Joint Object Detection and Viewpoint Estimation using CNN features

Size: px
Start display at page:

Download "Joint Object Detection and Viewpoint Estimation using CNN features"

Transcription

1 Joint Object Detection and Viewpoint Estimation using CNN features Carlos Guindel, David Martín and José M. Armingol Intelligent Systems Laboratory Universidad Carlos III de Madrid Wien 28 June 2017

2 Outline 2 Introduction Object detection Viewpoint estimation Results Conclusion

3 Outline 3 Introduction Object detection Viewpoint estimation Results Conclusion

4 Situational awareness for vehicles 4 Advanced Driver Assistance Systems (ADAS) and autonomous vehicles rely on a trustable on-board obstacle detection module. A precise classification of the obstacles enables accurate predictions of future traffic situations, including those involving VRU. Another significant cue that can be used to anticipate future events is the orientation of the objects moving on the ground plane.

5 On-board object detection 5 Laser rangefinder Computer Vision Hand-crafted features Convolutional Neural Networks Recognition Detection

6 Proposal overview 6 RPN Regions RGB Image Convolutional Layers Features Fast R-CNN Faster R-CNN 1 Classification Refined Bounding Box 1 S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp , Viewpoint

7 Outline 7 Introduction Object detection Viewpoint estimation Results Conclusion

8 Object detection 8 Traffic environments Diversity of agents Unstructured environment Faster R-CNN End-to-end feature learning Highly efficient No prior constraints about the location of objects in the image Meant for more than 21 classes S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp , 2016.

9 Faster R-CNN framework 9 Parameters are learned through a multi-task loss Conv. features in these regions are pooled for classification A RPN generates proposals wrt. a fixed set of anchors Convolutional features computed only once per image S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp , 2016.

10 Fine-tuning for traffic environments 10 Optimized anchors Management of class imbalance Information gain multinomial logistic loss for the class inference N NK L = L = 1 N 1,klog( pƹ n,k ) N H ln,l n pƹ n,ln ) n=1 n=1 k=1 Infogain matrix H 0, H K,K

11 Outline 11 Introduction Object detection Viewpoint estimation Results Conclusion

12 Viewpoint estimation 12 1, 2 RPN Regions RGB Image Convolutional Layers Features Fast R-CNN Features can be learned for multiple tasks 4 3 Refined Classification Bounding Box 5 Viewpoint

13 Discrete viewpoint inference 13 N b angle bins Θ i Θ Nb N b = 8 Training: θ i0 Θ i Inference output: r Δ N b 1 r Final estimation: Θ i መθ Elements of r

14 Joint detection and viewpoint estimation 14 CNN outputs RPN Fast R-CNN For each anchor: Objectness For each proposal: Class Predicted bounding box Bounding box refinement Per class Number of angle bins Number of classes Viewpoint N b K N b K elements

15 Joint detection and viewpoint estimation 15 Fast R-CNN B. Box regression Class Viewpoint Softmax Softmax Softmax FC layer FC layer FC layer Fully connected (FC) layers Fixed size feat. vector Only N b K 4096 new weights Conv. design is unchanged Proposal Feature map

16 Loss function and training 16 Approximate joint training strategy Unweighted muli-task loss with five components Logistic loss for RPN objectness Smooth-L1 loss for RPN b.box regression Infogain loss for class L inf p i v i N = H vi,k log(p i,k ) n=1 frequent H vi,k Logistic loss for viewpoint estimation Only the N b elements of the ground-truth class Smooth-L1 loss for b.box regression

17 Outline 17 Introduction Object detection Viewpoint estimation Results Conclusion

18 Experiments 18 On the KITTI Vision Benchmark Suite Object detection dataset Parameters: Scale: 500 px. in height 50k iter. l r = k iter. l r = k iter. l r = VGG16 architecture, initialized with ImageNet weights. Source: KITTI: A. Geiger, P. Lenz, and R. Urtasun, Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite, in Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp

19 Experiments 19 N b = 8 (resolution: π/4 rad) Infogain matrix values: H k,k = 2 f min f k 1 8 Number of ocurrences of the less frequent class Evaluation criteria Number of instances of class k Average precision Average orientation similarity (performance of detection + orientation) Minimum overlaps established by the KITTI benchmark

20 Results (KITTI submission: FRCNN+Or) 20 Detection (AP as %) Easy Moderate Hard Car Pedestrian Cyclist map ,64 SubCNN Slightly different (generally better) than the ones in the paper: Used the whole KITTI training set Trained only with Car, Pedestrian and Cyclist Non-fixed weights (and bias) at the first convolutional layers Det + Or (AOS as %) Easy Moderate Hard Car Pedestrian Cyclist maos ,65 SubCNN SubCNN: Y. Xiang, W. Choi, Y. Lin and S. Savarese, Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection, in IEEE Winter Conference on Applications of Computer Vision (WACV), 2017, pp

21 AOS (%) Comparison with other methods TOP 10 AOS ranking MODERATE difficulty Only published methods Car Pedestrians Cyclists Global rankings (including unpublished methods): Car: 11 st Pedestrian: 9 th Cyclist: 10 th

