R-FCN: OBJECT DETECTION VIA REGION-BASED FULLY CONVOLUTIONAL NETWORKS

Size: px
Start display at page:

Download "R-FCN: OBJECT DETECTION VIA REGION-BASED FULLY CONVOLUTIONAL NETWORKS"

Transcription

1 R-FCN: OBJECT DETECTION VIA REGION-BASED FULLY CONVOLUTIONAL NETWORKS JIFENG DAI YI LI KAIMING HE JIAN SUN MICROSOFT RESEARCH TSINGHUA UNIVERSITY MICROSOFT RESEARCH MICROSOFT RESEARCH SPEED/ACCURACY TRADE-OFFS FOR MODERN CONVOLUTIONAL OBJECT DETECTORS JONATHAN HUANG VIVEK RATHOD CHEN SUN MENGLONG ZHU ANOOP KORATTIKARA ALIREZA FATHI IAN FISCHER ZBIGNIEW WOJNA YANG SONG SERGIO GUADARRAMA KEVIN MURPHY Deep Learning Seminar Tel-Aviv university Instructor: Dr. Raja Giryes Gilad Uziel Netzah Calamaro

2 Introduction There are two family methods for object detection region - based - (two stages) single - shot (one stage) R-FCN is hybrid of both Use Region Proposal Network (RPN) Work on entire image simultaneously

3 ROI ROI The Main Idea k ROI k k k k k Feature maps k k ROI k k k k

4 R-FCN Architecture

5 R-FCN Architecture

6 R-FCN Architecture

7 R-FCN Architecture

8 R-FCN Architecture

9 R-FCN Architecture

10 Bounding Box Aside from the k 2 c + 1 -d convolutional layer, we append a sibling 4k 2 -d convolutional layer for bounding box regression. The position-sensitive RoI pooling is performed on this bank of 4k 2 maps. producing a 4k 2 -d vector for each RoI. Then it is aggregated into a 4-d vector by average voting. This 4-d vector parameterizes a bounding box as t = (t x, t y, t w, t h ).

11 Visualization Visualization of R-FCN for the person category when an RoI does not correctly overlap the object (k k = 3 3).

12 Visualization Visualization of R-FCN for the person category when an RoI does correctly overlap the object (k k = 3 3).

13 Loss Function L(s, t x,y,w,h ) = L cls s c + λ c > 0 L reg t, t. L cls s c computed by Softmax function. L reg t, t computed by smooth L1 function. c > 0 - indicator which equals to 1 if the argument is true and 0 otherwise. We set the balance weight λ = 1. c - RoI s ground-truth label (c = 0 means background). t - RoI s ground-truth box.

14 Backpropagation For the RPN we define positive examples as the RoIs that have intersection-over-union (IoU) overlap with a ground-truth box of at least 0.5, and negative otherwise. Backpropagation is performed based on B = 128 RoIs that have the highest loss (positive and negative) the selected examples.

15 Backbone Architecture The incarnation of R-FCN based on ResNet-101. ResNet-101 has 100 convolutional layers followed by global average pooling and a 1000-class fc layer. We remove the average pooling layer and the fc layer and only use the convolutional layers to compute feature maps. The last convolutional block in ResNet-101 is 2048-d, and we attach a randomly initialized 1024-d 1 1 convolutional layer for reducing dimension. Then we apply the k 2 (c + 1) - channel convolutional layer to generate score maps.

16 Results No. of proposals K X K = 7 X % map - on the PASCAL VOC ms - test time, per image

17 Speed/accuracy trade-offs for modern convolutional object detectors Comparative study of R-FCN, SSD and Faster R-CNN

18 motivation of 2 nd paper Most works discuss only accuracy: This work focus also on memory/speed and on accuracy/speed/memory trade-off Selection of correct algorithm for a specific purpose, and optimization of parameters within that algorithm: 1. Mobile devices (cellular) require low memory footprint 2. Autonomous cars require real-time performance = speed and accuracy 3. Server-side applications such as google/ facebook require accuracy still throughput bottleneck 4. Contests require accuracy Compare apples vs apples require an objective, comprehensive test bench that can show the differences need to develop a test bench SSD+ YOLO SSD Summit Bhala Faster R-CNN performance (kaimin He) R-FCN performance (Vatsal Srivastava)

19 Location of videos: Yolo vs SSD: R-FCN: Faster R-CNNN:

20 motivation of 2 nd paper There are sweet points on the trade-off graph, where investment of a lot of GPU time yield small accuracy gain. This may be looked reversibly: one may invest much less GPU time with little accuracy loss

