The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique

Size: px
Start display at page:

Download "The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique"

Transcription

1 //00 :0 AM Outlne and Readng The Greedy Method The Greedy Method Technque (secton.) Fractonal Knapsack Problem (secton..) Task Schedulng (secton..) Mnmum Spannng Trees (secton.) Change Money Problem Greedy Algorthms How to make 8 cents of change usng cons of denomnatons of $ 0., $ 0.0, $ 0.0, and $ 0.0 so that the total number of cons s the smallest? The dea: make the locally best choce at each step. Is the soluton optmal? A greedy algorthm makes a locally optmal choce n the hope that ths choce wll lead to a globally optmal soluton. The choce made at each step must be: Feasble Satsfy the problem s constrants locally optmal Be the best local choce among all feasble choces Irrevocable Once made, the choce can t be changed on subsequent steps. Do greedy algorthms always yeld optmal solutons? Example: change makng problem wth a denomnaton set of $0.0, $0.0 and $0.0? Applcatons of the Greedy Strategy Optmal solutons: change makng Mnmum Spannng Tree (MST) Sngle-source shortest paths Huffman codes Approxmatons: Travelng Salesman Problem (TSP) Knapsack problem Many other optmzaton problems The Greedy Method Technque The greedy method s a general algorthm desgn paradgm, bult on the followng elements: confguratons: dfferent choces, collectons, or values to fnd objectve functon: a score assgned to confguratons, whch we want to ether maxmze or mnmze It works best when appled to problems wth the greedychoce property: a globally-optmal soluton can always be found by a seres of local mprovements from a startng confguraton.

2 //00 :0 AM Makng Change The Fractonal Knapsack Problem Problem: A dollar amount to reach and a collecton of con amounts to use to get there. Confguraton: A dollar amount yet to return to a customer plus the cons already returned Objectve functon: Mnmze number of cons returned. Greedy soluton: Always return the largest con you can Example : Cons are valued $., $.08, $.0 Has the greedy-choce property, snce no amount over $. can be made wth a mnmum number of cons by omttng a $. con (smlarly for amounts over $.08, but under $.). Example : Cons are valued $.0, $.0, $.0, $.0 Does not have greedy-choce property, snce $.0 s best made wth two $.0 s, but the greedy soluton wll pck three cons (whch ones?) Gven: A set S of n tems, wth each tem havng b - a postve beneft w -a postve weght Goal: Choose tems wth maxmum total beneft but wth weght at most W. If we are allowed to take fractonal amounts, then ths s the fractonal knapsack problem. In ths case, we let x denote the amount we take of tem Objectve: maxmze Constrant: S S b ( x / w ) x W 8 Example The Fractonal Knapsack Algorthm Gven: A set S of n tems, wth each tem havng b - a postve beneft w -a postve weght Goal: Choose tems wth maxmum total beneft but wth weght at most W. Items: Weght: Beneft: ml $ 8 ml $ ml $0 ml $0 ml $0 Value: 0 0 ($ per ml) 0 ml knapsack Soluton: ml of ml of ml of ml of 9 Greedy choce: Keep takng tem wth hghest value (beneft to weght rato) Snce b ( x / w ) = ( b / w ) x S Run tme: O(n log n). Why? Correctness: Suppose there s a better soluton there s an tem wth hgher value than a chosen tem j (.e., v <v j ) but x <w and x j >0 If we substtute some wth j, we get a better soluton How much of : mn{w -x, x j } Thus, there s no better soluton than the greedy one S Algorthm fractonalknapsack(s, W) Input: set S of tems w/ beneft b and weght w ; max. weght W Output: amount x of each tem to maxmze beneft wth weght at most W for each tem n S x 0 v b / w {value} w 0 {total weght} whle w < W remove tem wth hghest v x mn{w, W w} w w + mn{w, W w} 0 Task Schedulng Task Schedulng Algorthm Gven: a set T of n tasks, each havng: A start tme, s A fnsh tme, f (where s < f ) Goal: Perform all the tasks usng a mnmum number of machnes. Machne Machne Machne 8 9 Greedy choce: consder tasks by ther start tme and use as few machnes as possble wth ths order. Run tme: O(n log n). Why? Correctness: Suppose there s a better schedule. We can use k- machnes The algorthm uses k Let be frst task scheduled on machne k Machne must conflct wth k- other tasks But that means there s no nonconflctng schedule usng k- machnes Algorthm taskschedule(t) Input: set T of tasks w/ start tme s and fnsh tme f Output: non-conflctng schedule wth mnmum number of machnes m 0 {no. of machnes} whle T s not empty remove task w/ smallest s f there s a machne j for then schedule on machne j else m m + schedule on machne m

3 //00 :0 AM Example Makng a Greedy Choce Gven: a set T of n tasks, each havng: A start tme, s A fnsh tme, f (where s < f ) [,], [,], [,], [,], [,], [,9], [,8] (ordered by start) Goal: Perform all tasks on mn. number of machnes Machne Machne Machne Greedy choce: We make the choce that looks best at the moment..e. every tme we make a choce, we greedly try to maxmze our proft. 8 9 Mnmum Spannng Tree (MST) Prm s MST algorthm Spannng tree of a connected graph G: a connected acyclc subgraph (tree) of G that ncludes all of G s vertces. Mnmum Spannng Tree of a weghted, connected graph G: a spannng tree of G of mnmum total weght. Example: Start wth a tree, T 0,consstng of one vertex Grow tree one vertex/edge at a tme Construct a seres of expandng subtrees T, T, T n-..at each stage construct T + from T by addng the mnmum weght edge connectng a vertex n tree (T ) to one not yet n tree choose from frnge edges (ths s the greedy step!) Or (another way to understand t) expandng each tree (T) n a greedy manner by attachng to t the nearest vertex not n that tree. (a vertex not n the tree connected to a vertex n the tree by an edge of the smallest weght) Algorthm stops when all vertces are ncluded Frnge edges: one vertex s n T and the other s not. Unseen edges: both vertces are not n T. Examples The Key Pont c a b d e Notatons T: the expandng subtree. Q: the remanng vertces. At each stage, the key pont of expandng the current subtree T s to determne whch vertex n Q s the nearest vertex. Q can be thought of as a prorty queue: The key(prorty) of each vertex, key[v], means the mnmum weght edge from v to a vertex n T. Key[v] s f v s not lnked to any vertex n T. The major operaton s to fnd and delete the nearest vertex (v, for whch key[v] s the smallest among all the vertces) Remove the nearest vertex v from Q and add t and the correspondng edge to T. Wth the occurrence of that acton, the key of v s neghbors wll be changed. 8

