Structure and hamiltonicity of 3-connected graphs with excluded minors

Size: px
Start display at page:

Download "Structure and hamiltonicity of 3-connected graphs with excluded minors"

Transcription

1 E0 Structure and hamiltonicity of 3-connected graphs with excluded minors Mark Ellingham* Emily Marshall* Vanderbilt University, USA Kenta Ozeki National Institute of Informatics, Japan Shoichi Tsuchiya Tokyo University of Science, Japan * Supported by the Simons Foundation and the U. S. National Security Agency

2 E1 Hamiltonicity and planarity Whitney, 1931: All 4-connected planar triangulations are hamiltonian. Tutte, 1956: All 4-connected planar graphs are hamiltonian. We cannot reduce the connectivity: Herschel graph: 3-connected planar bipartite, nonhamiltonian.

3 E2 Hamiltonicity and planarity Whitney, 1931: All 4-connected planar triangulations are hamiltonian. Tutte, 1956: All 4-connected planar graphs are hamiltonian. We cannot reduce the connectivity even for triangulations: Reynolds triangulation, 1931 (alias Goldner- Harary graph): 3-connected planar triangulation, nonhamiltonian.

4 E3 3-connected planar graphs But some weakenings of hamiltonicity are true for 3-connected planar graphs: Barnette, 1966: they have a 3-tree (spanning tree of maximum degree 3; weakening of hamilton path = 2-tree). Gao and Richter, 1994: they have a 2-walk (spanning closed walk using each vertex at most 2 times; weakening of hamilton cycle = 1-walk). Chen and Yu, 2002: they have a cycle of length at least cn log 3 2. So what conditions can we add to make them hamiltonian? Results on 3-connected planar graphs may also be regarded as essentially results on 3-connected K 3,3 -minor-free graphs.

5 E4 Minors of graphs We say H is a minor of G if we can identify each vertex v of H with a connected subgraph C v in G; C u and C v are vertex-disjoint when u v; if uv is an edge of H, then there is some edge between C u and C v in G. We say G is H-minor-free if it does not have H as a minor.

6 E5 Excluding K 3,t Chen, Egawa, Kawarabayashi, Mohar and Ota, 2011: For 3 a t, a-connected K a,t -minor-free graphs have toughness at 2 least (t 1)(a 1)!. Corollary: Using result of Win, 1989, get that 3-connected K 3,t -minor-free graphs have a (t+1)-tree. Improved by Ota and Ozeki, 2012: A 3- connected K 3,t -minor-free graph has a (t 1)-tree a t-tree This is best possible. if t is even, and if t is odd. Chen, Yu and Zang, 2012: A 3-connected K 3,t -minor-free graph has a cycle of length at least α(t)n β (β does not depend on t).

7 E6 Excluding K 2,t Easy: 2-connected K 2,3 -minor-free implies K 4 or outerplanar, therefore hamiltonian. Chen, Sheppardson, Yu and Zang, 2006: 2-connected K 2,t -minor-free graphs have a cycle of length at least n/t t 1. Any result for 3-connected K 3,t -minor-free applies to 3-connected K 2,t -minor-free. Note that K 2,t -minor-free graphs are very sparse. Chudnovsky, Reed and Seymour, 2011: K 2,t - minor-free graphs have number of edges m (t+1)(n 1)/2.

8 E7 Excluding K 2,5 is not enough We have examples of 3-connected K 2,5 -minorfree graphs that are nonhamiltonian. But perhaps there are only finitely many.

9 E8 Planarity and excluding K 2,6 are not enough We have an infinite family of 3-connected K 2,6 -minor-free planar graphs that are nonhamiltonian. Herschel extends to

10 E9 Planar hamiltonicity result Theorem (E, Marshall, Ozeki and Tsuchiya): Every 3-connected K 2,5 -minor-free planar graph is hamiltonian.

11 E10 Proof: general setup Assume nonhamiltonian. Take longest cycle C and one component L of G V(C). L must be joined to C at v 1,v 2,...,v k, k 3. Each interval I j along C between v j, v j+1 must be nonempty, else longer cycle. By 3-connectivity, must be edges leaving the intervals.

12 E11 Proof: some typical situations Overall idea: case analysis, find minor or longer cycle. Minor from edges jumping between intervals. Minor from crossing edges inside intervals (rooted K 2,2 -minors form part of overall K 2,5 -minor).

13 E12 Excluding rooted K 2,2 -minors Lemma: Suppose x,y V(H) and H +xy is 2-connected. Then these are equivalent: (i) H has no K 2,2 -minor rooted at x and y. (ii) H is xy-outerplanar: it has a spanning xy-path and all other edges can be drawn in the plane on one side of that path.

14 E13 Dropping planarity 3-connected K 2,5 -minor-free nonplanar graphs are not necessarily hamiltonian. What about 3-connected K 2,4 -minor-free graphs? Not only are all 3-connected K 2,4 -minor-free graphs hamiltonian, but we can also give a complete structure theorem for them. Original proof examined structure relative to a longest nonhamiltonian cycle. We recently found a shorter proof using results of Ding and Liu. In fact we give a complete structure theorem for all K 2,4 -minor-free graphs, not just 3-connected ones.