21 Comparative architecture reminder Results SSD Faster R-CNN R-FCN

22 EXPERIMENTAL PLATFORM Use 6 feature extractors at all detectors VGG-16 ResNet101 Inspection V2 (semantic segmentation) Inspection V3 Inspection ResNet MobileNet Which platforms used

23 EXPERIMENTAL PLATFORM ADDITIONAL DETAILS

24 Loss function configuration What is the loss function Matching anchors to ground-truth instances Argmax vs. Bipartite matching Input size configuration Computation platform: Intel Xeon E (6 cores) Nvidia GTX titan GPU 4 times more computation than home gamer card W X h size rectangle L1 norm location loss function תחום רחב Variable resolution input size assure

25 Training and hyper-parameter training Asynchronous SGD when some mini-batch compute it s gradient it is added to the total gradient without waiting for the others and continue it s training. Might cause delayed SGD but is faster. Results:

26 Mean Average Precision (map) (mili sec)

27 Mean Average Precision (map) conclusions R-FCN, SSD are faster than R-CNN on average Faster R-CNN is more accurate Sweet spot: a point where in order to obtain little more accuracy much speed must be sacrificed. Another way to view Sweet spot : little GPU is invested without sacrifice too much accuracy Larger feature extractors are slower What is inception?

28 Mean Average Precision (map) Colored by feature extractor (mili sec)

29 Mean Average Precision (map) Colored by feature extractor - conclusions Larger feature extractors are slower The colored cluster show relation to feature extractor. Architectures (R- FCN, R-CNN,SSD) were implemented using various feature extractors That makes the test bench variable MobileNet, Inception V2 are faster on average than inception Resnet V2 due to being smaller feature extractors Sweet spot: a point where in order to obtain little more accuracy - much speed must be sacrificed

30 Memory vs. GPU time for different feature extractors (mili sec)

31 Memory vs. GPU for different feature extractors - conclusions Larger feature extractors are both slower and demand more memory. It comes together: larger means more memory and occasionally more GPU time Inception ResNet V2 is more memory and demand consuming MobileNet with SSD is fastest and minimal GPU/memory consuming Sweet spot: R-FCN w/resnet 101, and Faster R-CNN w/resnet 101 with only 50 proposals R-FCN w/ Resnet 101 at 100ms GPU with high accuracy and not too high memory consumption

32 map for each object size by meta-architecture and feature extractor accuracy

33 map for each object size by meta-architecture and feature extractor How to read Bar Graph: partitions each feature extractor model by object size (small, medium, large). 3 architectures are drawn per each feature extractor SSD has (very) poor performance on small objects and competitive with Faster R-CNN, R-FCN on larger objects outperforming them when they are with lightweight feature extractors Small object improved resolution may compensate for its size, in accuracy

34 map on small objects vs map on large objects colored by input resolution SSD

35 map on small objects vs map on large objects colored by input resolution High resolution models lead to significantly better map results(*) on small objects (~*2) and somewhat better results on large objects In SSD higher resolution improve large objects accuracy but is less successful at small objects accuracy improvement R-FCN, Faster R-CNN, SSD: Strong performance on small objects implies strong performance on large objects. Opposite is not correct: SSD perform well on large objects but poor on small objects

36 map vs Top-1 accuracy of the feature extractor on imagenet

37 map vs Top-1 accuracy of the feature extractor on imagenet There is an overall correlation between classification (=feature extraction) accuracy and detection (=overall) accuracy This correlation appears to only be more significant for Faster R- CNN and R-FCN The performance of SSD appears to be less reliant on its feature extractor s classification accuracy SSD is unable to fully leverage the power of the ResNet and Inception ResNet feature extractors Using cheaper feature extractors does not hurt SSD too much. With large objects it is competitive with Faster R-CNN and F-RCN

38 Effect of proposing fewer regions in (a) Faster R-CNN and (b) R-FCN on map (solid line) and GPU time (dash line) The effect of adjusting number of proposals on performance fixed Faster R-CNN R-FCN

39 Effect of proposing fewer regions in (a) Faster R-CNN and (b) R-FCN on map (solid line) and GPU time (dash line) Figure (a): For Faster R-CNN with Inception Resnet feature extractor with 50 proposals, 96% of the 300 proposals accuracy is obtained, reducing GPU runtime by factor 3 Figure (a): Using Inception Resnet, which has 35.4% map with 300 proposals accuracy is maintained similar (29% map) with only 10 proposals. Sweet spot is around 50 proposals Figure (a): similar tradeoffs hold for other feature extractors although less intense