4 //00 :0 AM PRIM Algorthm Notes about Prm s algorthm ALGORITHM MST-PRIM( G, w, r ) //w: weght; r: root, the startng vertex. for each u V[G]. do key[u]. π[u] NIL// π[u] : the parent of u. key[r] 0. Q V[G] //Now the prorty queue, Q, has been bult.. whle Q. do u Extract-Mn(Q) //remove the nearest vertex from Q 8. for each v Adj[u] //update the key for each of v s adjacent nodes. 9. do f v Q and w(u,v) < key[v] 0. then π[v] u. Key[v] w(u,v) Need prorty queue for locatng the nearest vertex Use unordered array to store the prorty queue: Effcency: Θ(n ) use heap to store the prorty queue Effcency: O(m log n) For graph wth n vertces and m edges: (n + m) logn 9 0 Another Greedy Algorthm for MST: Kruskal Kruskal s Algorthm Edges are ntally sorted by ncreasng weght Start wth an empty forest grow MST one edge at a tme ntermedate stages usually have forest of trees (not connected) at each stage add mnmum weght edge among those not yet used that does not create a cycle at each stage the edge may: expand an exstng tree combne two exstng trees nto a sngle tree create a new tree need effcent way of detectng/avodng cycles algorthm stops when all vertces are ncluded ALGORITHM Kruscal(G) //Input: A weghted connected graph G = <V, E> //Output: E T, the set of edges composng a mnmum spannng tree of G. Sort E n nondecreasng order of the edge weghts w(e) <= <= w(e E ) E T ; ecounter 0 //ntalze the set of tree edges and ts sze k 0 whle encounter < V - do k k + f E T U {ek} s acyclc E T E T U {ek} ; ecounter ecounter + return E T Shortest Paths Djkstra s Algorthm Shortest Path Problems All par shortest paths (Floy s algorthm) Sngle Source Shortest Paths Problem (Djkstra s algorthm): Gven a weghted graph G, fnd the shortest paths from a source vertex s to each of the other vertces. a b c d e

5 //00 :0 AM Prm s and Djkstra s Algorthms Generate dfferent knds of spannng trees Prm s: a mnmum spannng tree. Djkstra s : a spannng tree rooted at a gven source s, such that the dstance from s to every other vertex s the shortest. Dfferent greedy strateges Prms : Always choose the closest (to the tree) vertex n the prorty queue Q to add to the expandng tree V T. Djkstra s : Always choose the closest (to the source) vertex n the prorty queue Q to add to the expandng tree V T. Dfferent labels for each vertex Prms : parent vertex and the dstance from the tree to the vertex.. Djkstra s : parent vertex and the dstance from the source to the vertex. Djkstra s Algorthm ALGORITHM Djkstra(G, s) //Input: A weghted connected graph G = <V, E> and a source vertex s //Output: The length d v of a shortest path from s to v and ts penultmate vertex p v for every vertex v n V Intalze (Q) //ntalze vertex prorty n the prorty queue for every vertex v n V do d v ; P v null // P v, the parent of v nsert(q, v, d v ) //ntalze vertex prorty n the prorty queue d s 0; Decrease(Q, s, d s ) //update prorty of s wth d s, makng d s, the mnmum V T for 0 to V - do //produce V - edges for the tree u* DeleteMn(Q) //delete the mnmum prorty element V T V T U {u*} //expandng the tree, choosng the locally best vertex for every vertex u n V V T that s adjacent to u* do f d u* + w(u*, u) < d u d u d u + w(u*, u); p u u* Decrease(Q, u, d u ) Notes on Djkstra s Algorthm Doesn t work wth negatve weghts Can you gve a counter example? Applcable to both undrected and drected graphs Effcency Use unordered array to store the prorty queue: Θ(n ) Use mn-heap to store the prorty queue: O(m log n) When Do Greedy Algorthms Produce an Optmal Soluton? The problem must have two propertes: Greedy choce property: An optmal soluton can be obtaned by makng choces that seem best at the tme, wthout consderng ther mplcatons for solutons to subproblems. Optmal substructure: An optmal soluton can be obtaned by augmentng the partal soluton constructed so far wth an optmal soluton of the remanng subproblem. General Form of Greedy Summary SolType Greedy(Type a[], nt n) { SolType soluton = EMPTY; for(nt =; <=n; ++) { Type x = Select(a); f Feasble(soluton, x); soluton = Unon(soluton, x); } return soluton; } Greedy algorthms are effcent algorthms for optmzaton problems that exhbt two propertes: Greedy choce property: An optmal soluton can be obtaned by makng locally optmal choces. Optmal substructure: An optmal soluton contans wthn t optmal solutons to smaller subproblems. If only optmal substructure s present, dynamc programmng may be a vable approach; that s, the greedy choce property s what allows us to obtan faster algorthms than what can be obtaned usng dynamc programmng. 9

Greedy Technique - Definition

Greedy Technique - Definition Greedy Technque Greedy Technque - Defnton The greedy method s a general algorthm desgn paradgm, bult on the follong elements: confguratons: dfferent choces, collectons, or values to fnd objectve functon:

More information

Course Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms

Course Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms Course Introducton Course Topcs Exams, abs, Proects A quc loo at a few algorthms 1 Advanced Data Structures and Algorthms Descrpton: We are gong to dscuss algorthm complexty analyss, algorthm desgn technques

More information

GSLM Operations Research II Fall 13/14

GSLM Operations Research II Fall 13/14 GSLM 58 Operatons Research II Fall /4 6. Separable Programmng Consder a general NLP mn f(x) s.t. g j (x) b j j =. m. Defnton 6.. The NLP s a separable program f ts objectve functon and all constrants are