15 E14 K 2,4 -minor-free graphs Dieng and Gavoille, conference talk, 2008: Every 2-connected K 2,4 -minor-free graph has a set of two vertices whose deletion leaves an outerplanar graph. Interested in K 2,4 -minor-free graphs for object location/routing problems. Streib and Young, preprint, 2010: If G is connected and K 2,4 -minor-free then the poset of (labelled) minors of G has dimension bounded by a polynomial in E(G). They conjecture this is true for K 2,t -minorfree graphs for each fixed t. Uses Dieng & Gavoille result.

16 E15 Connectivity of K 2,4 -minor-free Since K 2,4 is 2-connected, a graph is K 2,4 -minor-free if and only if every block is K 2,4 -minor-free. So we only need to consider 2-connected graphs. Every 4-connected graph (except K 5 ) has a K 2,4 -minor, by a simple application of Menger s Theorem. So we only need to consider connectivity 2 or 3. Strategy: characterize 3-connected first, then use that to characterize graphs with a 2-cut.

17 E16 A 3-connected family G n,r,s for r,s = 0,1,...,n 3 has path v 1 v 2...v n (spine), v 1 v n i for i = 1,2,...,r, v n v 1+i for i = 1,2,...,s. Add v 1 v n for G + n,r,s. Proposition: Take family G with wheel K 1 +C n 1, G n,r,s and G + n,r,s for r,s = 2,3,...,n 3 and r+s = n 2 or n 1 for each n 5. Then (i) All planar, 3-connected, K 2,4 -minor-free. (ii) 2n 8 nonisomorphic graphs of order n.

18 E17 Result for 3-connected Theorem (E, Marshall, Ozeki and Tsuchiya, 2012+): A 3-connected graph is K 2,4 -minorfree if and only if it is isomorphic to a graph in G or to one of ten small examples (two planar, rest nonplanar). K 4 = G + 4,1,1 K 5 K 3,3 K + 3,3 K +,+ 3,3 A A + D C C +

19 E18 Proof approaches for 3-connected Original approach: analyse structure relative to largest nonhamiltonian cycle. Like proof for 3-conn. K 2,5 -minor-free planar graphs. New approach: apply results on H-minorfree for small 3-connected H. G. Ding & C. Liu, 2013: Characterized 3- connected H-minor-free graphs for all 3- connected graphs H with at most 11 edges. We use H = two supergraphs of K 2,4 : K 3,3 Octahedron\e

20 E19 Proof details for 3-connected Ding & Liu: Suppose G is 3-connected and H-minor-free, with at least 11 vertices. (i) If H = K 3,3, then G is planar. (ii) If H = Octahedron\e, then G comes from gluing wheels and prisms K 2 K 3 along a single triangle T, and possibly deleting edges of T. Suppose G is 3-connected and K 2,4 -minor-free with at least 11 vertices. Steps: 1. Since both graphs H above have K 2,4 as a subgraph, G satisfies (i) and (ii). 2. From (ii) we glue together wheels and prisms. 3. Gluing more than two wheels or prisms gives a K 3,3 -minor, which is nonplanar, violating (i). 4. Situations with prisms give K 2,4 -minors. 5. So G is a wheel, or two wheels glued along a triangle, and we can show that G G.

21 E20 Analysis for 2-connected Take 2-cut {x,y} in K 2,4 -minor-free G, nontrivial xy-bridges G 1,G 2,...,G k. Then k < 4 and at most one G i has a K 2,2 -minor rooted at x,y. If k = 2 or 3 and no G i has a K 2,2 -minor rooted at x,y: G is union of k xy-outerplanar graphs, and possibly edge xy. For k = 2 this means G is outerplanar. Otherwise k = 2, G 1 has a K 2,2 -minor rooted at x,y and G 2 does not. Take maximal G 2, replace G 2 by edge. Repeat, eventually reduce G to unique 3-connected core.

22 E21 Result for 2-connected Theorem (E, Marshall, Ozeki and Tsuchiya): A 2-connected graph is K 2,4 -minor-free if and only if it is (i) outerplanar, or (ii) the union of three nontrivial xy-outerplanar graphs and possibly the edge xy, or (iii) a 3-connected K 2,4 -minor-free graph with edges in a subdividable set {x 1 y 1,x 2 y 2,..., x k y k } replaced by x i y i -outerplanar graphs. Subdividable set: subdivide all edges once, remains K 2,4 -minor-free. For most members of G, subdividable = subset of spine edges.

23 E22 Possible further hamiltonicity result Computational investigations: Looked for K 2,6 -minor-free instances of nonhamiltonian 3-connected planar graphs. ME & G. Royle: 11 to 14 vertices, G. Royle: 15 and 16 vertices. Results suggest structure is very restricted. Conjecture: Every 3-connected K 2,6 -minor-free planar graph G is hamiltonian unless G F. Here F is a family with 206 graphs of order at most 15, and with exactly 40 graphs of order n for all n 16.

24 E23 Future directions Is the number of nonhamiltonian 3-connected K 2,5 -minor-free general graphs finite or infinite? David Wood: Let N be the class of planar graphs G for which every minor of G is a subgraph of a hamiltonian planar graph. N is a minor-closed class. What are the minimal forbidden minors besides K 5 and K 3,3? (The essential nonhamiltonian planar graphs.) Use characterization to check previous results on K 2,4 -minor-free graphs. Can we characterize K 2,5 -minor-free planar graphs? Or even general graphs? Apply Ding & Liu s results to characterize H-minor-free graphs for other small 2- connected H.

