analysis update proportional to the number of red facets s pi # new facets = conv(i, d 1) = O(i d 1 2 ) fast locate : insert the points in lexicographic order and search a 1st red facet in star(p i 1 ) (which necessarily exists) O conv(ei) e t T (n, d) = O(n log n) + n i=1 = O(n log n + n d+1 2 ) i d 1 2 ) Worst-case optimal in even dimensions Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 13 / 39

14 Lower bound y = x 2 conv({p i}) = tri({x i}) pi = (xi, x 2 i ) the orientation test reduces to 3 comparisons xi orient(p i, p j, p k ) = xj xi x 2 i x 2 j x k x 2 i x 2 k xi = (x i x j)(x j x k )(x k x i) = Lower bound : Ω(n log n) Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 14 / 39

15 Lower bound for the incremental algorithm No incremental algorithm can compute the convex hull of n points of R 3 in less than Ω(n 2 ) Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 15 / 39

16 Constructing Del(P ), P = {p 1,..., p n } R d Algorithm 1 Lift the points of P onto the paraboloid x d+1 = x 2 of R d+1 : p i ˆp i = (p i, p 2 i ) 2 Compute conv({ˆp i }) 3 Project the lower hull conv ({ˆp i }) onto R d Complexity : Θ(n log n + n d+1 2 ) Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 16 / 39

17 A pedestrian view : insertion of a new point p i 1. Location : find all the d-simplices that conflict with p i i.e. whose circumscribing ball contains p i 2. Update : construct the new d-simplices p i p i T p i Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 17 / 39

18 1 Combinatorial complexity 2 Deterministic incremental construction of convex hulls 3 Randomized incremental algorithm 4 Fast point location 5 k-order Voronoi Diagrams Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 18 / 39

19 Randomized incremental algorithm o : a point inside conv(p) P i : the set of the first i inserted points e pi conv(p i ) : convex hull at step i O conv(ei) Conflict graph bipartite graph {p j } {facets of conv(p i )} p j f j > i (p j not yet inserted) f op j Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 19 / 39

20 Randomized analysis Hyp. : points are inserted in random order Conflict : Notations R : random sample of size r of P F (R) = { subsets of d points of R} F 0 (R) = { elements of F (R) with 0 conflict in R} F 1 (R) = { elements of F (R) with 1 conflict in R} (i.e. conv(r)) C i (r, P) = E( F i (R) ) (expectation over all random samples R P of size r) Lemma C i (r, P) = O(r d 2 ), i = 1, 2 Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 20 / 39

21 Proof of the lemma : C 1 (r, P) = C 0 (r, P) = O(r d 2 ) R = R \ {p} f F 0 (R ) if f F 1 (R) and p f (proba = 1 r ) or f F 0 (R) and R the d vertices of f (proba = r d r ) Taking the expectation, C 0 (r 1, R) = 1 r F 1(R) + r d F 0 (R) r C 0 (r 1, P) = 1 r C 1(r, P) + r d C 0 (r, P) r C 1 (r, P) = d C 0 (r, P) r (C 0 (r, P) C 0 (r 1, P)) d C 0 (r, P) = O(r d 2 ) Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 21 / 39

22 Randomized analysis 1 Updating the convex hull + memory space Expected number N(i) of facets created at step i N(i) = f F (P) = d i O ( i d 2 ) = O(n d 2 1 ) Proba(f F 0 (P i )) d i Expected total number of created facets = O(n d 2 ) O(n) if d = 2, 3 Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 22 / 39

23 Randomized analysis2 Updating the conflict graph Cost proportional to the number of faces of conv(p i ) in conflict with p i+1 and some p j, j > i N(i, j) = expected number of faces of conv(p i ) in conflict with p i+1 and p j, j > i P + i = P i {p i+1 } {p j } : a random subset of i + 2 points of P N(i, j) = f F (P) ( Proba(f F 2(P + i + 2 i )) 2 ) 1 = 2 C2(i + 1) (i + 1)(i + 2) = O(i d 2 2 ) Expected total cost of updating the conflict graph n n n N(i, j) = (n i) O(i d 2 2 ) = O(n log n + n d 2 ) i=1 j=i+1 i=1 Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 23 / 39

24 Theorem The convex hull of n points of R d can be computed in time O(n log n + n d 2 ) using O(n d 2 ) space The same bounds hold for computing the intersection of n half-spaces of R d The randomized algorithm can be derandomized [Chazelle 1992] Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 24 / 39

25 1 Combinatorial complexity 2 Deterministic incremental construction of convex hulls 3 Randomized incremental algorithm 4 Fast point location 5 k-order Voronoi Diagrams Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 25 / 39

26 The Delaunay hierarchy A location data structure Level 0 is Del(P) Each data point p in level l is introduced in level l + 1 with probability β = 1 α Location structure 1/α Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 26 / 39

27 Point location in the Delaunay Triangulation Location of point q: find the nearest neighbor of q in P n l (q): nearest neighbor of q in P l Locate q in the highest level From n l+1 (q) to n l (q): - use the pointer of n l+1 (q) to level l - walk in level l from n l+1 (q) to n l (q) The number of steps performed at level(l) : m l m l k if n l+1 (p) is the kth neighbor of q in P l Exp(m l ) n l k=1 k(1 β) k 1 β β [ β (1 β) k] = 1 β k Expected total number of steps: O(log n). Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 27 / 39