22 RUNTIME PER FRAME (S) Comparison with other methods 22 5 Reported runtimes for TOP 10 AOS Only published 4,5 4 3,5 3 2,5 2 1,5 1 0, ms* *Average running time using an implementation based on py-faster-rcnn (Python & Caffe) and a NVIDIA Titan Xp kindly donated by NVIDIA Corporation

23 Sample test images 23

24 Outline 24 Introduction Object detection Viewpoint estimation Results Conclusion

25 Conclusion 25 Single-image object detection + orientation estimation in traffic scenes. The same convolutional features can be successfully used for both tasks. Results comparable with non-real-time, sophisticated approaches. Orientation is a step towards a real scene understanding. Future work Fine-grained orientation inference using the cross-entropy logistic loss n L = 1 n n=1 [p n log pƹ n + 1 p n log(1 pƹ n )] Improvements: Network architecture Methods to overcome the fixed-size receptive field Continuously-evolving code at:

26 Thank you for your attention! Carlos Guindel Intelligent Systems Laboratory Universidad Carlos III de Madrid Wien 28 June

27 AVERAGE PRECISION (%) Precision change when introducing viewpoint ,25 77,72 MODERATE DIFFICULTY LEVEL 69,6 67,12 53,08 44,82 Car Pedestrian Cyclist Detection Detection+Viewpoint Detection (ΔAP as %) Easy Moderate Hard Car +0,72 +0,47 +0,26 Pedestrian -1,85-2,47-3,00 Cyclist -12,16-8,25-8,11

Multi-View 3D Object Detection Network for Autonomous Driving

Multi-View 3D Object Detection Network for Autonomous Driving Multi-View 3D Object Detection Network for Autonomous Driving Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, Tian Xia CVPR 2017 (Spotlight) Presented By: Jason Ku Overview Motivation Dataset Network Architecture

More information

MCMOT: Multi-Class Multi-Object Tracking using Changing Point Detection

MCMOT: Multi-Class Multi-Object Tracking using Changing Point Detection MCMOT: Multi-Class Multi-Object Tracking using Changing Point Detection ILSVRC 2016 Object Detection from Video Byungjae Lee¹, Songguo Jin¹, Enkhbayar Erdenee¹, Mi Young Nam², Young Gui Jung², Phill Kyu

More information

Object detection with CNNs

Object detection with CNNs Object detection with CNNs 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before CNNs After CNNs 0% 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 year Region proposals

More information

Depth from Stereo. Dominic Cheng February 7, 2018

Depth from Stereo. Dominic Cheng February 7, 2018 Depth from Stereo Dominic Cheng February 7, 2018 Agenda 1. Introduction to stereo 2. Efficient Deep Learning for Stereo Matching (W. Luo, A. Schwing, and R. Urtasun. In CVPR 2016.) 3. Cascade Residual

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren Kaiming He Ross Girshick Jian Sun Present by: Yixin Yang Mingdong Wang 1 Object Detection 2 1 Applications Basic

More information

Self Driving. DNN * * Reinforcement * Unsupervised *

Self Driving. DNN * * Reinforcement * Unsupervised * CNN 응용 Methods Traditional Deep-Learning based Non-machine Learning Machine-Learning based method Supervised SVM MLP CNN RNN (LSTM) Localizati on GPS, SLAM Self Driving Perception Pedestrian detection

More information

Mask R-CNN. presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma

Mask R-CNN. presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma Mask R-CNN presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma Mask R-CNN Background Related Work Architecture Experiment Mask R-CNN Background Related Work Architecture Experiment Background From left

More information

Spatial Localization and Detection. Lecture 8-1

Spatial Localization and Detection. Lecture 8-1 Lecture 8: Spatial Localization and Detection Lecture 8-1 Administrative - Project Proposals were due on Saturday Homework 2 due Friday 2/5 Homework 1 grades out this week Midterm will be in-class on Wednesday

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun Presented by Tushar Bansal Objective 1. Get bounding box for all objects

More information

CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm

CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm Instructions This is an individual assignment. Individual means each student must hand in their

More information

Regionlet Object Detector with Hand-crafted and CNN Feature

Regionlet Object Detector with Hand-crafted and CNN Feature Regionlet Object Detector with Hand-crafted and CNN Feature Xiaoyu Wang Research Xiaoyu Wang Research Ming Yang Horizon Robotics Shenghuo Zhu Alibaba Group Yuanqing Lin Baidu Overview of this section Regionlet

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

Introduction to Deep Learning for Facial Understanding Part III: Regional CNNs

Introduction to Deep Learning for Facial Understanding Part III: Regional CNNs Introduction to Deep Learning for Facial Understanding Part III: Regional CNNs Raymond Ptucha, Rochester Institute of Technology, USA Tutorial-9 May 19, 218 www.nvidia.com/dli R. Ptucha 18 1 Fair Use Agreement

More information

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Object Detection CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Problem Description Arguably the most important part of perception Long term goals for object recognition: Generalization