40 Effect of proposing fewer regions in (a) Faster R-CNN and )b) R-FCN on map (solid line) and GPU time (dash line) Figure (b) savings from using fewer proposals in the R-FCN setting are minimal, since box classifier (the expensive part) is only run once per image. Figure (b) at 100 proposals, the speed and accuracy for Faster R-CNN models with ResNet, becomes comparable to that of equivalent R-FCN models which use 300 proposals in both map and GPU speed. Faster R-CNN dramatic proposals-to-gpu effect, less significant proposals-to-accuracy effect R-FCN mild effect of proposals over GPU, accuracy

41 State-of-the-art detection with MS COCO dataset What is multi cropping inference? What is map, AR?

42 Facts: Run on COCO dataset. Average accuracy is taken at thresholds 50%, 95% Table 3: Test is ensemble of 5 best performance, fast R-CNN RestNet feature extractors table 2 results: Interpretation of tables 2,3,4 The model average accuracy is 41.3%, better than previous results 37.1% Improvement of ~60% accuracy for small objects over previous result

43 Thank you Questions?

44 Modifies the proposal generator to directly output class probability (instead of objectiveness). 1) No separate proposal generator such as R-CNN. 2) Direct link from Feature extractor to detection generator Pros: Very fast (suitable for mobile applications, autonomous vehicle Cons: Not good at detecting smaller object (YOLO) but using feature maps from different layers can help a lot (SSD) back

45 Reminder: Start with Feature Extractor continue with Proposal Generator, then Box Classifier Feature Extractor: 5 convolution layers Proposal generator: insert after conv5 of the feature extractor output = bounding boxes and objectiveness Box classifier: input = crop of conv5 from the bounding boxes with ROI pooling to get feature maps of fixed size; pass through = fc* ; output = class probability Pro: best performing accuracy Con: GPU runtime depends on the number of proposal back

46 Translation-variance in detection. The classification network to output the same thing if the cat moves from the top left to bottom right (object detection), but the Region- Proposal-Network (object location) to output differently) Box classifier is given the crop of fc6 instead of conv5. Computation for each proposal is reduced New position sensitive score maps: shape = k*k * (C+1), h, w. So this encodes the position into the channel dimension New position-sensitive ROI pooling: input = k * k * (c + 1), roi_h, roi_w ; pool = c + 1, k, k ; output = c+1. In the other words, top-left bin will only pool from some filters. Classifier: input = feature maps Pro: a variation of R-FCN (TA-FCN) is best instance segmentation architecture Pro: fast and pretty accurate Cons: less accurate than Faster R-CNN back

47 What is map and AR back

48 multi- cropping inference A novel pooling strategy that crops different regions from convolutional feature maps and applies max-pooling at varying times back

49 Loss function:, weight balancing localization and classification losses predicted box encoding - location loss f ( ;, ) loc a location class - classification loss - box encoding of box a with respect to anchor b class - cls - class label l ( x ) l ( x) loc ( b, a) a f ( ; a, ) image parameters, - model parameters, - negative anchor cl y a a back

50 What is: Region-of-Interest pooling For example, to detect multiple cars and pedestrians in a single image. Its purpose is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7 7). back

51 Inception pooling module module By parallelizing layers and combining them back less computation invested equivalent to using additional depth layers back

Modern Convolutional Object Detectors

Modern Convolutional Object Detectors Modern Convolutional Object Detectors Faster R-CNN, R-FCN, SSD 29 September 2017 Presented by: Kevin Liang Papers Presented Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

More information

Team G-RMI: Google Research & Machine Intelligence

Team G-RMI: Google Research & Machine Intelligence Team G-RMI: Google Research & Machine Intelligence Alireza Fathi (alirezafathi@google.com) Nori Kanazawa, Kai Yang, George Papandreou, Tyler Zhu, Jonathan Huang, Vivek Rathod, Chen Sun, Kevin Murphy, et

More information

SSD: Single Shot MultiBox Detector. Author: Wei Liu et al. Presenter: Siyu Jiang

SSD: Single Shot MultiBox Detector. Author: Wei Liu et al. Presenter: Siyu Jiang SSD: Single Shot MultiBox Detector Author: Wei Liu et al. Presenter: Siyu Jiang Outline 1. Motivations 2. Contributions 3. Methodology 4. Experiments 5. Conclusions 6. Extensions Motivation Motivation