28 1 Combinatorial complexity 2 Deterministic incremental construction of convex hulls 3 Randomized incremental algorithm 4 Fast point location 5 k-order Voronoi Diagrams Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 28 / 39

29 k-order Voronoi Diagrams Let P be a set of sites. Each cell in the k-order Voronoi diagram Vor k (P ) is the locus of points in R d that have the same subset of P as k-nearest neighbors. Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 29 / 39

30 k-order Voronoi diagrams are power diagrams Let S 1, S 2,... denote the subsets of k points of P. The k-order Voronoi diagram is the minimization diagram of δ(x, S i ) : where b i is the ball 1 centered at c i = 1 k δ(x, S i ) = 1 (x p) 2 k p S i = x 2 2 p x + 1 k k p S i = π(b i, x) p S i p 2 with s i = π(o, b i ) = c 2 i r2 i = 1 k 3 and radius ri 2 = c2 i 1 k p S i p 2. p S i p 2 p S i p 2 Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 30 / 39

31 Combinatorial complexity of k-order Voronoi diagrams Theorem If P be a set of n points in R d, the number of vertices and faces in all the Voronoi diagrams Vor j (P ) of orders j k is: O (k d+1 2 n d+1 ) 2 Proof uses : bijection between k-sets and cells in k-order Voronoi diagrams the sampling theorem (from randomization theory) Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 31 / 39

32 k-sets and k-order Voronoi diagrams P a set of n points in R d k-sets A k-set of P is a subset P of P with size k that can be separated from P \ P by a hyperplane k-order Voronoi diagrams k points of P have a cell in Vor k (P ) iff there exists a ball that contains those points and only those each cell of Vor k (P ) corresponds to a k-set of φ(p ) h(σ) σ P Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 32 / 39

33 k-sets and k-levels in arrangements of hyperplanes For a set of points P R d, we consider the arrangement of the dual hyperplanes A(P ) h defines a k set P h separates P (below h) from P \ P (above h) h is below the k hyperplanes of P and above those of P \ P k-sets of P are in 1-1 correspondance with the cells of A(P ) of level k, i.e. with k hyperplanes of P above it. Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 33 / 39

34 Bounding the number of k-sets c k (P ) : Number of k-sets of P = Number of cells of level k in A(P ) c k (P ) = l k c l(p ) c k(p ) : Number of vertices of A(P ) with level at most k c k (n) = max P =n c k (P ) c k(n) = max P =n c k(p ) Hyp. in general position : each vertex d hyperplanes incident to 2 d cells Vertices of level k are incident to cells with level [k, k + d] Cells of level k have incident vertices with level [k d, k] c k (n) = O (c k(n)) Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 34 / 39

35 Regions, conflicts and the sampling theorem O a set of n objects. F(O) set of configurations defined by O each configuration is defined by a subset of b objects each configuration is in conflict with a subset of O F j (O) set of configurations in conflict with j objects F k (O) number of configurations defined by O in conflict with at most k objects of O f 0 (r) = Exp( F 0 (R ) expected number of configurations defined and without conflict on a random r-sample of O. The sampling theorem [Clarkson & Shor 1992] For 2 k n b+1, F k(o) 4 (b + 1) b k b f 0 ( n k ) Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 35 / 39

36 Proof of the sampling theorem ( ) n b j ( ) n b k f 0 (r) = j F j (O) r b ( ) F k (O) n r r b ( ) n r ( ) n b k then,we prove that for r = n k r b ( ) n r 1 4(b + 1) b k b ( ) n b k r b ( ) = n r r! (n b)! (n r)! (n b k)! (r b)! n! (n r k)! (n b)! }{{}}{{} 1 (b+1) b k b 1 4 Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 36 / 39

37 Proof of the sampling theorem end (n r)! (n b k)! (n r k)! (n b)! = k j=1 n r k + j n b k + j ( n n/k k + 1 n k ) k ( ) k n r k + 1 n b k + 1 (1 1/k) k 1/4 pour (2 k), r! (n b)! (r b)! n! = b 1 l=0 b l=1 r l b n l n/k b n l=1 1/k b (1 bk n )b r + 1 b n 1 k b (b + 1) b pour (k n b + 1 ). Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 37 / 39

38 Bounding the number of k-sets c k (P ) : Number of k-sets of P = Number of cells of level k in A(P ). c k (P ) = l k c l(p ) c k(p ) : Number of vertices of A(P ) with level at most k. Objects O: n hyperplanes of R d Configurations : vertices in A(O), b = d Conflict between v and h : v h + ( Sampling th: c k(p ) 4(d + 1) d k d f n 0 k Upper bound th: f 0 ( ( n k ) = O n ) d 2 k d 2 ) c k(n) = O (k d 2 n d 2 ) Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 38 / 39