Jordan Curves. A curve is a subset of IR 2 of the form

Jordan Curves. A curve is a subset of IR 2 of the form Jordan Curves A curve is a subset of IR 2 of the form α = {γ(x) : x [0, 1]}, where γ : [0, 1] IR 2 is a continuous mapping from the closed interval [0, 1] to the plane. γ(0) and γ(1) are called the endpoints

More information

Hamiltonian cycles in bipartite quadrangulations on the torus

Hamiltonian cycles in bipartite quadrangulations on the torus Hamiltonian cycles in bipartite quadrangulations on the torus Atsuhiro Nakamoto and Kenta Ozeki Abstract In this paper, we shall prove that every bipartite quadrangulation G on the torus admits a simple

More information

The following is a summary, hand-waving certain things which actually should be proven.

The following is a summary, hand-waving certain things which actually should be proven. 1 Basics of Planar Graphs The following is a summary, hand-waving certain things which actually should be proven. 1.1 Plane Graphs A plane graph is a graph embedded in the plane such that no pair of lines

More information

Planarity: dual graphs

Planarity: dual graphs : dual graphs Math 104, Graph Theory March 28, 2013 : dual graphs Duality Definition Given a plane graph G, the dual graph G is the plane graph whose vtcs are the faces of G. The correspondence between

More information

Prism-hamiltonicity of triangulations

Prism-hamiltonicity of triangulations Prism-hamiltonicity of triangulations Daniel P. Biebighauser and M. N. Ellingham September 23, 2005 Abstract The prism over a graph G is the Cartesian product G K 2 of G with the complete graph K 2. If

More information

Characterizations of Graphs Without Certain Small Minors. J. Zachary Gaslowitz. Dissertation. Submitted to the Faculty of the

Characterizations of Graphs Without Certain Small Minors. J. Zachary Gaslowitz. Dissertation. Submitted to the Faculty of the Characterizations of Graphs Without Certain Small Minors By J. Zachary Gaslowitz Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements

More information

Jordan Curves. A curve is a subset of IR 2 of the form

Jordan Curves. A curve is a subset of IR 2 of the form Jordan Curves A curve is a subset of IR 2 of the form α = {γ(x) : x [0,1]}, where γ : [0,1] IR 2 is a continuous mapping from the closed interval [0,1] to the plane. γ(0) and γ(1) are called the endpoints

More information

Vertex Cover is Fixed-Parameter Tractable

Vertex Cover is Fixed-Parameter Tractable Vertex Cover is Fixed-Parameter Tractable CS 511 Iowa State University November 28, 2010 CS 511 (Iowa State University) Vertex Cover is Fixed-Parameter Tractable November 28, 2010 1 / 18 The Vertex Cover

More information

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem David Glickenstein November 26, 2008 1 Graph minors Let s revisit some de nitions. Let G = (V; E) be a graph. De nition 1 Removing

More information

Characterizations of graph classes by forbidden configurations

Characterizations of graph classes by forbidden configurations Characterizations of graph classes by forbidden configurations Zdeněk Dvořák September 14, 2015 We consider graph classes that can be described by excluding some fixed configurations. Let us give some

More information

Fundamental Properties of Graphs

Fundamental Properties of Graphs Chapter three In many real-life situations we need to know how robust a graph that represents a certain network is, how edges or vertices can be removed without completely destroying the overall connectivity,

More information

Computing Linkless and Flat Embeddings of Graphs in R 3

Computing Linkless and Flat Embeddings of Graphs in R 3 Computing Linkless and Flat Embeddings of Graphs in R 3 Stephan Kreutzer Technical University Berlin based on joint work with Ken-ichi Kawarabayashi, Bojan Mohar and Bruce Reed Graph Theory @ Georgie Tech

More information

Nesting points in the sphere. Dan Archdeacon. University of Vermont. Feliu Sagols.

Nesting points in the sphere. Dan Archdeacon. University of Vermont.   Feliu Sagols. Nesting points in the sphere Dan Archdeacon Dept. of Computer Science University of Vermont Burlington, VT, USA 05405 e-mail: dan.archdeacon@uvm.edu Feliu Sagols Dept. of Computer Science University of

More information

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1 Graph fundamentals Bipartite graph characterization Lemma. If a graph contains an odd closed walk, then it contains an odd cycle. Proof strategy: Consider a shortest closed odd walk W. If W is not a cycle,

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

Connectivity, Graph Minors, and Subgraph Multiplicity

Connectivity, Graph Minors, and Subgraph Multiplicity Connectivity, Graph Minors, and Subgraph Multiplicity David Eppstein Department of Information and Computer Science University of California, Irvine, CA 92717 Tech. Report 92-06 January 10, 1992 Abstract

More information

Non-zero disjoint cycles in highly connected group labelled graphs

Non-zero disjoint cycles in highly connected group labelled graphs Non-zero disjoint cycles in highly connected group labelled graphs Ken-ichi Kawarabayashi Paul Wollan Abstract Let G = (V, E) be an oriented graph whose edges are labelled by the elements of a group Γ.