More information

R-FCN: Object Detection with Really - Friggin Convolutional Networks

R-FCN: Object Detection with Really - Friggin Convolutional Networks R-FCN: Object Detection with Really - Friggin Convolutional Networks Jifeng Dai Microsoft Research Li Yi Tsinghua Univ. Kaiming He FAIR Jian Sun Microsoft Research NIPS, 2016 Or Region-based Fully Convolutional

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun Presented by Tushar Bansal Objective 1. Get bounding box for all objects

More information

Object Detection on Self-Driving Cars in China. Lingyun Li

Object Detection on Self-Driving Cars in China. Lingyun Li Object Detection on Self-Driving Cars in China Lingyun Li Introduction Motivation: Perception is the key of self-driving cars Data set: 10000 images with annotation 2000 images without annotation (not

More information

Object detection with CNNs

Object detection with CNNs Object detection with CNNs 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before CNNs After CNNs 0% 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 year Region proposals

More information

Mask R-CNN. presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma

Mask R-CNN. presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma Mask R-CNN presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma Mask R-CNN Background Related Work Architecture Experiment Mask R-CNN Background Related Work Architecture Experiment Background From left

More information

Mask R-CNN. By Kaiming He, Georgia Gkioxari, Piotr Dollar and Ross Girshick Presented By Aditya Sanghi

Mask R-CNN. By Kaiming He, Georgia Gkioxari, Piotr Dollar and Ross Girshick Presented By Aditya Sanghi Mask R-CNN By Kaiming He, Georgia Gkioxari, Piotr Dollar and Ross Girshick Presented By Aditya Sanghi Types of Computer Vision Tasks http://cs231n.stanford.edu/ Semantic vs Instance Segmentation Image

More information

Spatial Localization and Detection. Lecture 8-1

Spatial Localization and Detection. Lecture 8-1 Lecture 8: Spatial Localization and Detection Lecture 8-1 Administrative - Project Proposals were due on Saturday Homework 2 due Friday 2/5 Homework 1 grades out this week Midterm will be in-class on Wednesday

More information

Lecture 5: Object Detection

Lecture 5: Object Detection Object Detection CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 5: Object Detection Bohyung Han Computer Vision Lab. bhhan@postech.ac.kr 2 Traditional Object Detection Algorithms Region-based

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren Kaiming He Ross Girshick Jian Sun Present by: Yixin Yang Mingdong Wang 1 Object Detection 2 1 Applications Basic

More information

MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK. Wenjie Guan, YueXian Zou*, Xiaoqun Zhou

MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK. Wenjie Guan, YueXian Zou*, Xiaoqun Zhou MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK Wenjie Guan, YueXian Zou*, Xiaoqun Zhou ADSPLAB/Intelligent Lab, School of ECE, Peking University, Shenzhen,518055, China

More information

Multi-View 3D Object Detection Network for Autonomous Driving

Multi-View 3D Object Detection Network for Autonomous Driving Multi-View 3D Object Detection Network for Autonomous Driving Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, Tian Xia CVPR 2017 (Spotlight) Presented By: Jason Ku Overview Motivation Dataset Network Architecture

More information

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Object Detection CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Problem Description Arguably the most important part of perception Long term goals for object recognition: Generalization

More information

Mask R-CNN. Kaiming He, Georgia, Gkioxari, Piotr Dollar, Ross Girshick Presenters: Xiaokang Wang, Mengyao Shi Feb. 13, 2018

Mask R-CNN. Kaiming He, Georgia, Gkioxari, Piotr Dollar, Ross Girshick Presenters: Xiaokang Wang, Mengyao Shi Feb. 13, 2018 Mask R-CNN Kaiming He, Georgia, Gkioxari, Piotr Dollar, Ross Girshick Presenters: Xiaokang Wang, Mengyao Shi Feb. 13, 2018 1 Common computer vision tasks Image Classification: one label is generated for

More information

YOLO9000: Better, Faster, Stronger

YOLO9000: Better, Faster, Stronger YOLO9000: Better, Faster, Stronger Date: January 24, 2018 Prepared by Haris Khan (University of Toronto) Haris Khan CSC2548: Machine Learning in Computer Vision 1 Overview 1. Motivation for one-shot object