39 Combinatorial complexities Number of vertices of level k in an arrangement of n hyperplanes in R d Number of cells of level k in an arrangement of n hyperplanes in R d Total number of j k sets for a set of n points in R d O (k d 2 n d 2 ) Total number of faces in the Voronoi diagrams of order j k for a set of n points in R d ( O k d+1 2 n d+1 2 ) Computational Geometry and Topology Randomized Algorithms J-D. Boissonnat 39 / 39

Voronoi Diagrams, Delaunay Triangulations and Polytopes

Voronoi Diagrams, Delaunay Triangulations and Polytopes Voronoi Diagrams, Delaunay Triangulations and Polytopes Jean-Daniel Boissonnat MPRI, Lecture 2 Computational Geometry Learning Voronoi, Delaunay & Polytopes MPRI, Lecture 2 1 / 43 Voronoi diagrams in nature

More information

Lecture 1 Discrete Geometric Structures

Lecture 1 Discrete Geometric Structures Lecture 1 Discrete Geometric Structures Jean-Daniel Boissonnat Winter School on Computational Geometry and Topology University of Nice Sophia Antipolis January 23-27, 2017 Computational Geometry and Topology

More information

Voronoi diagram and Delaunay triangulation

Voronoi diagram and Delaunay triangulation Voronoi diagram and Delaunay triangulation Ioannis Emiris & Vissarion Fisikopoulos Dept. of Informatics & Telecommunications, University of Athens Computational Geometry, spring 2015 Outline 1 Voronoi

More information

be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that

be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that ( Shelling (Bruggesser-Mani 1971) and Ranking Let be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that. a ranking of vertices

More information

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem Chapter 8 Voronoi Diagrams 8.1 Post Oce Problem Suppose there are n post oces p 1,... p n in a city. Someone who is located at a position q within the city would like to know which post oce is closest

More information

Voronoi diagrams Delaunay Triangulations. Pierre Alliez Inria

Voronoi diagrams Delaunay Triangulations. Pierre Alliez Inria Voronoi diagrams Delaunay Triangulations Pierre Alliez Inria Voronoi Diagram Voronoi Diagram Voronoi Diagram The collection of the non-empty Voronoi regions and their faces, together with their incidence

More information

Linear Programming in Small Dimensions

Linear Programming in Small Dimensions Linear Programming in Small Dimensions Lekcija 7 sergio.cabello@fmf.uni-lj.si FMF Univerza v Ljubljani Edited from slides by Antoine Vigneron Outline linear programming, motivation and definition one dimensional

More information

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality Planar Graphs In the first half of this book, we consider mostly planar graphs and their geometric representations, mostly in the plane. We start with a survey of basic results on planar graphs. This chapter

More information

Lower Bounds for Geometric Diameter Problems

Lower Bounds for Geometric Diameter Problems Lower Bounds for Geometric Diameter Problems p. 1/48 Lower Bounds for Geometric Diameter Problems Hervé Fournier University of Versailles St-Quentin en Yvelines Antoine Vigneron INRA Jouy-en-Josas Lower

More information

Computational Geometry Lecture Duality of Points and Lines

Computational Geometry Lecture Duality of Points and Lines Computational Geometry Lecture Duality of Points and Lines INSTITUTE FOR THEORETICAL INFORMATICS FACULTY OF INFORMATICS 11.1.2016 Duality Transforms We have seen duality for planar graphs and duality of

More information

Convex hulls of spheres and convex hulls of convex polytopes lying on parallel hyperplanes

Convex hulls of spheres and convex hulls of convex polytopes lying on parallel hyperplanes Convex hulls of spheres and convex hulls of convex polytopes lying on parallel hyperplanes Menelaos I. Karavelas joint work with Eleni Tzanaki University of Crete & FO.R.T.H. OrbiCG/ Workshop on Computational

More information

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension Antoine Vigneron King Abdullah University of Science and Technology November 7, 2012 Antoine Vigneron (KAUST) CS 372 Lecture

More information

Convex Hulls in 3D. Definitions. Size of a Convex Hull in 3D. Collision detection: The smallest volume polyhedral that contains a set of points in 3D.

Convex Hulls in 3D. Definitions. Size of a Convex Hull in 3D. Collision detection: The smallest volume polyhedral that contains a set of points in 3D. Convex Hulls in 3D SMD156 Lecture 11 Convex Hulls in Higher Dimensions Voronoi diagrams 3D Incremental Algorithm Collision detection: 1 2 Definitions The smallest volume polyhedral that contains a set

More information

Lifting Transform, Voronoi, Delaunay, Convex Hulls

Lifting Transform, Voronoi, Delaunay, Convex Hulls Lifting Transform, Voronoi, Delaunay, Convex Hulls Subhash Suri Department of Computer Science University of California Santa Barbara, CA 93106 1 Lifting Transform (A combination of Pless notes and my

More information

Approximate Nearest Neighbor Problem: Improving Query Time CS468, 10/9/2006

Approximate Nearest Neighbor Problem: Improving Query Time CS468, 10/9/2006 Approximate Nearest Neighbor Problem: Improving Query Time CS468, 10/9/2006 Outline Reducing the constant from O ( ɛ d) to O ( ɛ (d 1)/2) in uery time Need to know ɛ ahead of time Preprocessing time and