More information

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS Zhao Chen Machine Learning Intern, NVIDIA ABOUT ME 5th year PhD student in physics @ Stanford by day, deep learning computer vision scientist

More information

Unified, real-time object detection

Unified, real-time object detection Unified, real-time object detection Final Project Report, Group 02, 8 Nov 2016 Akshat Agarwal (13068), Siddharth Tanwar (13699) CS698N: Recent Advances in Computer Vision, Jul Nov 2016 Instructor: Gaurav

More information

Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection

Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection Yu Xiang 1, Wongun Choi 2, Yuanqing Lin 3, and Silvio Savarese 4 1 University of Washington, 2 NEC Laboratories America,

More information

arxiv: v1 [cs.cv] 20 Dec 2016

arxiv: v1 [cs.cv] 20 Dec 2016 End-to-End Pedestrian Collision Warning System based on a Convolutional Neural Network with Semantic Segmentation arxiv:1612.06558v1 [cs.cv] 20 Dec 2016 Heechul Jung heechul@dgist.ac.kr Min-Kook Choi mkchoi@dgist.ac.kr

More information

R-FCN: Object Detection with Really - Friggin Convolutional Networks

R-FCN: Object Detection with Really - Friggin Convolutional Networks R-FCN: Object Detection with Really - Friggin Convolutional Networks Jifeng Dai Microsoft Research Li Yi Tsinghua Univ. Kaiming He FAIR Jian Sun Microsoft Research NIPS, 2016 Or Region-based Fully Convolutional

More information

Object Detection Based on Deep Learning

Object Detection Based on Deep Learning Object Detection Based on Deep Learning Yurii Pashchenko AI Ukraine 2016, Kharkiv, 2016 Image classification (mostly what you ve seen) http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf

More information

Real-time Object Detection CS 229 Course Project

Real-time Object Detection CS 229 Course Project Real-time Object Detection CS 229 Course Project Zibo Gong 1, Tianchang He 1, and Ziyi Yang 1 1 Department of Electrical Engineering, Stanford University December 17, 2016 Abstract Objection detection

More information

Classification of objects from Video Data (Group 30)

Classification of objects from Video Data (Group 30) Classification of objects from Video Data (Group 30) Sheallika Singh 12665 Vibhuti Mahajan 12792 Aahitagni Mukherjee 12001 M Arvind 12385 1 Motivation Video surveillance has been employed for a long time

More information

Yiqi Yan. May 10, 2017

Yiqi Yan. May 10, 2017 Yiqi Yan May 10, 2017 P a r t I F u n d a m e n t a l B a c k g r o u n d s Convolution Single Filter Multiple Filters 3 Convolution: case study, 2 filters 4 Convolution: receptive field receptive field

More information

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION Kingsley Kuan 1, Gaurav Manek 1, Jie Lin 1, Yuan Fang 1, Vijay Chandrasekhar 1,2 Institute for Infocomm Research, A*STAR, Singapore 1 Nanyang Technological

More information

Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab.

Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab. [ICIP 2017] Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab., POSTECH Pedestrian Detection Goal To draw bounding boxes that

More information

MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK. Wenjie Guan, YueXian Zou*, Xiaoqun Zhou

MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK. Wenjie Guan, YueXian Zou*, Xiaoqun Zhou MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK Wenjie Guan, YueXian Zou*, Xiaoqun Zhou ADSPLAB/Intelligent Lab, School of ECE, Peking University, Shenzhen,518055, China

More information

Visual features detection based on deep neural network in autonomous driving tasks

Visual features detection based on deep neural network in autonomous driving tasks 430 Fomin I., Gromoshinskii D., Stepanov D. Visual features detection based on deep neural network in autonomous driving tasks Ivan Fomin, Dmitrii Gromoshinskii, Dmitry Stepanov Computer vision lab Russian

More information

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation Object detection using Region Proposals (RCNN) Ernest Cheung COMP790-125 Presentation 1 2 Problem to solve Object detection Input: Image Output: Bounding box of the object 3 Object detection using CNN

More information

Object Detection on Self-Driving Cars in China. Lingyun Li

Object Detection on Self-Driving Cars in China. Lingyun Li Object Detection on Self-Driving Cars in China Lingyun Li Introduction Motivation: Perception is the key of self-driving cars Data set: 10000 images with annotation 2000 images without annotation (not

More information

arxiv: v4 [cs.cv] 12 Jul 2018

arxiv: v4 [cs.cv] 12 Jul 2018 Joint 3D Proposal Generation and Object Detection from View Aggregation Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, and Steven L. Waslander arxiv:1712.02294v4 [cs.cv] 12 Jul 2018 Abstract We

More information

Lecture 5: Object Detection

Lecture 5: Object Detection Object Detection CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 5: Object Detection Bohyung Han Computer Vision Lab. bhhan@postech.ac.kr 2 Traditional Object Detection Algorithms Region-based