More information

Instance-aware Semantic Segmentation via Multi-task Network Cascades

Instance-aware Semantic Segmentation via Multi-task Network Cascades Instance-aware Semantic Segmentation via Multi-task Network Cascades Jifeng Dai, Kaiming He, Jian Sun Microsoft research 2016 Yotam Gil Amit Nativ Agenda Introduction Highlights Implementation Further

More information

Automatic detection of books based on Faster R-CNN

Automatic detection of books based on Faster R-CNN Automatic detection of books based on Faster R-CNN Beibei Zhu, Xiaoyu Wu, Lei Yang, Yinghua Shen School of Information Engineering, Communication University of China Beijing, China e-mail: zhubeibei@cuc.edu.cn,

More information

MCMOT: Multi-Class Multi-Object Tracking using Changing Point Detection

MCMOT: Multi-Class Multi-Object Tracking using Changing Point Detection MCMOT: Multi-Class Multi-Object Tracking using Changing Point Detection ILSVRC 2016 Object Detection from Video Byungjae Lee¹, Songguo Jin¹, Enkhbayar Erdenee¹, Mi Young Nam², Young Gui Jung², Phill Kyu

More information

3 Object Detection. BVM 2018 Tutorial: Advanced Deep Learning Methods. Paul F. Jaeger, Division of Medical Image Computing

3 Object Detection. BVM 2018 Tutorial: Advanced Deep Learning Methods. Paul F. Jaeger, Division of Medical Image Computing 3 Object Detection BVM 2018 Tutorial: Advanced Deep Learning Methods Paul F. Jaeger, of Medical Image Computing What is object detection? classification segmentation obj. detection (1 label per pixel)

More information

Yiqi Yan. May 10, 2017

Yiqi Yan. May 10, 2017 Yiqi Yan May 10, 2017 P a r t I F u n d a m e n t a l B a c k g r o u n d s Convolution Single Filter Multiple Filters 3 Convolution: case study, 2 filters 4 Convolution: receptive field receptive field

More information

Fusion of Camera and Lidar Data for Object Detection using Neural Networks

Fusion of Camera and Lidar Data for Object Detection using Neural Networks Fusion of Camera and Lidar Data for Object Detection using Neural Networks Enrico Schröder Mirko Mählisch Julien Vitay Fred Hamker Zusammenfassung: We present a novel architecture for intermediate fusion

More information

Inception Network Overview. David White CS793

Inception Network Overview. David White CS793 Inception Network Overview David White CS793 So, Leonardo DiCaprio dreams about dreaming... https://m.media-amazon.com/images/m/mv5bmjaxmzy3njcxnf5bml5banbnxkftztcwnti5otm0mw@@._v1_sy1000_cr0,0,675,1 000_AL_.jpg

More information

CS6501: Deep Learning for Visual Recognition. Object Detection I: RCNN, Fast-RCNN, Faster-RCNN

CS6501: Deep Learning for Visual Recognition. Object Detection I: RCNN, Fast-RCNN, Faster-RCNN CS6501: Deep Learning for Visual Recognition Object Detection I: RCNN, Fast-RCNN, Faster-RCNN Today s Class Object Detection The RCNN Object Detector (2014) The Fast RCNN Object Detector (2015) The Faster

More information

Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network

Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network Liwen Zheng, Canmiao Fu, Yong Zhao * School of Electronic and Computer Engineering, Shenzhen Graduate School of

More information

Object Detection Based on Deep Learning

Object Detection Based on Deep Learning Object Detection Based on Deep Learning Yurii Pashchenko AI Ukraine 2016, Kharkiv, 2016 Image classification (mostly what you ve seen) http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf

More information

Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab.

Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab. [ICIP 2017] Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab., POSTECH Pedestrian Detection Goal To draw bounding boxes that

More information

Deep Learning for Object detection & localization

Deep Learning for Object detection & localization Deep Learning for Object detection & localization RCNN, Fast RCNN, Faster RCNN, YOLO, GAP, CAM, MSROI Aaditya Prakash Sep 25, 2018 Image classification Image classification Whole of image is classified

More information

DEEP NEURAL NETWORKS FOR OBJECT DETECTION

DEEP NEURAL NETWORKS FOR OBJECT DETECTION DEEP NEURAL NETWORKS FOR OBJECT DETECTION Sergey Nikolenko Steklov Institute of Mathematics at St. Petersburg October 21, 2017, St. Petersburg, Russia Outline Bird s eye overview of deep learning Convolutional