More information

Combinatorial Geometry & Topology arising in Game Theory and Optimization

Combinatorial Geometry & Topology arising in Game Theory and Optimization Combinatorial Geometry & Topology arising in Game Theory and Optimization Jesús A. De Loera University of California, Davis LAST EPISODE... We discuss the content of the course... Convex Sets A set is

More information

An Introduction to Computational Geometry: Arrangements and Duality

An Introduction to Computational Geometry: Arrangements and Duality An Introduction to Computational Geometry: Arrangements and Duality Joseph S. B. Mitchell Stony Brook University Some images from [O Rourke, Computational Geometry in C, 2 nd Edition, Chapter 6] Arrangement

More information

Dirichlet Voronoi Diagrams and Delaunay Triangulations

Dirichlet Voronoi Diagrams and Delaunay Triangulations Chapter 9 Dirichlet Voronoi Diagrams and Delaunay Triangulations 9.1 Dirichlet Voronoi Diagrams In this chapter we present very briefly the concepts of a Voronoi diagram and of a Delaunay triangulation.

More information

2D Geometry. Pierre Alliez Inria Sophia Antipolis

2D Geometry. Pierre Alliez Inria Sophia Antipolis 2D Geometry Pierre Alliez Inria Sophia Antipolis Outline Sample problems Polygons Graphs Convex hull Voronoi diagram Delaunay triangulation Sample Problems Line Segment Intersection Theorem: Segments (p

More information

Delaunay Triangulations

Delaunay Triangulations Delaunay Triangulations (slides mostly by Glenn Eguchi) Motivation: Terrains Set of data points A R 2 Height ƒ(p) defined at each point p in A How can we most naturally approximate height of points not

More information

Computing Hereditary Convex Structures

Computing Hereditary Convex Structures Computing Hereditary Convex Structures Bernard Chazelle chazelle@cs.princeton.edu Department of Computer Science Princeton University 5 Olden Street Princeton, NJ 08540, USA Wolfgang Mulzer wmulzer@cs.princeton.edu

More information

2 Delaunay Triangulations

2 Delaunay Triangulations and the closed half-space H(b, a) containingb and with boundary the bisector hyperplane is the locus of all points such that (b 1 a 1 )x 1 + +(b m a m )x m (b 2 1 + + b 2 m)/2 (a 2 1 + + a 2 m)/2. The

More information

Computational Geometry

Computational Geometry Computational Geometry 600.658 Convexity A set S is convex if for any two points p, q S the line segment pq S. S p S q Not convex Convex? Convexity A set S is convex if it is the intersection of (possibly

More information

Quadratic and cubic b-splines by generalizing higher-order voronoi diagrams

Quadratic and cubic b-splines by generalizing higher-order voronoi diagrams Quadratic and cubic b-splines by generalizing higher-order voronoi diagrams Yuanxin Liu and Jack Snoeyink Joshua Levine April 18, 2007 Computer Science and Engineering, The Ohio State University 1 / 24

More information

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass University of California, Davis, USA http://www.cs.ucdavis.edu/~koehl/ims2017/ What is a shape? A shape is a 2-manifold with a Riemannian

More information

Applications of Random Sampling in Computational Geometry, II

Applications of Random Sampling in Computational Geometry, II Applications of Random Sampling in Computational Geometry, II Kenneth L. Clarkson and Peter W. Shor AT&T Bell Laboratories Murray Hill, New Jersey 07974 1989 Abstract We use random sampling for several

More information

Convex Geometry arising in Optimization

Convex Geometry arising in Optimization Convex Geometry arising in Optimization Jesús A. De Loera University of California, Davis Berlin Mathematical School Summer 2015 WHAT IS THIS COURSE ABOUT? Combinatorial Convexity and Optimization PLAN

More information

CS522: Advanced Algorithms

CS522: Advanced Algorithms Lecture 1 CS5: Advanced Algorithms October 4, 004 Lecturer: Kamal Jain Notes: Chris Re 1.1 Plan for the week Figure 1.1: Plan for the week The underlined tools, weak duality theorem and complimentary slackness,

More information

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5 Voronoi Diagrams and Delaunay Triangulations O Rourke, Chapter 5 Outline Preliminaries Properties and Applications Computing the Delaunay Triangulation Preliminaries Given a function f: R 2 R, the tangent

More information

Voronoi Diagram. Xiao-Ming Fu

Voronoi Diagram. Xiao-Ming Fu Voronoi Diagram Xiao-Ming Fu Outlines Introduction Post Office Problem Voronoi Diagram Duality: Delaunay triangulation Centroidal Voronoi tessellations (CVT) Definition Applications Algorithms Outlines

More information

Course 16 Geometric Data Structures for Computer Graphics. Voronoi Diagrams

Course 16 Geometric Data Structures for Computer Graphics. Voronoi Diagrams Course 16 Geometric Data Structures for Computer Graphics Voronoi Diagrams Dr. Elmar Langetepe Institut für Informatik I Universität Bonn Geometric Data Structures for CG July 27 th Voronoi Diagrams San

More information

Field: We have been doing geometry eg linear programming. But in computational geometry, key difference in focus: low dimension d