More information

MATH 350 GRAPH THEORY & COMBINATORICS. Contents

MATH 350 GRAPH THEORY & COMBINATORICS. Contents MATH 350 GRAPH THEORY & COMBINATORICS PROF. SERGEY NORIN, FALL 2013 Contents 1. Basic definitions 1 2. Connectivity 2 3. Trees 3 4. Spanning Trees 3 5. Shortest paths 4 6. Eulerian & Hamiltonian cycles

More information

Vertex coloring, chromatic number

Vertex coloring, chromatic number Vertex coloring, chromatic number A k-coloring of a graph G is a labeling f : V (G) S, where S = k. The labels are called colors; the vertices of one color form a color class. A k-coloring is proper if

More information

Chapter 3: Paths and Cycles

Chapter 3: Paths and Cycles Chapter 3: Paths and Cycles 5 Connectivity 1. Definitions: Walk: finite sequence of edges in which any two consecutive edges are adjacent or identical. (Initial vertex, Final vertex, length) Trail: walk

More information

v 1 v 2 r 3 r 4 v 3 v 4 Figure A plane embedding of K 4.

v 1 v 2 r 3 r 4 v 3 v 4 Figure A plane embedding of K 4. Chapter 6 Planarity Section 6.1 Euler s Formula In Chapter 1 we introduced the puzzle of the three houses and the three utilities. The problem was to determine if we could connect each of the three utilities

More information

Vertex coloring, chromatic number

Vertex coloring, chromatic number Vertex coloring, chromatic number A k-coloring of a graph G is a labeling f : V (G) S, where S = k. The labels are called colors; the vertices of one color form a color class. A k-coloring is proper if

More information

Planar graphs. Chapter 8

Planar graphs. Chapter 8 Chapter 8 Planar graphs Definition 8.1. A graph is called planar if it can be drawn in the plane so that edges intersect only at vertices to which they are incident. Example 8.2. Different representations

More information

K 4 C 5. Figure 4.5: Some well known family of graphs

K 4 C 5. Figure 4.5: Some well known family of graphs 08 CHAPTER. TOPICS IN CLASSICAL GRAPH THEORY K, K K K, K K, K K, K C C C C 6 6 P P P P P. Graph Operations Figure.: Some well known family of graphs A graph Y = (V,E ) is said to be a subgraph of a graph

More information

Discrete Applied Mathematics

Discrete Applied Mathematics Discrete Applied Mathematics 160 (2012) 505 512 Contents lists available at SciVerse ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam 1-planarity of complete multipartite

More information

ON PROPERTIES OF MAXIMAL 1-PLANAR GRAPHS 1

ON PROPERTIES OF MAXIMAL 1-PLANAR GRAPHS 1 Discussiones Mathematicae Graph Theory 32 (2012) 737 747 doi:10.7151/dmgt.1639 ON PROPERTIES OF MAXIMAL 1-PLANAR GRAPHS 1 Dávid Hudák, Tomáš Madaras Institute of Mathematics, Faculty of Sciences University

More information

Exercise set 2 Solutions

Exercise set 2 Solutions Exercise set 2 Solutions Let H and H be the two components of T e and let F E(T ) consist of the edges of T with one endpoint in V (H), the other in V (H ) Since T is connected, F Furthermore, since T

More information

Key Graph Theory Theorems

Key Graph Theory Theorems Key Graph Theory Theorems Rajesh Kumar MATH 239 Intro to Combinatorics August 19, 2008 3.3 Binary Trees 3.3.1 Problem (p.82) Determine the number, t n, of binary trees with n edges. The number of binary

More information

Treewidth and graph minors

Treewidth and graph minors Treewidth and graph minors Lectures 9 and 10, December 29, 2011, January 5, 2012 We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory gives a very general condition under

More information

How many colors are needed to color a map?

How many colors are needed to color a map? How many colors are needed to color a map? Is 4 always enough? Two relevant concepts How many colors do we need to color a map so neighboring countries get different colors? Simplifying assumption (not

More information

Colouring graphs with no odd holes

Colouring graphs with no odd holes Colouring graphs with no odd holes Paul Seymour (Princeton) joint with Alex Scott (Oxford) 1 / 17 Chromatic number χ(g): minimum number of colours needed to colour G. 2 / 17 Chromatic number χ(g): minimum

More information

List of Theorems. Mat 416, Introduction to Graph Theory. Theorem 1 The numbers R(p, q) exist and for p, q 2,

List of Theorems. Mat 416, Introduction to Graph Theory. Theorem 1 The numbers R(p, q) exist and for p, q 2, List of Theorems Mat 416, Introduction to Graph Theory 1. Ramsey s Theorem for graphs 8.3.11. Theorem 1 The numbers R(p, q) exist and for p, q 2, R(p, q) R(p 1, q) + R(p, q 1). If both summands on the

More information

Part II. Graph Theory. Year

Part II. Graph Theory. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 53 Paper 3, Section II 15H Define the Ramsey numbers R(s, t) for integers s, t 2. Show that R(s, t) exists for all s,

More information

Discrete mathematics

Discrete mathematics Discrete mathematics Petr Kovář petr.kovar@vsb.cz VŠB Technical University of Ostrava DiM 470-2301/02, Winter term 2017/2018 About this file This file is meant to be a guideline for the lecturer. Many