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

Flow-Based Video Recognition

Flow-Based Video Recognition Flow-Based Video Recognition Jifeng Dai Visual Computing Group, Microsoft Research Asia Joint work with Xizhou Zhu*, Yuwen Xiong*, Yujie Wang*, Lu Yuan and Yichen Wei (* interns) Talk pipeline Introduction

More information

arxiv: v1 [cs.cv] 9 Dec 2018

arxiv: v1 [cs.cv] 9 Dec 2018 A Comparison of Embedded Deep Learning Methods for Person Detection Chloe Eunhyang Kim 1, Mahdi Maktab Dar Oghaz 2, Jiri Fajtl 2, Vasileios Argyriou 2, Paolo Remagnino 2 1 VCA Technology Ltd, Surrey, United

More information

Deep Residual Learning

Deep Residual Learning Deep Residual Learning MSRA @ ILSVRC & COCO 2015 competitions Kaiming He with Xiangyu Zhang, Shaoqing Ren, Jifeng Dai, & Jian Sun Microsoft Research Asia (MSRA) MSRA @ ILSVRC & COCO 2015 Competitions 1st

More information

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation Object detection using Region Proposals (RCNN) Ernest Cheung COMP790-125 Presentation 1 2 Problem to solve Object detection Input: Image Output: Bounding box of the object 3 Object detection using CNN

More information

Introduction to Deep Learning for Facial Understanding Part III: Regional CNNs

Introduction to Deep Learning for Facial Understanding Part III: Regional CNNs Introduction to Deep Learning for Facial Understanding Part III: Regional CNNs Raymond Ptucha, Rochester Institute of Technology, USA Tutorial-9 May 19, 218 www.nvidia.com/dli R. Ptucha 18 1 Fair Use Agreement

More information

YOLO 9000 TAEWAN KIM

YOLO 9000 TAEWAN KIM YOLO 9000 TAEWAN KIM DNN-based Object Detection R-CNN MultiBox SPP-Net DeepID-Net NoC Fast R-CNN DeepBox MR-CNN 2013.11 Faster R-CNN YOLO AttentionNet DenseBox SSD Inside-OutsideNet(ION) G-CNN NIPS 15

More information

OBJECT DETECTION HYUNG IL KOO

OBJECT DETECTION HYUNG IL KOO OBJECT DETECTION HYUNG IL KOO INTRODUCTION Computer Vision Tasks Classification + Localization Classification: C-classes Input: image Output: class label Evaluation metric: accuracy Localization Input:

More information

Detection and Segmentation of Manufacturing Defects with Convolutional Neural Networks and Transfer Learning

Detection and Segmentation of Manufacturing Defects with Convolutional Neural Networks and Transfer Learning Detection and Segmentation of Manufacturing Defects with Convolutional Neural Networks and Transfer Learning Max Ferguson 1 Ronay Ak 2 Yung-Tsun Tina Lee 2 and Kincho. H. Law 1 Abstract Automatic detection

More information

Inception and Residual Networks. Hantao Zhang. Deep Learning with Python.

Inception and Residual Networks. Hantao Zhang. Deep Learning with Python. Inception and Residual Networks Hantao Zhang Deep Learning with Python https://en.wikipedia.org/wiki/residual_neural_network Deep Neural Network Progress from Large Scale Visual Recognition Challenge (ILSVRC)

More information

[Supplementary Material] Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors

[Supplementary Material] Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors [Supplementary Material] Improving Occlusion and Hard Negative Handling for Single-Stage Pedestrian Detectors Junhyug Noh Soochan Lee Beomsu Kim Gunhee Kim Department of Computer Science and Engineering

More information

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs Zhipeng Yan, Moyuan Huang, Hao Jiang 5/1/2017 1 Outline Background semantic segmentation Objective,

More information

Optimizing Object Detection:

Optimizing Object Detection: Lecture 10: Optimizing Object Detection: A Case Study of R-CNN, Fast R-CNN, and Faster R-CNN Visual Computing Systems Today s task: object detection Image classification: what is the object in this image?