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Desgn and Analyss of Algorthms Heaps and Heapsort Reference: CLRS Chapter 6 Topcs: Heaps Heapsort Prorty queue Huo Hongwe Recap and overvew The story so far... Inserton sort runnng tme of Θ(n 2 ); sorts

More information

Kent State University CS 4/ Design and Analysis of Algorithms. Dept. of Math & Computer Science LECT-16. Dynamic Programming

Kent State University CS 4/ Design and Analysis of Algorithms. Dept. of Math & Computer Science LECT-16. Dynamic Programming CS 4/560 Desgn and Analyss of Algorthms Kent State Unversty Dept. of Math & Computer Scence LECT-6 Dynamc Programmng 2 Dynamc Programmng Dynamc Programmng, lke the dvde-and-conquer method, solves problems

More information

Smoothing Spline ANOVA for variable screening

Smoothing Spline ANOVA for variable screening Smoothng Splne ANOVA for varable screenng a useful tool for metamodels tranng and mult-objectve optmzaton L. Rcco, E. Rgon, A. Turco Outlne RSM Introducton Possble couplng Test case MOO MOO wth Game Theory

More information

11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS Copng wth NP-completeness 11. APPROXIMATION ALGORITHMS load balancng center selecton prcng method: vertex cover LP roundng: vertex cover generalzed load balancng knapsack problem Q. Suppose I need to solve

More information

6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour

6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour 6.854 Advanced Algorthms Petar Maymounkov Problem Set 11 (November 23, 2005) Wth: Benjamn Rossman, Oren Wemann, and Pouya Kheradpour Problem 1. We reduce vertex cover to MAX-SAT wth weghts, such that the

More information

Compiler Design. Spring Register Allocation. Sample Exercises and Solutions. Prof. Pedro C. Diniz

Compiler Design. Spring Register Allocation. Sample Exercises and Solutions. Prof. Pedro C. Diniz Compler Desgn Sprng 2014 Regster Allocaton Sample Exercses and Solutons Prof. Pedro C. Dnz USC / Informaton Scences Insttute 4676 Admralty Way, Sute 1001 Marna del Rey, Calforna 90292 pedro@s.edu Regster

More information

Support Vector Machines

Support Vector Machines /9/207 MIST.6060 Busness Intellgence and Data Mnng What are Support Vector Machnes? Support Vector Machnes Support Vector Machnes (SVMs) are supervsed learnng technques that analyze data and recognze patterns.

More information

Dijkstra s Single Source Algorithm. All-Pairs Shortest Paths. Dynamic Programming Solution. Performance. Decision Sequence.

Dijkstra s Single Source Algorithm. All-Pairs Shortest Paths. Dynamic Programming Solution. Performance. Decision Sequence. All-Pars Shortest Paths Gven an n-vertex drected weghted graph, fnd a shortest path from vertex to vertex for each of the n vertex pars (,). Dstra s Sngle Source Algorthm Use Dstra s algorthm n tmes, once

More information

5 The Primal-Dual Method

5 The Primal-Dual Method 5 The Prmal-Dual Method Orgnally desgned as a method for solvng lnear programs, where t reduces weghted optmzaton problems to smpler combnatoral ones, the prmal-dual method (PDM) has receved much attenton

More information

CSE 326: Data Structures Quicksort Comparison Sorting Bound

CSE 326: Data Structures Quicksort Comparison Sorting Bound CSE 326: Data Structures Qucksort Comparson Sortng Bound Steve Setz Wnter 2009 Qucksort Qucksort uses a dvde and conquer strategy, but does not requre the O(N) extra space that MergeSort does. Here s the

More information

Sum of Linear and Fractional Multiobjective Programming Problem under Fuzzy Rules Constraints

Sum of Linear and Fractional Multiobjective Programming Problem under Fuzzy Rules Constraints Australan Journal of Basc and Appled Scences, 2(4): 1204-1208, 2008 ISSN 1991-8178 Sum of Lnear and Fractonal Multobjectve Programmng Problem under Fuzzy Rules Constrants 1 2 Sanjay Jan and Kalash Lachhwan

More information

Learning the Kernel Parameters in Kernel Minimum Distance Classifier

Learning the Kernel Parameters in Kernel Minimum Distance Classifier Learnng the Kernel Parameters n Kernel Mnmum Dstance Classfer Daoqang Zhang 1,, Songcan Chen and Zh-Hua Zhou 1* 1 Natonal Laboratory for Novel Software Technology Nanjng Unversty, Nanjng 193, Chna Department

More information

Dijkstra s Single Source Algorithm. All-Pairs Shortest Paths. Dynamic Programming Solution. Performance

Dijkstra s Single Source Algorithm. All-Pairs Shortest Paths. Dynamic Programming Solution. Performance All-Pars Shortest Paths Gven an n-vertex drected weghted graph, fnd a shortest path from vertex to vertex for each of the n vertex pars (,). Dkstra s Sngle Source Algorthm Use Dkstra s algorthm n tmes,

More information

CSE 326: Data Structures Quicksort Comparison Sorting Bound

CSE 326: Data Structures Quicksort Comparison Sorting Bound CSE 326: Data Structures Qucksort Comparson Sortng Bound Bran Curless Sprng 2008 Announcements (5/14/08) Homework due at begnnng of class on Frday. Secton tomorrow: Graded homeworks returned More dscusson

More information

All-Pairs Shortest Paths. Approximate All-Pairs shortest paths Approximate distance oracles Spanners and Emulators. Uri Zwick Tel Aviv University

All-Pairs Shortest Paths. Approximate All-Pairs shortest paths Approximate distance oracles Spanners and Emulators. Uri Zwick Tel Aviv University Approxmate All-Pars shortest paths Approxmate dstance oracles Spanners and Emulators Ur Zwck Tel Avv Unversty Summer School on Shortest Paths (PATH05 DIKU, Unversty of Copenhagen All-Pars Shortest Paths

More information

Report on On-line Graph Coloring

Report on On-line Graph Coloring 2003 Fall Semester Comp 670K Onlne Algorthm Report on LO Yuet Me (00086365) cndylo@ust.hk Abstract Onlne algorthm deals wth data that has no future nformaton. Lots of examples demonstrate that onlne algorthm

More information

Outline. Type of Machine Learning. Examples of Application. Unsupervised Learning