More information

and Heinz-Jürgen Voss

and Heinz-Jürgen Voss Discussiones Mathematicae Graph Theory 22 (2002 ) 193 198 ON k-trestles IN POLYHEDRAL GRAPHS Michal Tkáč Department of Mathematics The Faculty of Business Economics in Košice University of Economics in

More information

Planar Graph (7A) Young Won Lim 6/20/18

Planar Graph (7A) Young Won Lim 6/20/18 Planar Graph (7A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Rigidity, connectivity and graph decompositions

Rigidity, connectivity and graph decompositions First Prev Next Last Rigidity, connectivity and graph decompositions Brigitte Servatius Herman Servatius Worcester Polytechnic Institute Page 1 of 100 First Prev Next Last Page 2 of 100 We say that a framework

More information

CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK

CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1 UNIT I INTRODUCTION CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK 1. Define Graph. 2. Define Simple graph. 3. Write few problems

More information

Assignment 1 Introduction to Graph Theory CO342

Assignment 1 Introduction to Graph Theory CO342 Assignment 1 Introduction to Graph Theory CO342 This assignment will be marked out of a total of thirty points, and is due on Thursday 18th May at 10am in class. Throughout the assignment, the graphs are

More information

MATH 363 Final Wednesday, April 28. Final exam. You may use lemmas and theorems that were proven in class and on assignments unless stated otherwise.

MATH 363 Final Wednesday, April 28. Final exam. You may use lemmas and theorems that were proven in class and on assignments unless stated otherwise. Final exam This is a closed book exam. No calculators are allowed. Unless stated otherwise, justify all your steps. You may use lemmas and theorems that were proven in class and on assignments unless stated

More information

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS DR. ANDREW SCHWARTZ, PH.D. 10.1 Graphs and Graph Models (1) A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes)

More information

Subdivided graphs have linear Ramsey numbers

Subdivided graphs have linear Ramsey numbers Subdivided graphs have linear Ramsey numbers Noga Alon Bellcore, Morristown, NJ 07960, USA and Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv,

More information

Dominating Sets in Triangulations on Surfaces

Dominating Sets in Triangulations on Surfaces Dominating Sets in Triangulations on Surfaces Hong Liu Department of Mathematics University of Illinois This is a joint work with Michael Pelsmajer May 14, 2011 Introduction A dominating set D V of a graph

More information

1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G))

1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G)) 10 Graphs 10.1 Graphs and Graph Models 1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G)) 2. an edge is present, say e = {u,

More information

Cycles of given size in a dense graph

Cycles of given size in a dense graph Monash University 23 March 2015 Corrádi-Hajnal Theorem Theorem (Corrádi, Hajnal (1963)) Every graph with minimum degree 2k and at least 3k vertices contains k (vertex) disjoint cycles. Corrádi-Hajnal Theorem

More information

WORM COLORINGS. Wayne Goddard. Dept of Mathematical Sciences, Clemson University Kirsti Wash

WORM COLORINGS. Wayne Goddard. Dept of Mathematical Sciences, Clemson University   Kirsti Wash 1 2 Discussiones Mathematicae Graph Theory xx (xxxx) 1 14 3 4 5 6 7 8 9 10 11 12 13 WORM COLORINGS Wayne Goddard Dept of Mathematical Sciences, Clemson University e-mail: goddard@clemson.edu Kirsti Wash

More information

Matching Theory. Figure 1: Is this graph bipartite?

Matching Theory. Figure 1: Is this graph bipartite? Matching Theory 1 Introduction A matching M of a graph is a subset of E such that no two edges in M share a vertex; edges which have this property are called independent edges. A matching M is said to

More information

Section 3.1: Nonseparable Graphs Cut vertex of a connected graph G: A vertex x G such that G x is not connected. Theorem 3.1, p. 57: Every connected

Section 3.1: Nonseparable Graphs Cut vertex of a connected graph G: A vertex x G such that G x is not connected. Theorem 3.1, p. 57: Every connected Section 3.1: Nonseparable Graphs Cut vertex of a connected graph G: A vertex x G such that G x is not connected. Theorem 3.1, p. 57: Every connected graph G with at least 2 vertices contains at least 2

More information

Planarity. 1 Introduction. 2 Topological Results

Planarity. 1 Introduction. 2 Topological Results Planarity 1 Introduction A notion of drawing a graph in the plane has led to some of the most deep results in graph theory. Vaguely speaking by a drawing or embedding of a graph G in the plane we mean

More information

From Wikipedia, the free encyclopedia

From Wikipedia, the free encyclopedia Page 1 of 7 Planar graph From Wikipedia, the free encyclopedia In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

FEDOR V. FOMIN. Lectures on treewidth. The Parameterized Complexity Summer School 1-3 September 2017 Vienna, Austria

FEDOR V. FOMIN. Lectures on treewidth. The Parameterized Complexity Summer School 1-3 September 2017 Vienna, Austria FEDOR V. FOMIN Lectures on treewidth The Parameterized Complexity Summer School 1-3 September 2017 Vienna, Austria Why treewidth? Very general idea in science: large structures can be understood by breaking

More information

WUCT121. Discrete Mathematics. Graphs

WUCT121. Discrete Mathematics. Graphs WUCT121 Discrete Mathematics Graphs WUCT121 Graphs 1 Section 1. Graphs 1.1. Introduction Graphs are used in many fields that require analysis of routes between locations. These areas include communications,

More information

v V Question: How many edges are there in a graph with 10 vertices each of degree 6?

v V Question: How many edges are there in a graph with 10 vertices each of degree 6? ECS20 Handout Graphs and Trees March 4, 2015 (updated 3/9) Notion of a graph 1. A graph G = (V,E) consists of V, a nonempty set of vertices (or nodes) and E, a set of pairs of elements of V called edges.