More information

A Study of Vehicle Detector Generalization on U.S. Highway

A Study of Vehicle Detector Generalization on U.S. Highway 26 IEEE 9th International Conference on Intelligent Transportation Systems (ITSC) Windsor Oceanico Hotel, Rio de Janeiro, Brazil, November -4, 26 A Study of Vehicle Generalization on U.S. Highway Rakesh

More information

Efficient Segmentation-Aided Text Detection For Intelligent Robots

Efficient Segmentation-Aided Text Detection For Intelligent Robots Efficient Segmentation-Aided Text Detection For Intelligent Robots Junting Zhang, Yuewei Na, Siyang Li, C.-C. Jay Kuo University of Southern California Outline Problem Definition and Motivation Related

More information

Deep Convolutional Neural Networks for Pedestrian Detection with Skip Pooling

Deep Convolutional Neural Networks for Pedestrian Detection with Skip Pooling Deep Convolutional Neural Networks for Pedestrian Detection with Skip Pooling Jie Liu, Xingkun Gao, Nianyuan Bao, Jie Tang, and Gangshan Wu State Key Laboratory for Novel Software Technology, Nanjing University,

More information

VISION FOR AUTOMOTIVE DRIVING

VISION FOR AUTOMOTIVE DRIVING VISION FOR AUTOMOTIVE DRIVING French Japanese Workshop on Deep Learning & AI, Paris, October 25th, 2017 Quoc Cuong PHAM, PhD Vision and Content Engineering Lab AI & MACHINE LEARNING FOR ADAS AND SELF-DRIVING

More information

YOLO9000: Better, Faster, Stronger

YOLO9000: Better, Faster, Stronger YOLO9000: Better, Faster, Stronger Date: January 24, 2018 Prepared by Haris Khan (University of Toronto) Haris Khan CSC2548: Machine Learning in Computer Vision 1 Overview 1. Motivation for one-shot object

More information

arxiv: v1 [cs.cv] 1 Dec 2016

arxiv: v1 [cs.cv] 1 Dec 2016 arxiv:1612.00496v1 [cs.cv] 1 Dec 2016 3D Bounding Box Estimation Using Deep Learning and Geometry Arsalan Mousavian George Mason University Dragomir Anguelov Zoox, Inc. John Flynn Zoox, Inc. amousavi@gmu.edu

More information

3 Object Detection. BVM 2018 Tutorial: Advanced Deep Learning Methods. Paul F. Jaeger, Division of Medical Image Computing

3 Object Detection. BVM 2018 Tutorial: Advanced Deep Learning Methods. Paul F. Jaeger, Division of Medical Image Computing 3 Object Detection BVM 2018 Tutorial: Advanced Deep Learning Methods Paul F. Jaeger, of Medical Image Computing What is object detection? classification segmentation obj. detection (1 label per pixel)

More information

Automatic detection of books based on Faster R-CNN

Automatic detection of books based on Faster R-CNN Automatic detection of books based on Faster R-CNN Beibei Zhu, Xiaoyu Wu, Lei Yang, Yinghua Shen School of Information Engineering, Communication University of China Beijing, China e-mail: zhubeibei@cuc.edu.cn,

More information

OBJECT DETECTION HYUNG IL KOO

OBJECT DETECTION HYUNG IL KOO OBJECT DETECTION HYUNG IL KOO INTRODUCTION Computer Vision Tasks Classification + Localization Classification: C-classes Input: image Output: class label Evaluation metric: accuracy Localization Input:

More information

Fine-tuning Pre-trained Large Scaled ImageNet model on smaller dataset for Detection task

Fine-tuning Pre-trained Large Scaled ImageNet model on smaller dataset for Detection task Fine-tuning Pre-trained Large Scaled ImageNet model on smaller dataset for Detection task Kyunghee Kim Stanford University 353 Serra Mall Stanford, CA 94305 kyunghee.kim@stanford.edu Abstract We use a

More information

Multi-View 3D Object Detection Network for Autonomous Driving

Multi-View 3D Object Detection Network for Autonomous Driving Multi-View 3D Object Detection Network for Autonomous Driving Xiaozhi Chen 1, Huimin Ma 1, Ji Wan 2, Bo Li 2, Tian Xia 2 1 Department of Electronic Engineering, Tsinghua University 2 Baidu Inc. {chenxz12@mails.,

More information

Project 3 Q&A. Jonathan Krause

Project 3 Q&A. Jonathan Krause Project 3 Q&A Jonathan Krause 1 Outline R-CNN Review Error metrics Code Overview Project 3 Report Project 3 Presentations 2 Outline R-CNN Review Error metrics Code Overview Project 3 Report Project 3 Presentations

More information

Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object Parsing Supplementary Material

Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object Parsing Supplementary Material Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object Parsing Supplementary Material Chi Li, M. Zeeshan Zia 2, Quoc-Huy Tran 2, Xiang Yu 2, Gregory D. Hager, and Manmohan Chandraker 2 Johns

More information

SSD: Single Shot MultiBox Detector. Author: Wei Liu et al. Presenter: Siyu Jiang

SSD: Single Shot MultiBox Detector. Author: Wei Liu et al. Presenter: Siyu Jiang SSD: Single Shot MultiBox Detector Author: Wei Liu et al. Presenter: Siyu Jiang Outline 1. Motivations 2. Contributions 3. Methodology 4. Experiments 5. Conclusions 6. Extensions Motivation Motivation