Field: We have been doing geometry eg linear programming. But in computational geometry, key difference in focus: low dimension d 1 Geometry Field: We have been doing geometry eg linear programming But in computational geometry, key difference in focus: low dimension d Lots of algorithms that are great for d small, but exponential

More information

CS 532: 3D Computer Vision 14 th Set of Notes

CS 532: 3D Computer Vision 14 th Set of Notes 1 CS 532: 3D Computer Vision 14 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Triangulating

More information

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh Lecture 3 Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh January 2016 Mixed Integer Linear Programming

More information

Automorphism Groups of Cyclic Polytopes

Automorphism Groups of Cyclic Polytopes 8 Automorphism Groups of Cyclic Polytopes (Volker Kaibel and Arnold Waßmer ) It is probably well-known to most polytope theorists that the combinatorial automorphism group of a cyclic d-polytope with n

More information

Delaunay Triangulation

Delaunay Triangulation Delaunay Triangulation Steve Oudot slides courtesy of O. Devillers MST MST MST use Kruskal s algorithm with Del as input O(n log n) Last: lower bound for Delaunay Let x 1, x 2,..., x n R, to be sorted

More information

Delaunay Triangulations. Presented by Glenn Eguchi Computational Geometry October 11, 2001

Delaunay Triangulations. Presented by Glenn Eguchi Computational Geometry October 11, 2001 Delaunay Triangulations Presented by Glenn Eguchi 6.838 Computational Geometry October 11, 2001 Motivation: Terrains Set of data points A R 2 Height ƒ(p) defined at each point p in A How can we most naturally

More information

Search and Intersection. O Rourke, Chapter 7 de Berg et al., Chapter 11

Search and Intersection. O Rourke, Chapter 7 de Berg et al., Chapter 11 Search and Intersection O Rourke, Chapter 7 de Berg et al., Chapter 11 Announcements Assignment 3 web-page has been updated: Additional extra credit Hints for managing a dynamic half-edge representation

More information

Complexity of Delaunay triangulation for points on lower-dimensional polyhedra

Complexity of Delaunay triangulation for points on lower-dimensional polyhedra Complexity of Delaunay triangulation for points on lower-dimensional polyhedra Nina Amenta UC Davis Dominique Attali CNRS-LIS Grenoble Olivier Devillers INRIA Sophia-Antipolis Abstract We show that the

More information

Complexity of Delaunay Triangulation for Points on Lower-dimensional Polyhedra.

Complexity of Delaunay Triangulation for Points on Lower-dimensional Polyhedra. published in Proc. 18th ACM-SIAM Sympos. Discrete Algorithms (SODA) 2007, p.1106 1113. Complexity of Delaunay Triangulation for Points on Lower-dimensional Polyhedra. Nina Amenta UC Davis Dominique Attali

More information

The Farthest Point Delaunay Triangulation Minimizes Angles

The Farthest Point Delaunay Triangulation Minimizes Angles The Farthest Point Delaunay Triangulation Minimizes Angles David Eppstein Department of Information and Computer Science UC Irvine, CA 92717 November 20, 1990 Abstract We show that the planar dual to the

More information

9 Bounds for the Knapsack Problem (March 6)

9 Bounds for the Knapsack Problem (March 6) 9 Bounds for the Knapsack Problem (March 6) In this lecture, I ll develop both upper and lower bounds in the linear decision tree model for the following version of the (NP-complete) Knapsack 1 problem:

More information

In what follows, we will focus on Voronoi diagrams in Euclidean space. Later, we will generalize to other distance spaces.

In what follows, we will focus on Voronoi diagrams in Euclidean space. Later, we will generalize to other distance spaces. Voronoi Diagrams 4 A city builds a set of post offices, and now needs to determine which houses will be served by which office. It would be wasteful for a postman to go out of their way to make a delivery

More information

Computational Geometry

Computational Geometry Lecture 12: Lecture 12: Motivation: Terrains by interpolation To build a model of the terrain surface, we can start with a number of sample points where we know the height. Lecture 12: Motivation: Terrains

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.854J / 18.415J Advanced Algorithms Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.415/6.854 Advanced

More information

Insertions and Deletions in Delaunay Triangulations using Guided Point Location. Kevin Buchin TU Eindhoven

Insertions and Deletions in Delaunay Triangulations using Guided Point Location. Kevin Buchin TU Eindhoven Insertions and Deletions in Delaunay Triangulations using Guided Point Location Kevin Buchin TU Eindhoven Heraklion, 21.1.2013 Guide - Example Construct Delaunay triangulation of convex polygon in linear

More information

Other Voronoi/Delaunay Structures

Other Voronoi/Delaunay Structures Other Voronoi/Delaunay Structures Overview Alpha hulls (a subset of Delaunay graph) Extension of Voronoi Diagrams Convex Hull What is it good for? The bounding region of a point set Not so good for describing

More information

CS133 Computational Geometry

CS133 Computational Geometry CS133 Computational Geometry Voronoi Diagram Delaunay Triangulation 5/17/2018 1 Nearest Neighbor Problem Given a set of points P and a query point q, find the closest point p P to q p, r P, dist p, q dist(r,