More information

Graph Coloring Problems

Graph Coloring Problems Graph Coloring Problems TOMMY R. JENSEN BJARNE TOFT Odense University A Wiley-Interscience Publication JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore Contents Preface xv 1 Introduction

More information

Planar Graph (7A) Young Won Lim 5/21/18

Planar Graph (7A) Young Won Lim 5/21/18 Planar Graph (7A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

INTRODUCTION TO GRAPH THEORY. 1. Definitions

INTRODUCTION TO GRAPH THEORY. 1. Definitions INTRODUCTION TO GRAPH THEORY D. JAKOBSON 1. Definitions A graph G consists of vertices {v 1, v 2,..., v n } and edges {e 1, e 2,..., e m } connecting pairs of vertices. An edge e = (uv) is incident with

More information

arxiv: v1 [math.co] 28 Sep 2010

arxiv: v1 [math.co] 28 Sep 2010 Densities of Minor-Closed Graph Families David Eppstein Computer Science Department University of California, Irvine Irvine, California, USA arxiv:1009.5633v1 [math.co] 28 Sep 2010 September 3, 2018 Abstract

More information

Forbidden Minors for a Pursuit Game on Graphs

Forbidden Minors for a Pursuit Game on Graphs Forbidden Minors for a Pursuit Game on Graphs A Senior Project submitted to The Division of Science, Mathematics, and Computing of Bard College by Abhinanda Bhattacharyya Annandale-on-Hudson, New York

More information

CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN

CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN TOMASZ LUCZAK AND FLORIAN PFENDER Abstract. We show that every 3-connected claw-free graph which contains no induced copy of P 11 is hamiltonian.

More information

Face Width and Graph Embeddings of face-width 2 and 3

Face Width and Graph Embeddings of face-width 2 and 3 Face Width and Graph Embeddings of face-width 2 and 3 Instructor: Robin Thomas Scribe: Amanda Pascoe 3/12/07 and 3/14/07 1 Representativity Recall the following: Definition 2. Let Σ be a surface, G a graph,

More information

Discrete mathematics II. - Graphs

Discrete mathematics II. - Graphs Emil Vatai April 25, 2018 Basic definitions Definition of an undirected graph Definition (Undirected graph) An undirected graph or (just) a graph is a triplet G = (ϕ, E, V ), where V is the set of vertices,

More information

Homomorphisms of Signed Graphs

Homomorphisms of Signed Graphs Homomorphisms of Signed Graphs Reza Naserasr a, Edita Rollová b, Eric Sopena c a CNRS, LRI, UMR8623, Univ. Paris-Sud 11, F-91405 Orsay Cedex, France b Department of Computer Science, Faculty of Mathematics,

More information

Note on list star edge-coloring of subcubic graphs

Note on list star edge-coloring of subcubic graphs Note on list star edge-coloring of subcubic graphs Borut Lužar, Martina Mockovčiaková, Roman Soták October 5, 018 arxiv:1709.0393v1 [math.co] 11 Sep 017 Abstract A star edge-coloring of a graph is a proper

More information

SOME RECENT RESULTS ON DOMINATION IN GRAPHS

SOME RECENT RESULTS ON DOMINATION IN GRAPHS Discussiones Mathematicae Graph Theory 26 (2006 ) 457 474 SOME RECENT RESULTS ON DOMINATION IN GRAPHS Michael D. Plummer Department of Mathematics Vanderbilt University Nashville, Tennessee 37240, USA

More information

How many colors are needed to color a map?

How many colors are needed to color a map? How many colors are needed to color a map? Is 4 always enough? Two relevant concepts How many colors do we need to color a map so neighboring countries get different colors? Simplifying assumption (not

More information

Vertex Colorings without Rainbow Subgraphs

Vertex Colorings without Rainbow Subgraphs Vertex Colorings without Rainbow Subgraphs Wayne Goddard and Honghai Xu Department of Mathematical Sciences, Clemson University Abstract Given a coloring of the vertices of a graph G, we say a subgraph

More information

Paperclip graphs. Steve Butler Erik D. Demaine Martin L. Demaine Ron Graham Adam Hesterberg Jason Ku Jayson Lynch Tadashi Tokieda

Paperclip graphs. Steve Butler Erik D. Demaine Martin L. Demaine Ron Graham Adam Hesterberg Jason Ku Jayson Lynch Tadashi Tokieda Paperclip graphs Steve Butler Erik D. Demaine Martin L. Demaine Ron Graham Adam Hesterberg Jason Ku Jayson Lynch Tadashi Tokieda Abstract By taking a strip of paper and forming an S curve with paperclips

More information

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality Planar Graphs In the first half of this book, we consider mostly planar graphs and their geometric representations, mostly in the plane. We start with a survey of basic results on planar graphs. This chapter