Outline. Type of Machine Learning. Examples of Application. Unsupervised Learning Outlne Artfcal Intellgence and ts applcatons Lecture 8 Unsupervsed Learnng Professor Danel Yeung danyeung@eee.org Dr. Patrck Chan patrckchan@eee.org South Chna Unversty of Technology, Chna Introducton

More information

Load Balancing for Hex-Cell Interconnection Network

Load Balancing for Hex-Cell Interconnection Network Int. J. Communcatons, Network and System Scences,,, - Publshed Onlne Aprl n ScRes. http://www.scrp.org/journal/jcns http://dx.do.org/./jcns.. Load Balancng for Hex-Cell Interconnecton Network Saher Manaseer,

More information

Dynamic Programming. Example - multi-stage graph. sink. source. Data Structures &Algorithms II

Dynamic Programming. Example - multi-stage graph. sink. source. Data Structures &Algorithms II Dynamc Programmng Example - mult-stage graph 1 source 9 7 3 2 2 3 4 5 7 11 4 11 8 2 2 1 6 7 8 4 6 3 5 6 5 9 10 11 2 4 5 12 snk Data Structures &Algorthms II A labeled, drected graph Vertces can be parttoned

More information

The Codesign Challenge

The Codesign Challenge ECE 4530 Codesgn Challenge Fall 2007 Hardware/Software Codesgn The Codesgn Challenge Objectves In the codesgn challenge, your task s to accelerate a gven software reference mplementaton as fast as possble.

More information

CHAPTER 2 DECOMPOSITION OF GRAPHS

CHAPTER 2 DECOMPOSITION OF GRAPHS CHAPTER DECOMPOSITION OF GRAPHS. INTRODUCTION A graph H s called a Supersubdvson of a graph G f H s obtaned from G by replacng every edge uv of G by a bpartte graph,m (m may vary for each edge by dentfyng

More information

1 Introducton Gven a graph G = (V; E), a non-negatve cost on each edge n E, and a set of vertces Z V, the mnmum Stener problem s to nd a mnmum cost su

1 Introducton Gven a graph G = (V; E), a non-negatve cost on each edge n E, and a set of vertces Z V, the mnmum Stener problem s to nd a mnmum cost su Stener Problems on Drected Acyclc Graphs Tsan-sheng Hsu y, Kuo-Hu Tsa yz, Da-We Wang yz and D. T. Lee? September 1, 1995 Abstract In ths paper, we consder two varatons of the mnmum-cost Stener problem

More information

Parallelism for Nested Loops with Non-uniform and Flow Dependences

Parallelism for Nested Loops with Non-uniform and Flow Dependences Parallelsm for Nested Loops wth Non-unform and Flow Dependences Sam-Jn Jeong Dept. of Informaton & Communcaton Engneerng, Cheonan Unversty, 5, Anseo-dong, Cheonan, Chungnam, 330-80, Korea. seong@cheonan.ac.kr

More information

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved.

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved. Chapter 9 Greedy Technique Copyright 2007 Pearson Addison-Wesley. All rights reserved. Greedy Technique Constructs a solution to an optimization problem piece by piece through a sequence of choices that

More information

Sequential search. Building Java Programs Chapter 13. Sequential search. Sequential search

Sequential search. Building Java Programs Chapter 13. Sequential search. Sequential search Sequental search Buldng Java Programs Chapter 13 Searchng and Sortng sequental search: Locates a target value n an array/lst by examnng each element from start to fnsh. How many elements wll t need to

More information

F Geometric Mean Graphs

F Geometric Mean Graphs Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 2 (December 2015), pp. 937-952 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) F Geometrc Mean Graphs A.

More information

Subspace clustering. Clustering. Fundamental to all clustering techniques is the choice of distance measure between data points;

Subspace clustering. Clustering. Fundamental to all clustering techniques is the choice of distance measure between data points; Subspace clusterng Clusterng Fundamental to all clusterng technques s the choce of dstance measure between data ponts; D q ( ) ( ) 2 x x = x x, j k = 1 k jk Squared Eucldean dstance Assumpton: All features

More information

Non-Split Restrained Dominating Set of an Interval Graph Using an Algorithm

Non-Split Restrained Dominating Set of an Interval Graph Using an Algorithm Internatonal Journal of Advancements n Research & Technology, Volume, Issue, July- ISS - on-splt Restraned Domnatng Set of an Interval Graph Usng an Algorthm ABSTRACT Dr.A.Sudhakaraah *, E. Gnana Deepka,

More information

Week 11: Minimum Spanning trees

Week 11: Minimum Spanning trees Week 11: Minimum Spanning trees Agenda: Minimum Spanning Trees Prim s Algorithm Reading: Textbook : 61-7 1 Week 11: Minimum Spanning trees Minimum spanning tree (MST) problem: Input: edge-weighted (simple,

More information

Outline. Self-Organizing Maps (SOM) US Hebbian Learning, Cntd. The learning rule is Hebbian like:

Outline. Self-Organizing Maps (SOM) US Hebbian Learning, Cntd. The learning rule is Hebbian like: Self-Organzng Maps (SOM) Turgay İBRİKÇİ, PhD. Outlne Introducton Structures of SOM SOM Archtecture Neghborhoods SOM Algorthm Examples Summary 1 2 Unsupervsed Hebban Learnng US Hebban Learnng, Cntd 3 A

More information

LECTURE : MANIFOLD LEARNING

LECTURE : MANIFOLD LEARNING LECTURE : MANIFOLD LEARNING Rta Osadchy Some sldes are due to L.Saul, V. C. Raykar, N. Verma Topcs PCA MDS IsoMap LLE EgenMaps Done! Dmensonalty Reducton Data representaton Inputs are real-valued vectors

More information

Parallel matrix-vector multiplication

Parallel matrix-vector multiplication Appendx A Parallel matrx-vector multplcaton The reduced transton matrx of the three-dmensonal cage model for gel electrophoress, descrbed n secton 3.2, becomes excessvely large for polymer lengths more

More information

More on Sorting: Quick Sort and Heap Sort

More on Sorting: Quick Sort and Heap Sort More on Sortng: Quck Sort and Heap Sort Antono Carzanga Faculty of Informatcs Unversty of Lugano October 12, 2007 c 2006 Antono Carzanga 1 Another dvde-and-conuer sortng algorthm The heap Heap sort Outlne