More information

CS6501: Deep Learning for Visual Recognition. Object Detection I: RCNN, Fast-RCNN, Faster-RCNN

CS6501: Deep Learning for Visual Recognition. Object Detection I: RCNN, Fast-RCNN, Faster-RCNN CS6501: Deep Learning for Visual Recognition Object Detection I: RCNN, Fast-RCNN, Faster-RCNN Today s Class Object Detection The RCNN Object Detector (2014) The Fast RCNN Object Detector (2015) The Faster

More information

Final Report: Smart Trash Net: Waste Localization and Classification

Final Report: Smart Trash Net: Waste Localization and Classification Final Report: Smart Trash Net: Waste Localization and Classification Oluwasanya Awe oawe@stanford.edu Robel Mengistu robel@stanford.edu December 15, 2017 Vikram Sreedhar vsreed@stanford.edu Abstract Given

More information

arxiv: v1 [cs.cv] 16 Mar 2018

arxiv: v1 [cs.cv] 16 Mar 2018 arxiv:1803.06199v1 [cs.cv] 16 Mar 2018 Complex-YOLO: An Euler-Region-Proposal for Real-time 3D Object Detection on Point Clouds Martin Simon *, Stefan Milz, Karl Amende *, Horst-Michael Gross * Valeo Schalter

More information

Supplementary Material for Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains

Supplementary Material for Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains Supplementary Material for Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains Jiahao Pang 1 Wenxiu Sun 1 Chengxi Yang 1 Jimmy Ren 1 Ruichao Xiao 1 Jin Zeng 1 Liang Lin 1,2 1 SenseTime Research

More information

R-FCN: OBJECT DETECTION VIA REGION-BASED FULLY CONVOLUTIONAL NETWORKS

R-FCN: OBJECT DETECTION VIA REGION-BASED FULLY CONVOLUTIONAL NETWORKS R-FCN: OBJECT DETECTION VIA REGION-BASED FULLY CONVOLUTIONAL NETWORKS JIFENG DAI YI LI KAIMING HE JIAN SUN MICROSOFT RESEARCH TSINGHUA UNIVERSITY MICROSOFT RESEARCH MICROSOFT RESEARCH SPEED/ACCURACY TRADE-OFFS

More information

arxiv: v2 [cs.cv] 10 Apr 2017

arxiv: v2 [cs.cv] 10 Apr 2017 arxiv:1612.00496v2 [cs.cv] 10 Apr 2017 3D Bounding Box Estimation Using Deep Learning and Geometry Arsalan Mousavian George Mason University Dragomir Anguelov Zoox, Inc. John Flynn Zoox, Inc. amousavi@gmu.edu

More information

Cascade Region Regression for Robust Object Detection

Cascade Region Regression for Robust Object Detection Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Cascade Region Regression for Robust Object Detection Jiankang Deng, Shaoli Huang, Jing Yang, Hui Shuai, Zhengbo Yu, Zongguang Lu, Qiang Ma, Yali

More information

3D Bounding Box Estimation Using Deep Learning and Geometry

3D Bounding Box Estimation Using Deep Learning and Geometry 3D Bounding Box Estimation Using Deep Learning and Geometry Arsalan Mousavian George Mason University amousavi@gmu.edu Dragomir Anguelov Zoox, Inc. drago@zoox.com Jana Košecká George Mason University kosecka@gmu.edu

More information

EFFECTIVE OBJECT DETECTION FROM TRAFFIC CAMERA VIDEOS. Honghui Shi, Zhichao Liu*, Yuchen Fan, Xinchao Wang, Thomas Huang

EFFECTIVE OBJECT DETECTION FROM TRAFFIC CAMERA VIDEOS. Honghui Shi, Zhichao Liu*, Yuchen Fan, Xinchao Wang, Thomas Huang EFFECTIVE OBJECT DETECTION FROM TRAFFIC CAMERA VIDEOS Honghui Shi, Zhichao Liu*, Yuchen Fan, Xinchao Wang, Thomas Huang Image Formation and Processing (IFP) Group, University of Illinois at Urbana-Champaign

More information

Object Detection and Its Implementation on Android Devices

Object Detection and Its Implementation on Android Devices Object Detection and Its Implementation on Android Devices Zhongjie Li Stanford University 450 Serra Mall, Stanford, CA 94305 jay2015@stanford.edu Rao Zhang Stanford University 450 Serra Mall, Stanford,

More information

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia Deep learning for dense per-pixel prediction Chunhua Shen The University of Adelaide, Australia Image understanding Classification error Convolution Neural Networks 0.3 0.2 0.1 Image Classification [Krizhevsky

More information

Distance estimation with 2.5D anchors and its application to robot navigation

Distance estimation with 2.5D anchors and its application to robot navigation https://doi.org/10.1186/s40648-018-0119-5 RESEARCH ARTICLE Open Access Distance estimation with 2.5D anchors and its application to robot navigation Hirotaka Hachiya 1*, Yuki Saito 2, Kazuma Iteya 1, Masaya