More information

On Possible Counterexamples to Negami s Planar Cover Conjecture

On Possible Counterexamples to Negami s Planar Cover Conjecture On Possible Counterexamples to Negami s Planar Cover Conjecture Petr Hliněný and Robin Thomas School of Mathematics, Georgia Institute of Technology, Atlanta GA 0-00, U.S.A. hlineny@member.ams.org June,

More information

Simultaneous Diagonal Flips in Plane Triangulations

Simultaneous Diagonal Flips in Plane Triangulations @ _ d j 5 6 5 6 Simultaneous Diagonal Flips in Plane Triangulations Prosenjit Bose Jurek Czyzowicz Zhicheng Gao Pat Morin David R. Wood Abstract Simultaneous diagonal flips in plane triangulations are

More information

ADJACENCY POSETS OF PLANAR GRAPHS

ADJACENCY POSETS OF PLANAR GRAPHS ADJACENCY POSETS OF PLANAR GRAPHS STEFAN FELSNER, CHING MAN LI, AND WILLIAM T. TROTTER Abstract. In this paper, we show that the dimension of the adjacency poset of a planar graph is at most 8. From below,

More information

VIZING S THEOREM AND EDGE-CHROMATIC GRAPH THEORY. Contents

VIZING S THEOREM AND EDGE-CHROMATIC GRAPH THEORY. Contents VIZING S THEOREM AND EDGE-CHROMATIC GRAPH THEORY ROBERT GREEN Abstract. This paper is an expository piece on edge-chromatic graph theory. The central theorem in this subject is that of Vizing. We shall

More information

Graph Theory: Introduction

Graph Theory: Introduction Graph Theory: Introduction Pallab Dasgupta, Professor, Dept. of Computer Sc. and Engineering, IIT Kharagpur pallab@cse.iitkgp.ernet.in Resources Copies of slides available at: http://www.facweb.iitkgp.ernet.in/~pallab

More information

Embedding quartic Eulerian digraphs on the plane

Embedding quartic Eulerian digraphs on the plane AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 67(2) (2017), Pages 364 377 Embedding quartic Eulerian digraphs on the plane Dan Archdeacon Department of Mathematics and Statistics University of Vermont Burlington,

More information

Graphs and Discrete Structures

Graphs and Discrete Structures Graphs and Discrete Structures Nicolas Bousquet Louis Esperet Fall 2018 Abstract Brief summary of the first and second course. É 1 Chromatic number, independence number and clique number The chromatic

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

A note on Brooks theorem for triangle-free graphs

A note on Brooks theorem for triangle-free graphs A note on Brooks theorem for triangle-free graphs Bert Randerath Institut für Informatik Universität zu Köln D-50969 Köln, Germany randerath@informatik.uni-koeln.de Ingo Schiermeyer Fakultät für Mathematik

More information

GRAPH THEORY and APPLICATIONS. Planar Graphs

GRAPH THEORY and APPLICATIONS. Planar Graphs GRAPH THEORY and APPLICATIONS Planar Graphs Planar Graph A graph is planar if it can be drawn on a plane surface with no two edges intersecting. G is said to be embedded in the plane. We can extend the

More information

Algorithms. Graphs. Algorithms

Algorithms. Graphs. Algorithms Algorithms Graphs Algorithms Graphs Definition: A graph is a collection of edges and vertices. Each edge connects two vertices. Algorithms 1 Graphs Vertices: Nodes, points, computers, users, items,...

More information

Math 443/543 Graph Theory Notes 2: Transportation problems

Math 443/543 Graph Theory Notes 2: Transportation problems Math 443/543 Graph Theory Notes 2: Transportation problems David Glickenstein September 15, 2014 1 Readings This is based on Chartrand Chapter 3 and Bondy-Murty 18.1, 18.3 (part on Closure of a Graph).

More information

Graph theory. Po-Shen Loh. June We begin by collecting some basic facts which can be proved via bare-hands techniques.

Graph theory. Po-Shen Loh. June We begin by collecting some basic facts which can be proved via bare-hands techniques. Graph theory Po-Shen Loh June 013 1 Basic results We begin by collecting some basic facts which can be proved via bare-hands techniques. 1. The sum of all of the degrees is equal to twice the number of

More information

Hamilton paths & circuits. Gray codes. Hamilton Circuits. Planar Graphs. Hamilton circuits. 10 Nov 2015

Hamilton paths & circuits. Gray codes. Hamilton Circuits. Planar Graphs. Hamilton circuits. 10 Nov 2015 Hamilton paths & circuits Def. A path in a multigraph is a Hamilton path if it visits each vertex exactly once. Def. A circuit that is a Hamilton path is called a Hamilton circuit. Hamilton circuits Constructing

More information

Definition 1.1. A matching M in a graph G is called maximal if there is no matching M in G so that M M.

Definition 1.1. A matching M in a graph G is called maximal if there is no matching M in G so that M M. 1 Matchings Before, we defined a matching as a set of edges no two of which share an end in common. Suppose that we have a set of jobs and people and we want to match as many jobs to people as we can.