More information

Advanced Algorithms Computational Geometry Prof. Karen Daniels. Fall, 2012

Advanced Algorithms Computational Geometry Prof. Karen Daniels. Fall, 2012 UMass Lowell Computer Science 91.504 Advanced Algorithms Computational Geometry Prof. Karen Daniels Fall, 2012 Voronoi Diagrams & Delaunay Triangulations O Rourke: Chapter 5 de Berg et al.: Chapters 7,

More information

Polyhedral Computation Today s Topic: The Double Description Algorithm. Komei Fukuda Swiss Federal Institute of Technology Zurich October 29, 2010

Polyhedral Computation Today s Topic: The Double Description Algorithm. Komei Fukuda Swiss Federal Institute of Technology Zurich October 29, 2010 Polyhedral Computation Today s Topic: The Double Description Algorithm Komei Fukuda Swiss Federal Institute of Technology Zurich October 29, 2010 1 Convexity Review: Farkas-Type Alternative Theorems Gale

More information

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2)

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2) COMP331/557 Chapter 2: The Geometry of Linear Programming (Bertsimas & Tsitsiklis, Chapter 2) 49 Polyhedra and Polytopes Definition 2.1. Let A 2 R m n and b 2 R m. a set {x 2 R n A x b} is called polyhedron

More information

Polar Duality and Farkas Lemma

Polar Duality and Farkas Lemma Lecture 3 Polar Duality and Farkas Lemma October 8th, 2004 Lecturer: Kamal Jain Notes: Daniel Lowd 3.1 Polytope = bounded polyhedron Last lecture, we were attempting to prove the Minkowsky-Weyl Theorem:

More information

Line segment intersection. Family of intersection problems

Line segment intersection. Family of intersection problems CG Lecture 2 Line segment intersection Intersecting two line segments Line sweep algorithm Convex polygon intersection Boolean operations on polygons Subdivision overlay algorithm 1 Family of intersection

More information

Simplicial Complexes: Second Lecture

Simplicial Complexes: Second Lecture Simplicial Complexes: Second Lecture 4 Nov, 2010 1 Overview Today we have two main goals: Prove that every continuous map between triangulable spaces can be approximated by a simplicial map. To do this,

More information

Trapezoidal decomposition:

Trapezoidal decomposition: Trapezoidal decomposition: Motivation: manipulate/analayze a collection of segments e.g. detect segment intersections e.g., point location data structure Definition. Draw verticals at all points binary

More information

arxiv: v1 [cs.cg] 8 Jan 2018

arxiv: v1 [cs.cg] 8 Jan 2018 Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon Eunjin Oh Hee-Kap Ahn arxiv:1801.02292v1 [cs.cg] 8 Jan 2018 Abstract Given a set of sites in a simple polygon, a geodesic Voronoi diagram

More information

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams in the Plane Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams As important as convex hulls Captures the neighborhood (proximity) information of geometric objects

More information

Notes in Computational Geometry Voronoi Diagrams

Notes in Computational Geometry Voronoi Diagrams Notes in Computational Geometry Voronoi Diagrams Prof. Sandeep Sen and Prof. Amit Kumar Indian Institute of Technology, Delhi Voronoi Diagrams In this lecture, we study Voronoi Diagrams, also known as

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

FACES OF CONVEX SETS

FACES OF CONVEX SETS FACES OF CONVEX SETS VERA ROSHCHINA Abstract. We remind the basic definitions of faces of convex sets and their basic properties. For more details see the classic references [1, 2] and [4] for polytopes.

More information

Hausdorff Approximation of 3D Convex Polytopes

Hausdorff Approximation of 3D Convex Polytopes Hausdorff Approximation of 3D Convex Polytopes Mario A. Lopez Department of Mathematics University of Denver Denver, CO 80208, U.S.A. mlopez@cs.du.edu Shlomo Reisner Department of Mathematics University

More information

Shellings, the Euler-Poincaré Formula for Polytopes, Dehn-Sommerville Equations, the Upper Bound Theorem

Shellings, the Euler-Poincaré Formula for Polytopes, Dehn-Sommerville Equations, the Upper Bound Theorem Chapter 8 Shellings, the Euler-Poincaré Formula for Polytopes, Dehn-Sommerville Equations, the Upper Bound Theorem 8.1 Shellings The notion of shellability is motivated by the desire to give an inductive

More information

Numerical Optimization

Numerical Optimization Convex Sets Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Let x 1, x 2 R n, x 1 x 2. Line and line segment Line passing through x 1 and x 2 : {y

More information

CAD & Computational Geometry Course plan

CAD & Computational Geometry Course plan Course plan Introduction Segment-Segment intersections Polygon Triangulation Intro to Voronoï Diagrams & Geometric Search Sweeping algorithm for Voronoï Diagrams 1 Voronoi Diagrams Voronoi Diagrams or

More information

Polyhedral Voronoi Diagrams of Polyhedra in Three Dimensions

Polyhedral Voronoi Diagrams of Polyhedra in Three Dimensions Polyhedral Voronoi Diagrams of Polyhedra in Three Dimensions Vladlen Koltun Micha Sharir April 21, 2003 Abstract We show that the complexity of the Voronoi diagram of a collection of disjoint polyhedra

More information

Midpoint Routing algorithms for Delaunay Triangulations

Midpoint Routing algorithms for Delaunay Triangulations Midpoint Routing algorithms for Delaunay Triangulations Weisheng Si and Albert Y. Zomaya Centre for Distributed and High Performance Computing School of Information Technologies Prologue The practical

More information

POLYTOPES. Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of convex polytopes.