More information

1 Introducton Effcent and speedy recovery of electrc power networks followng a major outage, caused by a dsaster such as extreme weather or equpment f

1 Introducton Effcent and speedy recovery of electrc power networks followng a major outage, caused by a dsaster such as extreme weather or equpment f Effcent Recovery from Power Outage (Extended Summary) Sudpto Guha Λ Anna Moss y Joseph (Seff) Naor z Baruch Scheber x Abstract We study problems that are motvated by the real-lfe problem of effcent recovery

More information

Hierarchical clustering for gene expression data analysis

Hierarchical clustering for gene expression data analysis Herarchcal clusterng for gene expresson data analyss Gorgo Valentn e-mal: valentn@ds.unm.t Clusterng of Mcroarray Data. Clusterng of gene expresson profles (rows) => dscovery of co-regulated and functonally

More information

Module Management Tool in Software Development Organizations

Module Management Tool in Software Development Organizations Journal of Computer Scence (5): 8-, 7 ISSN 59-66 7 Scence Publcatons Management Tool n Software Development Organzatons Ahmad A. Al-Rababah and Mohammad A. Al-Rababah Faculty of IT, Al-Ahlyyah Amman Unversty,

More information

TPL-Aware Displacement-driven Detailed Placement Refinement with Coloring Constraints

TPL-Aware Displacement-driven Detailed Placement Refinement with Coloring Constraints TPL-ware Dsplacement-drven Detaled Placement Refnement wth Colorng Constrants Tao Ln Iowa State Unversty tln@astate.edu Chrs Chu Iowa State Unversty cnchu@astate.edu BSTRCT To mnmze the effect of process

More information

3. CR parameters and Multi-Objective Fitness Function

3. CR parameters and Multi-Objective Fitness Function 3 CR parameters and Mult-objectve Ftness Functon 41 3. CR parameters and Mult-Objectve Ftness Functon 3.1. Introducton Cogntve rados dynamcally confgure the wreless communcaton system, whch takes beneft

More information

Priority queues and heaps Professors Clark F. Olson and Carol Zander

Priority queues and heaps Professors Clark F. Olson and Carol Zander Prorty queues and eaps Professors Clark F. Olson and Carol Zander Prorty queues A common abstract data type (ADT) n computer scence s te prorty queue. As you mgt expect from te name, eac tem n te prorty

More information

An Optimal Algorithm for Prufer Codes *

An Optimal Algorithm for Prufer Codes * J. Software Engneerng & Applcatons, 2009, 2: 111-115 do:10.4236/jsea.2009.22016 Publshed Onlne July 2009 (www.scrp.org/journal/jsea) An Optmal Algorthm for Prufer Codes * Xaodong Wang 1, 2, Le Wang 3,

More information

Graph-based Clustering

Graph-based Clustering Graphbased Clusterng Transform the data nto a graph representaton ertces are the data ponts to be clustered Edges are eghted based on smlarty beteen data ponts Graph parttonng Þ Each connected component

More information

K-means and Hierarchical Clustering

K-means and Hierarchical Clustering Note to other teachers and users of these sldes. Andrew would be delghted f you found ths source materal useful n gvng your own lectures. Feel free to use these sldes verbatm, or to modfy them to ft your

More information

Esc101 Lecture 1 st April, 2008 Generating Permutation

Esc101 Lecture 1 st April, 2008 Generating Permutation Esc101 Lecture 1 Aprl, 2008 Generatng Permutaton In ths class we wll look at a problem to wrte a program that takes as nput 1,2,...,N and prnts out all possble permutatons of the numbers 1,2,...,N. For

More information

Unsupervised Learning

Unsupervised Learning Pattern Recognton Lecture 8 Outlne Introducton Unsupervsed Learnng Parametrc VS Non-Parametrc Approach Mxture of Denstes Maxmum-Lkelhood Estmates Clusterng Prof. Danel Yeung School of Computer Scence and

More information

Ramsey numbers of cubes versus cliques

Ramsey numbers of cubes versus cliques Ramsey numbers of cubes versus clques Davd Conlon Jacob Fox Choongbum Lee Benny Sudakov Abstract The cube graph Q n s the skeleton of the n-dmensonal cube. It s an n-regular graph on 2 n vertces. The Ramsey

More information

NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS

NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS ARPN Journal of Engneerng and Appled Scences 006-017 Asan Research Publshng Network (ARPN). All rghts reserved. NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS Igor Grgoryev, Svetlana

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Introducton to Algorthms October 4, 2002 Massachusetts Insttute of Technology 6046J/18410J Professors Erk Demane and Shaf Goldwasser Handout 14 Problem Set 3 Solutons (Exercses were not to be turned n,

More information

Outline. Discriminative classifiers for image recognition. Where in the World? A nearest neighbor recognition example 4/14/2011. CS 376 Lecture 22 1

Outline. Discriminative classifiers for image recognition. Where in the World? A nearest neighbor recognition example 4/14/2011. CS 376 Lecture 22 1 4/14/011 Outlne Dscrmnatve classfers for mage recognton Wednesday, Aprl 13 Krsten Grauman UT-Austn Last tme: wndow-based generc obect detecton basc ppelne face detecton wth boostng as case study Today:

More information

Machine Learning: Algorithms and Applications

Machine Learning: Algorithms and Applications 14/05/1 Machne Learnng: Algorthms and Applcatons Florano Zn Free Unversty of Bozen-Bolzano Faculty of Computer Scence Academc Year 011-01 Lecture 10: 14 May 01 Unsupervsed Learnng cont Sldes courtesy of

More information

CS221: Algorithms and Data Structures. Priority Queues and Heaps. Alan J. Hu (Borrowing slides from Steve Wolfman)

CS221: Algorithms and Data Structures. Priority Queues and Heaps. Alan J. Hu (Borrowing slides from Steve Wolfman) CS: Algorthms and Data Structures Prorty Queues and Heaps Alan J. Hu (Borrowng sldes from Steve Wolfman) Learnng Goals After ths unt, you should be able to: Provde examples of approprate applcatons for

More information

CHAPTER 2 PROPOSED IMPROVED PARTICLE SWARM OPTIMIZATION

CHAPTER 2 PROPOSED IMPROVED PARTICLE SWARM OPTIMIZATION 24 CHAPTER 2 PROPOSED IMPROVED PARTICLE SWARM OPTIMIZATION The present chapter proposes an IPSO approach for multprocessor task schedulng problem wth two classfcatons, namely, statc ndependent tasks and

More information

Greedy Algorithms. At each step in the algorithm, one of several choices can be made.