More information

Symmetric Product Graphs

Symmetric Product Graphs Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 5-20-2015 Symmetric Product Graphs Evan Witz Follow this and additional works at: http://scholarworks.rit.edu/theses

More information

MAS 341: GRAPH THEORY 2016 EXAM SOLUTIONS

MAS 341: GRAPH THEORY 2016 EXAM SOLUTIONS MS 41: PH THEOY 2016 EXM SOLUTIONS 1. Question 1 1.1. Explain why any alkane C n H 2n+2 is a tree. How many isomers does C 6 H 14 have? Draw the structure of the carbon atoms in each isomer. marks; marks

More information

On vertex-coloring edge-weighting of graphs

On vertex-coloring edge-weighting of graphs Front. Math. China DOI 10.1007/s11464-009-0014-8 On vertex-coloring edge-weighting of graphs Hongliang LU 1, Xu YANG 1, Qinglin YU 1,2 1 Center for Combinatorics, Key Laboratory of Pure Mathematics and

More information

Problem Set 3. MATH 776, Fall 2009, Mohr. November 30, 2009

Problem Set 3. MATH 776, Fall 2009, Mohr. November 30, 2009 Problem Set 3 MATH 776, Fall 009, Mohr November 30, 009 1 Problem Proposition 1.1. Adding a new edge to a maximal planar graph of order at least 6 always produces both a T K 5 and a T K 3,3 subgraph. Proof.

More information

5 Graphs

5 Graphs 5 Graphs jacques@ucsd.edu Some of the putnam problems are to do with graphs. They do not assume more than a basic familiarity with the definitions and terminology of graph theory. 5.1 Basic definitions

More information

Let G = (V, E) be a graph. If u, v V, then u is adjacent to v if {u, v} E. We also use the notation u v to denote that u is adjacent to v.

Let G = (V, E) be a graph. If u, v V, then u is adjacent to v if {u, v} E. We also use the notation u v to denote that u is adjacent to v. Graph Adjacent Endpoint of an edge Incident Neighbors of a vertex Degree of a vertex Theorem Graph relation Order of a graph Size of a graph Maximum and minimum degree Let G = (V, E) be a graph. If u,

More information

Math 776 Graph Theory Lecture Note 1 Basic concepts

Math 776 Graph Theory Lecture Note 1 Basic concepts Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved

More information

Fixed-Parameter Algorithms, IA166

Fixed-Parameter Algorithms, IA166 Fixed-Parameter Algorithms, IA166 Sebastian Ordyniak Faculty of Informatics Masaryk University Brno Spring Semester 2013 Introduction Outline 1 Introduction Algorithms on Locally Bounded Treewidth Layer

More information

[8] that this cannot happen on the projective plane (cf. also [2]) and the results of Robertson, Seymour, and Thomas [5] on linkless embeddings of gra

[8] that this cannot happen on the projective plane (cf. also [2]) and the results of Robertson, Seymour, and Thomas [5] on linkless embeddings of gra Apex graphs with embeddings of face-width three Bojan Mohar Department of Mathematics University of Ljubljana Jadranska 19, 61111 Ljubljana Slovenia bojan.mohar@uni-lj.si Abstract Aa apex graph is a graph

More information

Embedded Width, A Variation of Treewidth for Planar Graphs

Embedded Width, A Variation of Treewidth for Planar Graphs Embedded Width, A Variation of Treewidth for Planar Graphs Robert Weber Advisor: Glencora Borradaile Abstract A commonly studied property of graphs is treewidth, a measure of how tree-like a graph is.

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 6 Basic concepts and definitions of graph theory By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

Algorithms: Graphs. Amotz Bar-Noy. Spring 2012 CUNY. Amotz Bar-Noy (CUNY) Graphs Spring / 95

Algorithms: Graphs. Amotz Bar-Noy. Spring 2012 CUNY. Amotz Bar-Noy (CUNY) Graphs Spring / 95 Algorithms: Graphs Amotz Bar-Noy CUNY Spring 2012 Amotz Bar-Noy (CUNY) Graphs Spring 2012 1 / 95 Graphs Definition: A graph is a collection of edges and vertices. Each edge connects two vertices. Amotz

More information

Assignments are handed in on Tuesdays in even weeks. Deadlines are:

Assignments are handed in on Tuesdays in even weeks. Deadlines are: Tutorials at 2 3, 3 4 and 4 5 in M413b, on Tuesdays, in odd weeks. i.e. on the following dates. Tuesday the 28th January, 11th February, 25th February, 11th March, 25th March, 6th May. Assignments are

More information

Topics on Computing and Mathematical Sciences I Graph Theory (13) Summary and Review

Topics on Computing and Mathematical Sciences I Graph Theory (13) Summary and Review Topics on Computing and Mathematical Sciences I Graph Theory () Summary and Review Yoshio Okamoto Tokyo Institute of Technology July, 00 Schedule Basic Topics Definition of Graphs; Paths and Cycles Cycles;

More information

Collapsible biclaw-free graphs

Collapsible biclaw-free graphs Collapsible biclaw-free graphs Hong-Jian Lai, Xiangjuan Yao February 24, 2006 Abstract A graph is called biclaw-free if it has no biclaw as an induced subgraph. In this note, we prove that if G is a connected

More information

Math 777 Graph Theory, Spring, 2006 Lecture Note 1 Planar graphs Week 1 Weak 2

Math 777 Graph Theory, Spring, 2006 Lecture Note 1 Planar graphs Week 1 Weak 2 Math 777 Graph Theory, Spring, 006 Lecture Note 1 Planar graphs Week 1 Weak 1 Planar graphs Lectured by Lincoln Lu Definition 1 A drawing of a graph G is a function f defined on V (G) E(G) that assigns

More information