POLYTOPES. Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of convex polytopes. POLYTOPES MARGARET A. READDY 1. Lecture I: Introduction to Polytopes and Face Enumeration Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of

More information

Finding Small Triangulations of Polytope Boundaries Is Hard

Finding Small Triangulations of Polytope Boundaries Is Hard Discrete Comput Geom 24:503 517 (2000) DOI: 10.1007/s004540010052 Discrete & Computational Geometry 2000 Springer-Verlag New York Inc. Finding Small Triangulations of Polytope Boundaries Is Hard J. Richter-Gebert

More information

Computing Hereditary Convex Structures

Computing Hereditary Convex Structures Discrete and Computational Geometry manuscript No. (will be inserted by the editor Computing Hereditary Convex Structures Bernard Chazelle Wolfgang Mulzer Received: date / Accepted: date Abstract Color

More information

Simplicial Cells in Arrangements of Hyperplanes

Simplicial Cells in Arrangements of Hyperplanes Simplicial Cells in Arrangements of Hyperplanes Christoph Dätwyler 05.01.2013 This paper is a report written due to the authors presentation of a paper written by Shannon [1] in 1977. The presentation

More information

Exact adaptive parallel algorithms for data depth problems. Vera Rosta Department of Mathematics and Statistics McGill University, Montreal

Exact adaptive parallel algorithms for data depth problems. Vera Rosta Department of Mathematics and Statistics McGill University, Montreal Exact adaptive parallel algorithms for data depth problems Vera Rosta Department of Mathematics and Statistics McGill University, Montreal joint work with Komei Fukuda School of Computer Science McGill

More information

A New Approach to Output-Sensitive Voronoi Diagrams and Delaunay Triangulations

A New Approach to Output-Sensitive Voronoi Diagrams and Delaunay Triangulations A New Approach to Output-Sensitive Voronoi Diagrams and Delaunay Triangulations Don Sheehy INRIA Saclay, France soon: UConn Joint work with Gary Miller at CMU Voronoi Diagrams Voronoi Diagrams The Voronoi

More information

G 6i try. On the Number of Minimal 1-Steiner Trees* Discrete Comput Geom 12:29-34 (1994)

G 6i try. On the Number of Minimal 1-Steiner Trees* Discrete Comput Geom 12:29-34 (1994) Discrete Comput Geom 12:29-34 (1994) G 6i try 9 1994 Springer-Verlag New York Inc. On the Number of Minimal 1-Steiner Trees* B. Aronov, 1 M. Bern, 2 and D. Eppstein 3 Computer Science Department, Polytechnic

More information

Lecture Notes 2: The Simplex Algorithm

Lecture Notes 2: The Simplex Algorithm Algorithmic Methods 25/10/2010 Lecture Notes 2: The Simplex Algorithm Professor: Yossi Azar Scribe:Kiril Solovey 1 Introduction In this lecture we will present the Simplex algorithm, finish some unresolved

More information

3. Voronoi Diagrams. 3.1 Definitions & Basic Properties. Examples :

3. Voronoi Diagrams. 3.1 Definitions & Basic Properties. Examples : 3. Voronoi Diagrams Examples : 1. Fire Observation Towers Imagine a vast forest containing a number of fire observation towers. Each ranger is responsible for extinguishing any fire closer to her tower

More information

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research Tiling Three-Dimensional Space with Simplices Shankar Krishnan AT&T Labs - Research What is a Tiling? Partition of an infinite space into pieces having a finite number of distinct shapes usually Euclidean

More information

Problèmes de robustesse en géométrie algorithmique

Problèmes de robustesse en géométrie algorithmique Problèmes de robustesse en géométrie algorithmique Monique Teillaud ENS - 12 mars 2008 Computational geometry Solving geometric problems algorithms complexity analysis worst case, average, randomized implementation

More information

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 In this lecture, we describe a very general problem called linear programming

More information

Linear Programming and its Applications

Linear Programming and its Applications Linear Programming and its Applications Outline for Today What is linear programming (LP)? Examples Formal definition Geometric intuition Why is LP useful? A first look at LP algorithms Duality Linear

More information

11 Linear Programming

11 Linear Programming 11 Linear Programming 11.1 Definition and Importance The final topic in this course is Linear Programming. We say that a problem is an instance of linear programming when it can be effectively expressed

More information

Monotone Paths in Geometric Triangulations

Monotone Paths in Geometric Triangulations Monotone Paths in Geometric Triangulations Adrian Dumitrescu Ritankar Mandal Csaba D. Tóth November 19, 2017 Abstract (I) We prove that the (maximum) number of monotone paths in a geometric triangulation