More information

Mask R-CNN. By Kaiming He, Georgia Gkioxari, Piotr Dollar and Ross Girshick Presented By Aditya Sanghi

Mask R-CNN. By Kaiming He, Georgia Gkioxari, Piotr Dollar and Ross Girshick Presented By Aditya Sanghi Mask R-CNN By Kaiming He, Georgia Gkioxari, Piotr Dollar and Ross Girshick Presented By Aditya Sanghi Types of Computer Vision Tasks http://cs231n.stanford.edu/ Semantic vs Instance Segmentation Image

More information

Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning

Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning Allan Zelener Dissertation Proposal December 12 th 2016 Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning Overview 1. Introduction to 3D Object Identification

More information

Optimizing Object Detection:

Optimizing Object Detection: Lecture 10: Optimizing Object Detection: A Case Study of R-CNN, Fast R-CNN, and Faster R-CNN Visual Computing Systems Today s task: object detection Image classification: what is the object in this image?

More information

Illuminating Pedestrians via Simultaneous Detection & Segmentation

Illuminating Pedestrians via Simultaneous Detection & Segmentation Illuminating Pedestrians via Simultaneous Detection & Segmentation Garrick Brazil, Xi Yin, Xiaoming Liu Michigan State University, East Lansing, MI 48824 {brazilga, yinxi1, liuxm}@msu.edu Abstract Pedestrian

More information

FCHD: A fast and accurate head detector

FCHD: A fast and accurate head detector JOURNAL OF L A TEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1 FCHD: A fast and accurate head detector Aditya Vora, Johnson Controls Inc. arxiv:1809.08766v2 [cs.cv] 26 Sep 2018 Abstract In this paper, we

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

Accurate Single Stage Detector Using Recurrent Rolling Convolution

Accurate Single Stage Detector Using Recurrent Rolling Convolution Accurate Single Stage Detector Using Recurrent Rolling Convolution Jimmy Ren Xiaohao Chen Jianbo Liu Wenxiu Sun Jiahao Pang Qiong Yan Yu-Wing Tai Li Xu SenseTime Group Limited {rensijie, chenxiaohao, liujianbo,

More information

DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material

DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material Yi Li 1, Gu Wang 1, Xiangyang Ji 1, Yu Xiang 2, and Dieter Fox 2 1 Tsinghua University, BNRist 2 University of Washington

More information

CEA LIST s participation to the Scalable Concept Image Annotation task of ImageCLEF 2015

CEA LIST s participation to the Scalable Concept Image Annotation task of ImageCLEF 2015 CEA LIST s participation to the Scalable Concept Image Annotation task of ImageCLEF 2015 Etienne Gadeski, Hervé Le Borgne, and Adrian Popescu CEA, LIST, Laboratory of Vision and Content Engineering, France

More information

Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object Parsing

Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object Parsing Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object Parsing Supplementary Material Introduction In this supplementary material, Section 2 details the 3D annotation for CAD models and real

More information

Fast Vehicle Detector for Autonomous Driving

Fast Vehicle Detector for Autonomous Driving Fast Vehicle Detector for Autonomous Driving Che-Tsung Lin 1,2, Patrisia Sherryl Santoso 2, Shu-Ping Chen 1, Hung-Jin Lin 1, Shang-Hong Lai 1 1 Department of Computer Science, National Tsing Hua University,

More information

ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems (Supplementary Materials)

ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems (Supplementary Materials) ActiveStereoNet: End-to-End Self-Supervised Learning for Active Stereo Systems (Supplementary Materials) Yinda Zhang 1,2, Sameh Khamis 1, Christoph Rhemann 1, Julien Valentin 1, Adarsh Kowdle 1, Vladimir

More information

Convolutional Neural Networks: Applications and a short timeline. 7th Deep Learning Meetup Kornel Kis Vienna,

Convolutional Neural Networks: Applications and a short timeline. 7th Deep Learning Meetup Kornel Kis Vienna, Convolutional Neural Networks: Applications and a short timeline 7th Deep Learning Meetup Kornel Kis Vienna, 1.12.2016. Introduction Currently a master student Master thesis at BME SmartLab Started deep

More information

POINT CLOUD DEEP LEARNING

POINT CLOUD DEEP LEARNING POINT CLOUD DEEP LEARNING Innfarn Yoo, 3/29/28 / 57 Introduction AGENDA Previous Work Method Result Conclusion 2 / 57 INTRODUCTION 3 / 57 2D OBJECT CLASSIFICATION Deep Learning for 2D Object Classification

More information

Machine learning based automatic extrinsic calibration of an onboard monocular camera for driving assistance applications on smart mobile devices

Machine learning based automatic extrinsic calibration of an onboard monocular camera for driving assistance applications on smart mobile devices Technical University of Cluj-Napoca Image Processing and Pattern Recognition Research Center www.cv.utcluj.ro Machine learning based automatic extrinsic calibration of an onboard monocular camera for driving