Greedy Algorithms. At each step in the algorithm, one of several choices can be made. Greedy Algorithms At each step in the algorithm, one of several choices can be made. Greedy Strategy: make the choice that is the best at the moment. After making a choice, we are left with one subproblem

More information

A New Token Allocation Algorithm for TCP Traffic in Diffserv Network

A New Token Allocation Algorithm for TCP Traffic in Diffserv Network A New Token Allocaton Algorthm for TCP Traffc n Dffserv Network A New Token Allocaton Algorthm for TCP Traffc n Dffserv Network S. Sudha and N. Ammasagounden Natonal Insttute of Technology, Truchrappall,

More information

CSCI 104 Sorting Algorithms. Mark Redekopp David Kempe

CSCI 104 Sorting Algorithms. Mark Redekopp David Kempe CSCI 104 Sortng Algorthms Mark Redekopp Davd Kempe Algorthm Effcency SORTING 2 Sortng If we have an unordered lst, sequental search becomes our only choce If we wll perform a lot of searches t may be benefcal

More information

Approximations for Steiner Trees with Minimum Number of Steiner Points

Approximations for Steiner Trees with Minimum Number of Steiner Points Journal of Global Optmzaton 18: 17 33, 000. 17 000 Kluwer Academc ublshers. rnted n the Netherlands. Approxmatons for Stener Trees wth Mnmum Number of Stener onts 1, 1,,,,3, DONGHUI CHEN *, DING-ZHU DU

More information

Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009.

Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009. Farrukh Jabeen Algorthms 51 Assgnment #2 Due Date: June 15, 29. Assgnment # 2 Chapter 3 Dscrete Fourer Transforms Implement the FFT for the DFT. Descrbed n sectons 3.1 and 3.2. Delverables: 1. Concse descrpton

More information

G205 Fundamentals of Computer Engineering. CLASS 21, Mon. Nov Stefano Basagni Fall 2004 M-W, 1:30pm-3:10pm

G205 Fundamentals of Computer Engineering. CLASS 21, Mon. Nov Stefano Basagni Fall 2004 M-W, 1:30pm-3:10pm G205 Fundamentals of Computer Engineering CLASS 21, Mon. Nov. 22 2004 Stefano Basagni Fall 2004 M-W, 1:30pm-3:10pm Greedy Algorithms, 1 Algorithms for Optimization Problems Sequence of steps Choices at

More information

Multicriteria Decision Making

Multicriteria Decision Making Multcrtera Decson Makng Andrés Ramos (Andres.Ramos@comllas.edu) Pedro Sánchez (Pedro.Sanchez@comllas.edu) Sonja Wogrn (Sonja.Wogrn@comllas.edu) Contents 1. Basc concepts 2. Contnuous methods 3. Dscrete

More information

Programming in Fortran 90 : 2017/2018

Programming in Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Exercse 1 : Evaluaton of functon dependng on nput Wrte a program who evaluate the functon f (x,y) for any two user specfed values

More information

Range images. Range image registration. Examples of sampling patterns. Range images and range surfaces

Range images. Range image registration. Examples of sampling patterns. Range images and range surfaces Range mages For many structured lght scanners, the range data forms a hghly regular pattern known as a range mage. he samplng pattern s determned by the specfc scanner. Range mage regstraton 1 Examples

More information

Biostatistics 615/815

Biostatistics 615/815 The E-M Algorthm Bostatstcs 615/815 Lecture 17 Last Lecture: The Smplex Method General method for optmzaton Makes few assumptons about functon Crawls towards mnmum Some recommendatons Multple startng ponts

More information

Announcements. Supervised Learning

Announcements. Supervised Learning Announcements See Chapter 5 of Duda, Hart, and Stork. Tutoral by Burge lnked to on web page. Supervsed Learnng Classfcaton wth labeled eamples. Images vectors n hgh-d space. Supervsed Learnng Labeled eamples

More information

Machine Learning. Topic 6: Clustering

Machine Learning. Topic 6: Clustering Machne Learnng Topc 6: lusterng lusterng Groupng data nto (hopefully useful) sets. Thngs on the left Thngs on the rght Applcatons of lusterng Hypothess Generaton lusters mght suggest natural groups. Hypothess

More information

Minimum-Spanning-Tree problem. Minimum Spanning Trees (Forests) Minimum-Spanning-Tree problem

Minimum-Spanning-Tree problem. Minimum Spanning Trees (Forests) Minimum-Spanning-Tree problem Minimum Spanning Trees (Forests) Given an undirected graph G=(V,E) with each edge e having a weight w(e) : Find a subgraph T of G of minimum total weight s.t. every pair of vertices connected in G are

More information

Solving two-person zero-sum game by Matlab

Solving two-person zero-sum game by Matlab Appled Mechancs and Materals Onlne: 2011-02-02 ISSN: 1662-7482, Vols. 50-51, pp 262-265 do:10.4028/www.scentfc.net/amm.50-51.262 2011 Trans Tech Publcatons, Swtzerland Solvng two-person zero-sum game by

More information

For instance, ; the five basic number-sets are increasingly more n A B & B A A = B (1)

For instance, ; the five basic number-sets are increasingly more n A B & B A A = B (1) Secton 1.2 Subsets and the Boolean operatons on sets If every element of the set A s an element of the set B, we say that A s a subset of B, or that A s contaned n B, or that B contans A, and we wrte A

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervsed Learnng and Clusterng Supervsed vs. Unsupervsed Learnng Up to now we consdered supervsed learnng scenaro, where we are gven 1. samples 1,, n 2. class labels for all samples 1,, n Ths s also