More information

Math 170- Graph Theory Notes

Math 170- Graph Theory Notes 1 Math 170- Graph Theory Notes Michael Levet December 3, 2018 Notation: Let n be a positive integer. Denote [n] to be the set {1, 2,..., n}. So for example, [3] = {1, 2, 3}. To quote Bud Brown, Graph theory

More information

Integral Geometry and the Polynomial Hirsch Conjecture

Integral Geometry and the Polynomial Hirsch Conjecture Integral Geometry and the Polynomial Hirsch Conjecture Jonathan Kelner, MIT Partially based on joint work with Daniel Spielman Introduction n A lot of recent work on Polynomial Hirsch Conjecture has focused

More information

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Mathematical programming (optimization) problem: min f (x) s.t. x X R n set of feasible solutions with linear objective function

More information

Trinities, hypergraphs, and contact structures

Trinities, hypergraphs, and contact structures Trinities, hypergraphs, and contact structures Daniel V. Mathews Daniel.Mathews@monash.edu Monash University Discrete Mathematics Research Group 14 March 2016 Outline 1 Introduction 2 Combinatorics of

More information

Three-Dimensional α Shapes

Three-Dimensional α Shapes Herbert Edelsbrunner and Ernst P. Mücke ACM Tran. Graph. 13(1), 1994 20 September 2005 1 2 α-complexes Edelsbrunner s Algorithm 3 Properties Surface Reconstruction Shape Question Given a set of points,

More information

Computational Geometry Exercise Duality

Computational Geometry Exercise Duality Computational Geometry Exercise Duality LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Guido Brückner 20.07.2018 1 Duality Transforms We have seen duality for

More information

Geometric Algorithms in Three Dimensions Tutorial. FSP Seminar, Strobl,

Geometric Algorithms in Three Dimensions Tutorial. FSP Seminar, Strobl, Geometric Algorithms in Three Dimensions Tutorial FSP Seminar, Strobl, 22.06.2006 Why Algorithms in Three and Higher Dimensions Which algorithms (convex hulls, triangulations etc.) can be generalized to

More information

Lecture 5: Simplicial Complex

Lecture 5: Simplicial Complex Lecture 5: Simplicial Complex 2-Manifolds, Simplex and Simplicial Complex Scribed by: Lei Wang First part of this lecture finishes 2-Manifolds. Rest part of this lecture talks about simplicial complex.

More information

COMPUTATIONAL GEOMETRY

COMPUTATIONAL GEOMETRY Thursday, September 20, 2007 (Ming C. Lin) Review on Computational Geometry & Collision Detection for Convex Polytopes COMPUTATIONAL GEOMETRY (Refer to O'Rourke's and Dutch textbook ) 1. Extreme Points

More information

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if POLYHEDRAL GEOMETRY Mathematical Programming Niels Lauritzen 7.9.2007 Convex functions and sets Recall that a subset C R n is convex if {λx + (1 λ)y 0 λ 1} C for every x, y C and 0 λ 1. A function f :

More information

Optimal detection of intersections between convex polyhedra

Optimal detection of intersections between convex polyhedra 1 2 Optimal detection of intersections between convex polyhedra Luis Barba Stefan Langerman 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Abstract For a polyhedron P in R d, denote by P its combinatorial complexity,

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

Lecture 16: Voronoi Diagrams and Fortune s Algorithm

Lecture 16: Voronoi Diagrams and Fortune s Algorithm contains q changes as a result of the ith insertion. Let P i denote this probability (where the probability is taken over random insertion orders, irrespective of the choice of q). Since q could fall through

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

A PROOF OF THE LOWER BOUND CONJECTURE FOR CONVEX POLYTOPES

A PROOF OF THE LOWER BOUND CONJECTURE FOR CONVEX POLYTOPES PACIFIC JOURNAL OF MATHEMATICS Vol. 46, No. 2, 1973 A PROOF OF THE LOWER BOUND CONJECTURE FOR CONVEX POLYTOPES DAVID BARNETTE A d polytope is defined to be a cz-dimensional set that is the convex hull

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

arxiv: v2 [math.co] 24 Aug 2016

arxiv: v2 [math.co] 24 Aug 2016 Slicing and dicing polytopes arxiv:1608.05372v2 [math.co] 24 Aug 2016 Patrik Norén June 23, 2018 Abstract Using tropical convexity Dochtermann, Fink, and Sanyal proved that regular fine mixed subdivisions

More information

The Medial Axis of the Union of Inner Voronoi Balls in the Plane

The Medial Axis of the Union of Inner Voronoi Balls in the Plane The Medial Axis of the Union of Inner Voronoi Balls in the Plane Joachim Giesen a, Balint Miklos b,, Mark Pauly b a Max-Planck Institut für Informatik, Saarbrücken, Germany b Applied Geometry Group, ETH

More information

Computing farthest neighbors on a convex polytope

Computing farthest neighbors on a convex polytope Theoretical Computer Science 296 (2003) 47 58 www.elsevier.com/locate/tcs Computing farthest neighbors on a convex polytope Otfried Cheong a;, Chan-Su Shin b, Antoine Vigneron c a Institute of Information

More information