More information

A FRAMEWORK OF EXTRACTING MULTI-SCALE FEATURES USING MULTIPLE CONVOLUTIONAL NEURAL NETWORKS. Kuan-Chuan Peng and Tsuhan Chen

A FRAMEWORK OF EXTRACTING MULTI-SCALE FEATURES USING MULTIPLE CONVOLUTIONAL NEURAL NETWORKS. Kuan-Chuan Peng and Tsuhan Chen A FRAMEWORK OF EXTRACTING MULTI-SCALE FEATURES USING MULTIPLE CONVOLUTIONAL NEURAL NETWORKS Kuan-Chuan Peng and Tsuhan Chen School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

More information

Driving dataset in the wild: Various driving scenes

Driving dataset in the wild: Various driving scenes Driving dataset in the wild: Various driving scenes Kurt Keutzer Byung Gon Song John Chuang, Ed. Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2016-92

More information

3D model classification using convolutional neural network

3D model classification using convolutional neural network 3D model classification using convolutional neural network JunYoung Gwak Stanford jgwak@cs.stanford.edu Abstract Our goal is to classify 3D models directly using convolutional neural network. Most of existing

More information

Fully-Convolutional Siamese Networks for Object Tracking

Fully-Convolutional Siamese Networks for Object Tracking Fully-Convolutional Siamese Networks for Object Tracking Luca Bertinetto*, Jack Valmadre*, João Henriques, Andrea Vedaldi and Philip Torr www.robots.ox.ac.uk/~luca luca.bertinetto@eng.ox.ac.uk Tracking

More information

arxiv: v1 [cs.cv] 22 Mar 2017

arxiv: v1 [cs.cv] 22 Mar 2017 Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image Florian Chabot 1, Mohamed Chaouch 1, Jaonary Rabarisoa 1, Céline Teulière 2, Thierry Chateau 2 1

More information

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides Deep Learning in Visual Recognition Thanks Da Zhang for the slides Deep Learning is Everywhere 2 Roadmap Introduction Convolutional Neural Network Application Image Classification Object Detection Object

More information

SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving

SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving : Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving Bichen Wu 1, Forrest Iandola 1,2, Peter H. Jin 1, Kurt Keutzer 1,2 1 UC Berkeley, 2

More information

Multi-View 3D Object Detection Network for Autonomous Driving

Multi-View 3D Object Detection Network for Autonomous Driving Multi-View 3D Object Detection Network for Autonomous Driving Xiaozhi Chen 1, Huimin Ma 1, Ji Wan 2, Bo Li 2, Tian Xia 2 1 Department of Electronic Engineering, Tsinghua University 2 Baidu Inc. {chenxz12@mails.,

More information

Finding Tiny Faces Supplementary Materials

Finding Tiny Faces Supplementary Materials Finding Tiny Faces Supplementary Materials Peiyun Hu, Deva Ramanan Robotics Institute Carnegie Mellon University {peiyunh,deva}@cs.cmu.edu 1. Error analysis Quantitative analysis We plot the distribution

More information

Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations, and Hardware Implications

Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations, and Hardware Implications Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations, and Hardware Implications Jongsoo Park Facebook AI System SW/HW Co-design Team Sep-21 2018 Team Introduction

More information

Fully-Convolutional Siamese Networks for Object Tracking

Fully-Convolutional Siamese Networks for Object Tracking Fully-Convolutional Siamese Networks for Object Tracking Luca Bertinetto*, Jack Valmadre*, João Henriques, Andrea Vedaldi and Philip Torr www.robots.ox.ac.uk/~luca luca.bertinetto@eng.ox.ac.uk Tracking

More information

Semantic Segmentation

Semantic Segmentation Semantic Segmentation UCLA:https://goo.gl/images/I0VTi2 OUTLINE Semantic Segmentation Why? Paper to talk about: Fully Convolutional Networks for Semantic Segmentation. J. Long, E. Shelhamer, and T. Darrell,

More information

Object Detection and Classification in Occupancy Grid Maps using Deep Convolutional Networks

Object Detection and Classification in Occupancy Grid Maps using Deep Convolutional Networks arxiv:1805.08689v2 [cs.cv] 5 Dec 2018 Object Detection and Classification in Occupancy Grid Maps using Deep Convolutional Networks Sascha Wirges, Tom Fischer and Christoph Stiller Jesus Balado Frias Mobile

More information

LEARNING TO INFER GRAPHICS PROGRAMS FROM HAND DRAWN IMAGES

LEARNING TO INFER GRAPHICS PROGRAMS FROM HAND DRAWN IMAGES LEARNING TO INFER GRAPHICS PROGRAMS FROM HAND DRAWN IMAGES Kevin Ellis - MIT, Daniel Ritchie - Brown University, Armando Solar-Lezama - MIT, Joshua b. Tenenbaum - MIT Presented by : Maliha Arif Advanced