More information

RON: Reverse Connection with Objectness Prior Networks for Object Detection

RON: Reverse Connection with Objectness Prior Networks for Object Detection RON: Reverse Connection with Objectness Prior Networks for Object Detection Tao Kong 1, Fuchun Sun 1, Anbang Yao 2, Huaping Liu 1, Ming Lu 3, Yurong Chen 2 1 Department of CST, Tsinghua University, 2 Intel

More information

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta Encoder-Decoder Networks for Semantic Segmentation Sachin Mehta Outline > Overview of Semantic Segmentation > Encoder-Decoder Networks > Results What is Semantic Segmentation? Input: RGB Image Output:

More information

arxiv: v2 [cs.cv] 3 Sep 2018

arxiv: v2 [cs.cv] 3 Sep 2018 Detection and Segmentation of Manufacturing Defects with Convolutional Neural Networks and Transfer Learning Max Ferguson 1 Ronay Ak 2 Yung-Tsun Tina Lee 2 and Kincho. H. Law 1 arxiv:1808.02518v2 [cs.cv]

More information

Object Detection. TA : Young-geun Kim. Biostatistics Lab., Seoul National University. March-June, 2018

Object Detection. TA : Young-geun Kim. Biostatistics Lab., Seoul National University. March-June, 2018 Object Detection TA : Young-geun Kim Biostatistics Lab., Seoul National University March-June, 2018 Seoul National University Deep Learning March-June, 2018 1 / 57 Index 1 Introduction 2 R-CNN 3 YOLO 4

More information

TRAFFIC ANALYSIS USING VISUAL OBJECT DETECTION AND TRACKING

TRAFFIC ANALYSIS USING VISUAL OBJECT DETECTION AND TRACKING TRAFFIC ANALYSIS USING VISUAL OBJECT DETECTION AND TRACKING Yi Wei 1, Nenghui Song 1, Lipeng Ke 2, Ming-Ching Chang 1, Siwei Lyu 1 1 University at Albany, SUNY 2 University of Chinese Academy of Sciences

More information

Pelee: A Real-Time Object Detection System on Mobile Devices

Pelee: A Real-Time Object Detection System on Mobile Devices Pelee: A Real-Time Object Detection System on Mobile Devices Robert J. Wang, Xiang Li, Charles X. Ling Department of Computer Science University of Western Ontario London, Ontario, Canada, N6A 3K7 {jwan563,lxiang2,charles.ling}@uwo.ca

More information

Single-Shot Refinement Neural Network for Object Detection -Supplementary Material-

Single-Shot Refinement Neural Network for Object Detection -Supplementary Material- Single-Shot Refinement Neural Network for Object Detection -Supplementary Material- Shifeng Zhang 1,2, Longyin Wen 3, Xiao Bian 3, Zhen Lei 1,2, Stan Z. Li 4,1,2 1 CBSR & NLPR, Institute of Automation,

More information

Regionlet Object Detector with Hand-crafted and CNN Feature

Regionlet Object Detector with Hand-crafted and CNN Feature Regionlet Object Detector with Hand-crafted and CNN Feature Xiaoyu Wang Research Xiaoyu Wang Research Ming Yang Horizon Robotics Shenghuo Zhu Alibaba Group Yuanqing Lin Baidu Overview of this section Regionlet

More information

CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm

CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm Instructions This is an individual assignment. Individual means each student must hand in their

More information

Rich feature hierarchies for accurate object detection and semantic segmentation

Rich feature hierarchies for accurate object detection and semantic segmentation Rich feature hierarchies for accurate object detection and semantic segmentation Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik Presented by Pandian Raju and Jialin Wu Last class SGD for Document

More information

Final Report: Smart Trash Net: Waste Localization and Classification

Final Report: Smart Trash Net: Waste Localization and Classification Final Report: Smart Trash Net: Waste Localization and Classification Oluwasanya Awe oawe@stanford.edu Robel Mengistu robel@stanford.edu December 15, 2017 Vikram Sreedhar vsreed@stanford.edu Abstract Given

More information

arxiv: v1 [cs.cv] 15 Oct 2018

arxiv: v1 [cs.cv] 15 Oct 2018 Instance Segmentation and Object Detection with Bounding Shape Masks Ha Young Kim 1,2,*, Ba Rom Kang 2 1 Department of Financial Engineering, Ajou University Worldcupro 206, Yeongtong-gu, Suwon, 16499,

More information

Joint Object Detection and Viewpoint Estimation using CNN features

Joint Object Detection and Viewpoint Estimation using CNN features Joint Object Detection and Viewpoint Estimation using CNN features Carlos Guindel, David Martín and José M. Armingol cguindel@ing.uc3m.es Intelligent Systems Laboratory Universidad Carlos III de Madrid

More information

Rich feature hierarchies for accurate object detection and semantic segmentation

Rich feature hierarchies for accurate object detection and semantic segmentation Rich feature hierarchies for accurate object detection and semantic segmentation BY; ROSS GIRSHICK, JEFF DONAHUE, TREVOR DARRELL AND JITENDRA MALIK PRESENTER; MUHAMMAD OSAMA Object detection vs. classification