More information

INTEGER PROGRAMMING MODELING FOR THE CHINESE POSTMAN PROBLEMS

INTEGER PROGRAMMING MODELING FOR THE CHINESE POSTMAN PROBLEMS INTEGER PROGRAMMING MODELING FOR THE CHINESE POSTMAN PROBLEMS ABSTRACT Feng Junwen School of Economcs and Management, Nanng Unversty of Scence and Technology, Nanng, 2009, Chna As far as the tradtonal

More information

CHARUTAR VIDYA MANDAL S SEMCOM Vallabh Vidyanagar

CHARUTAR VIDYA MANDAL S SEMCOM Vallabh Vidyanagar CHARUTAR VIDYA MANDAL S SEMCOM Vallabh Vdyanagar Faculty Name: Am D. Trved Class: SYBCA Subject: US03CBCA03 (Advanced Data & Fle Structure) *UNIT 1 (ARRAYS AND TREES) **INTRODUCTION TO ARRAYS If we want

More information

Optimization Methods: Integer Programming Integer Linear Programming 1. Module 7 Lecture Notes 1. Integer Linear Programming

Optimization Methods: Integer Programming Integer Linear Programming 1. Module 7 Lecture Notes 1. Integer Linear Programming Optzaton Methods: Integer Prograng Integer Lnear Prograng Module Lecture Notes Integer Lnear Prograng Introducton In all the prevous lectures n lnear prograng dscussed so far, the desgn varables consdered

More information

Machine Learning. Support Vector Machines. (contains material adapted from talks by Constantin F. Aliferis & Ioannis Tsamardinos, and Martin Law)

Machine Learning. Support Vector Machines. (contains material adapted from talks by Constantin F. Aliferis & Ioannis Tsamardinos, and Martin Law) Machne Learnng Support Vector Machnes (contans materal adapted from talks by Constantn F. Alfers & Ioanns Tsamardnos, and Martn Law) Bryan Pardo, Machne Learnng: EECS 349 Fall 2014 Support Vector Machnes

More information

NGPM -- A NSGA-II Program in Matlab

NGPM -- A NSGA-II Program in Matlab Verson 1.4 LIN Song Aerospace Structural Dynamcs Research Laboratory College of Astronautcs, Northwestern Polytechncal Unversty, Chna Emal: lsssswc@163.com 2011-07-26 Contents Contents... 1. Introducton...

More information

Today s Outline. Sorting: The Big Picture. Why Sort? Selection Sort: Idea. Insertion Sort: Idea. Sorting Chapter 7 in Weiss.

Today s Outline. Sorting: The Big Picture. Why Sort? Selection Sort: Idea. Insertion Sort: Idea. Sorting Chapter 7 in Weiss. Today s Outlne Sortng Chapter 7 n Wess CSE 26 Data Structures Ruth Anderson Announcements Wrtten Homework #6 due Frday 2/26 at the begnnng of lecture Proect Code due Mon March 1 by 11pm Today s Topcs:

More information

CS1100 Introduction to Programming

CS1100 Introduction to Programming Factoral (n) Recursve Program fact(n) = n*fact(n-) CS00 Introducton to Programmng Recurson and Sortng Madhu Mutyam Department of Computer Scence and Engneerng Indan Insttute of Technology Madras nt fact

More information

Classifier Selection Based on Data Complexity Measures *

Classifier Selection Based on Data Complexity Measures * Classfer Selecton Based on Data Complexty Measures * Edth Hernández-Reyes, J.A. Carrasco-Ochoa, and J.Fco. Martínez-Trndad Natonal Insttute for Astrophyscs, Optcs and Electroncs, Lus Enrque Erro No.1 Sta.

More information

Performance Evaluation of Information Retrieval Systems

Performance Evaluation of Information Retrieval Systems Why System Evaluaton? Performance Evaluaton of Informaton Retreval Systems Many sldes n ths secton are adapted from Prof. Joydeep Ghosh (UT ECE) who n turn adapted them from Prof. Dk Lee (Unv. of Scence

More information

Efficient Distributed File System (EDFS)

Efficient Distributed File System (EDFS) Effcent Dstrbuted Fle System (EDFS) (Sem-Centralzed) Debessay(Debsh) Fesehaye, Rahul Malk & Klara Naherstedt Unversty of Illnos-Urbana Champagn Contents Problem Statement, Related Work, EDFS Desgn Rate

More information

Towards Optimal I/O Scheduling for MEMS-based Storage

Towards Optimal I/O Scheduling for MEMS-based Storage Introducton Towards Optmal I/O Schedulng for MEMS-based Storage Halng Yu, Dvyakant Agrawal, and Amr El Abbad Department of Computer Scence Unversty of Calforna, Santa Barbara {halng,agrawal,amr}@csucsbedu

More information

An Application of the Dulmage-Mendelsohn Decomposition to Sparse Null Space Bases of Full Row Rank Matrices

An Application of the Dulmage-Mendelsohn Decomposition to Sparse Null Space Bases of Full Row Rank Matrices Internatonal Mathematcal Forum, Vol 7, 2012, no 52, 2549-2554 An Applcaton of the Dulmage-Mendelsohn Decomposton to Sparse Null Space Bases of Full Row Rank Matrces Mostafa Khorramzadeh Department of Mathematcal

More information

Constructing Minimum Connected Dominating Set: Algorithmic approach

Constructing Minimum Connected Dominating Set: Algorithmic approach Constructng Mnmum Connected Domnatng Set: Algorthmc approach G.N. Puroht and Usha Sharma Centre for Mathematcal Scences, Banasthal Unversty, Rajasthan 304022 usha.sharma94@yahoo.com Abstract: Connected

More information

Configuration Management in Multi-Context Reconfigurable Systems for Simultaneous Performance and Power Optimizations*

Configuration Management in Multi-Context Reconfigurable Systems for Simultaneous Performance and Power Optimizations* Confguraton Management n Mult-Context Reconfgurable Systems for Smultaneous Performance and Power Optmzatons* Rafael Maestre, Mlagros Fernandez Departamento de Arqutectura de Computadores y Automátca Unversdad

More information

Complex Numbers. Now we also saw that if a and b were both positive then ab = a b. For a second let s forget that restriction and do the following.