More information

A Novel Representation and Pipeline for Object Detection

A Novel Representation and Pipeline for Object Detection A Novel Representation and Pipeline for Object Detection Vishakh Hegde Stanford University vishakh@stanford.edu Manik Dhar Stanford University dmanik@stanford.edu Abstract Object detection is an important

More information

arxiv: v3 [cs.cv] 2 Jun 2017

arxiv: v3 [cs.cv] 2 Jun 2017 Incorporating the Knowledge of Dermatologists to Convolutional Neural Networks for the Diagnosis of Skin Lesions arxiv:1703.01976v3 [cs.cv] 2 Jun 2017 Iván González-Díaz Department of Signal Theory and

More information

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Presented by: Rex Ying and Charles Qi Input: A Single RGB Image Estimate

More information

Fuzzy Set Theory in Computer Vision: Example 3

Fuzzy Set Theory in Computer Vision: Example 3 Fuzzy Set Theory in Computer Vision: Example 3 Derek T. Anderson and James M. Keller FUZZ-IEEE, July 2017 Overview Purpose of these slides are to make you aware of a few of the different CNN architectures

More information

Using Faster-RCNN to Improve Shape Detection in LIDAR

Using Faster-RCNN to Improve Shape Detection in LIDAR Using Faster-RCNN to Improve Shape Detection in LIDAR TJ Melanson Stanford University Stanford, CA 94305 melanson@stanford.edu Abstract In this paper, I propose a method for extracting objects from unordered

More information

Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon

Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon Deep Learning For Video Classification Presented by Natalie Carlebach & Gil Sharon Overview Of Presentation Motivation Challenges of video classification Common datasets 4 different methods presented in

More information

Content-Based Image Recovery

Content-Based Image Recovery Content-Based Image Recovery Hong-Yu Zhou and Jianxin Wu National Key Laboratory for Novel Software Technology Nanjing University, China zhouhy@lamda.nju.edu.cn wujx2001@nju.edu.cn Abstract. We propose

More information

DepthCN: Vehicle Detection Using 3D-LIDAR and ConvNet

DepthCN: Vehicle Detection Using 3D-LIDAR and ConvNet DepthCN: Vehicle Detection Using 3D-LIDAR and ConvNet Alireza Asvadi, Luis Garrote, Cristiano Premebida, Paulo Peixoto and Urbano J. Nunes Abstract This paper addresses the problem of vehicle detection

More information

Channel Locality Block: A Variant of Squeeze-and-Excitation

Channel Locality Block: A Variant of Squeeze-and-Excitation Channel Locality Block: A Variant of Squeeze-and-Excitation 1 st Huayu Li Northern Arizona University Flagstaff, United State Northern Arizona University hl459@nau.edu arxiv:1901.01493v1 [cs.lg] 6 Jan

More information

DEEP NEURAL NETWORKS CHANGING THE AUTONOMOUS VEHICLE LANDSCAPE. Dennis Lui August 2017

DEEP NEURAL NETWORKS CHANGING THE AUTONOMOUS VEHICLE LANDSCAPE. Dennis Lui August 2017 DEEP NEURAL NETWORKS CHANGING THE AUTONOMOUS VEHICLE LANDSCAPE Dennis Lui August 2017 THE RISE OF GPU COMPUTING APPLICATIONS 10 7 10 6 GPU-Computing perf 1.5X per year 1000X by 2025 ALGORITHMS 10 5 1.1X

More information

AUTONOMOUS driving is receiving a lot of attention

AUTONOMOUS driving is receiving a lot of attention 3D Object Proposals using Stereo Imagery for Accurate Object Class Detection Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Huimin Ma, Sanja Fidler and Raquel Urtasun arxiv:68.77v2 [cs.cv] 25 Apr 27 Abstract

More information

A CLOSER LOOK: SMALL OBJECT DETECTION IN FASTER R-CNN. Christian Eggert, Stephan Brehm, Anton Winschel, Dan Zecha, Rainer Lienhart

A CLOSER LOOK: SMALL OBJECT DETECTION IN FASTER R-CNN. Christian Eggert, Stephan Brehm, Anton Winschel, Dan Zecha, Rainer Lienhart A CLOSER LOOK: SMALL OBJECT DETECTION IN FASTER R-CNN Christian Eggert, Stephan Brehm, Anton Winschel, Dan Zecha, Rainer Lienhart Multimedia Computing and Computer Vision Lab University of Augsburg ABSTRACT

More information

Perceiving the 3D World from Images and Videos. Yu Xiang Postdoctoral Researcher University of Washington

Perceiving the 3D World from Images and Videos. Yu Xiang Postdoctoral Researcher University of Washington Perceiving the 3D World from Images and Videos Yu Xiang Postdoctoral Researcher University of Washington 1 2 Act in the 3D World Sensing & Understanding Acting Intelligent System 3D World 3 Understand

More information

CS230: Lecture 3 Various Deep Learning Topics

CS230: Lecture 3 Various Deep Learning Topics CS230: Lecture 3 Various Deep Learning Topics Kian Katanforoosh, Andrew Ng Today s outline We will learn how to: - Analyse a problem from a deep learning approach - Choose an architecture - Choose a loss

More information