Complex Numbers. Now we also saw that if a and b were both positive then ab = a b. For a second let s forget that restriction and do the following. Complex Numbers The last topc n ths secton s not really related to most of what we ve done n ths chapter, although t s somewhat related to the radcals secton as we wll see. We also won t need the materal

More information

Routing in Degree-constrained FSO Mesh Networks

Routing in Degree-constrained FSO Mesh Networks Internatonal Journal of Hybrd Informaton Technology Vol., No., Aprl, 009 Routng n Degree-constraned FSO Mesh Networks Zpng Hu, Pramode Verma, and James Sluss Jr. School of Electrcal & Computer Engneerng

More information

Load-Balanced Anycast Routing

Load-Balanced Anycast Routing Load-Balanced Anycast Routng Chng-Yu Ln, Jung-Hua Lo, and Sy-Yen Kuo Department of Electrcal Engneerng atonal Tawan Unversty, Tape, Tawan sykuo@cc.ee.ntu.edu.tw Abstract For fault-tolerance and load-balance

More information

Active Contours/Snakes

Active Contours/Snakes Actve Contours/Snakes Erkut Erdem Acknowledgement: The sldes are adapted from the sldes prepared by K. Grauman of Unversty of Texas at Austn Fttng: Edges vs. boundares Edges useful sgnal to ndcate occludng

More information

CE 221 Data Structures and Algorithms

CE 221 Data Structures and Algorithms CE 1 ata Structures and Algorthms Chapter 4: Trees BST Text: Read Wess, 4.3 Izmr Unversty of Economcs 1 The Search Tree AT Bnary Search Trees An mportant applcaton of bnary trees s n searchng. Let us assume

More information

Evolutionary Computation for Community Detection in Networks: a Review

Evolutionary Computation for Community Detection in Networks: a Review IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, X 2017 1 Evolutonary Computaton for Communty Detecton n Networks: a Revew Clara Pzzut Abstract In today s world, the nterconnectons among objects

More information

A New Approach For the Ranking of Fuzzy Sets With Different Heights

A New Approach For the Ranking of Fuzzy Sets With Different Heights New pproach For the ankng of Fuzzy Sets Wth Dfferent Heghts Pushpnder Sngh School of Mathematcs Computer pplcatons Thapar Unversty, Patala-7 00 Inda pushpndersnl@gmalcom STCT ankng of fuzzy sets plays

More information

DESIGNING TRANSMISSION SCHEDULES FOR WIRELESS AD HOC NETWORKS TO MAXIMIZE NETWORK THROUGHPUT

DESIGNING TRANSMISSION SCHEDULES FOR WIRELESS AD HOC NETWORKS TO MAXIMIZE NETWORK THROUGHPUT DESIGNING TRANSMISSION SCHEDULES FOR WIRELESS AD HOC NETWORKS TO MAXIMIZE NETWORK THROUGHPUT Bran J. Wolf, Joseph L. Hammond, and Harlan B. Russell Dept. of Electrcal and Computer Engneerng, Clemson Unversty,

More information

UNIT 2 : INEQUALITIES AND CONVEX SETS

UNIT 2 : INEQUALITIES AND CONVEX SETS UNT 2 : NEQUALTES AND CONVEX SETS ' Structure 2. ntroducton Objectves, nequaltes and ther Graphs Convex Sets and ther Geometry Noton of Convex Sets Extreme Ponts of Convex Set Hyper Planes and Half Spaces

More information

Algorithm To Convert A Decimal To A Fraction

Algorithm To Convert A Decimal To A Fraction Algorthm To Convert A ecmal To A Fracton by John Kennedy Mathematcs epartment Santa Monca College 1900 Pco Blvd. Santa Monca, CA 90405 jrkennedy6@gmal.com Except for ths comment explanng that t s blank

More information

Improving Low Density Parity Check Codes Over the Erasure Channel. The Nelder Mead Downhill Simplex Method. Scott Stransky

Improving Low Density Parity Check Codes Over the Erasure Channel. The Nelder Mead Downhill Simplex Method. Scott Stransky Improvng Low Densty Party Check Codes Over the Erasure Channel The Nelder Mead Downhll Smplex Method Scott Stransky Programmng n conjuncton wth: Bors Cukalovc 18.413 Fnal Project Sprng 2004 Page 1 Abstract

More information

On a Local Protocol for Concurrent File Transfers

On a Local Protocol for Concurrent File Transfers On a Local Protocol for Concurrent Fle Transfers MohammadTagh Hajaghay Dep. of Computer Scence Unversty of Maryland College Park, MD hajagha@cs.umd.edu Roht Khandekar IBM T.J. Watson Research Center 19

More information

CS 534: Computer Vision Model Fitting

CS 534: Computer Vision Model Fitting CS 534: Computer Vson Model Fttng Sprng 004 Ahmed Elgammal Dept of Computer Scence CS 534 Model Fttng - 1 Outlnes Model fttng s mportant Least-squares fttng Maxmum lkelhood estmaton MAP estmaton Robust

More information

ELEC 377 Operating Systems. Week 6 Class 3

ELEC 377 Operating Systems. Week 6 Class 3 ELEC 377 Operatng Systems Week 6 Class 3 Last Class Memory Management Memory Pagng Pagng Structure ELEC 377 Operatng Systems Today Pagng Szes Vrtual Memory Concept Demand Pagng ELEC 377 Operatng Systems

More information

Virtual Machine Migration based on Trust Measurement of Computer Node

Virtual Machine Migration based on Trust Measurement of Computer Node Appled Mechancs and Materals Onlne: 2014-04-04 ISSN: 1662-7482, Vols. 536-537, pp 678-682 do:10.4028/www.scentfc.net/amm.536-537.678 2014 Trans Tech Publcatons, Swtzerland Vrtual Machne Mgraton based on

More information

LECTURE NOTES Duality Theory, Sensitivity Analysis, and Parametric Programming

LECTURE NOTES Duality Theory, Sensitivity Analysis, and Parametric Programming CEE 60 Davd Rosenberg p. LECTURE NOTES Dualty Theory, Senstvty Analyss, and Parametrc Programmng Learnng Objectves. Revew the prmal LP model formulaton 2. Formulate the Dual Problem of an LP problem (TUES)

More information