More information

Unified, real-time object detection

Unified, real-time object detection Unified, real-time object detection Final Project Report, Group 02, 8 Nov 2016 Akshat Agarwal (13068), Siddharth Tanwar (13699) CS698N: Recent Advances in Computer Vision, Jul Nov 2016 Instructor: Gaurav

More information

Toward Scale-Invariance and Position-Sensitive Region Proposal Networks

Toward Scale-Invariance and Position-Sensitive Region Proposal Networks Toward Scale-Invariance and Position-Sensitive Region Proposal Networks Hsueh-Fu Lu [0000 0003 1885 3805], Xiaofei Du [0000 0002 0071 8093], and Ping-Lin Chang [0000 0002 3341 8425] Umbo Computer Vision

More information

Yield Estimation using faster R-CNN

Yield Estimation using faster R-CNN Yield Estimation using faster R-CNN 1 Vidhya Sagar, 2 Sailesh J.Jain and 2 Arjun P. 1 Assistant Professor, 2 UG Scholar, Department of Computer Engineering and Science SRM Institute of Science and Technology,Chennai,

More information

EFFECTIVE OBJECT DETECTION FROM TRAFFIC CAMERA VIDEOS. Honghui Shi, Zhichao Liu*, Yuchen Fan, Xinchao Wang, Thomas Huang

EFFECTIVE OBJECT DETECTION FROM TRAFFIC CAMERA VIDEOS. Honghui Shi, Zhichao Liu*, Yuchen Fan, Xinchao Wang, Thomas Huang EFFECTIVE OBJECT DETECTION FROM TRAFFIC CAMERA VIDEOS Honghui Shi, Zhichao Liu*, Yuchen Fan, Xinchao Wang, Thomas Huang Image Formation and Processing (IFP) Group, University of Illinois at Urbana-Champaign

More information

Pixel Offset Regression (POR) for Single-shot Instance Segmentation

Pixel Offset Regression (POR) for Single-shot Instance Segmentation Pixel Offset Regression (POR) for Single-shot Instance Segmentation Yuezun Li 1, Xiao Bian 2, Ming-ching Chang 1, Longyin Wen 2 and Siwei Lyu 1 1 University at Albany, State University of New York, NY,

More information

Fuzzy Set Theory in Computer Vision: Example 3

Fuzzy Set Theory in Computer Vision: Example 3 Fuzzy Set Theory in Computer Vision: Example 3 Derek T. Anderson and James M. Keller FUZZ-IEEE, July 2017 Overview Purpose of these slides are to make you aware of a few of the different CNN architectures

More information

Efficient Segmentation-Aided Text Detection For Intelligent Robots

Efficient Segmentation-Aided Text Detection For Intelligent Robots Efficient Segmentation-Aided Text Detection For Intelligent Robots Junting Zhang, Yuewei Na, Siyang Li, C.-C. Jay Kuo University of Southern California Outline Problem Definition and Motivation Related

More information

Deep Face Recognition. Nathan Sun

Deep Face Recognition. Nathan Sun Deep Face Recognition Nathan Sun Why Facial Recognition? Picture ID or video tracking Higher Security for Facial Recognition Software Immensely useful to police in tracking suspects Your face will be an

More information

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

R-FCN++: Towards Accurate Region-Based Fully Convolutional Networks for Object Detection

R-FCN++: Towards Accurate Region-Based Fully Convolutional Networks for Object Detection The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18) R-FCN++: Towards Accurate Region-Based Fully Convolutional Networks for Object Detection Zeming Li, 1 Yilun Chen, 2 Gang Yu, 2 Yangdong

More information

STREET OBJECT DETECTION / TRACKING FOR AI CITY TRAFFIC ANALYSIS

STREET OBJECT DETECTION / TRACKING FOR AI CITY TRAFFIC ANALYSIS STREET OBJECT DETECTION / TRACKING FOR AI CITY TRAFFIC ANALYSIS Yi Wei 1, Nenghui Song 1, Lipeng Ke 2, Ming-Ching Chang 1, Siwei Lyu 1 1 University at Albany, State University of New York 2 University

More information

Rich feature hierarchies for accurate object detection and semant

Rich feature hierarchies for accurate object detection and semant Rich feature hierarchies for accurate object detection and semantic segmentation Speaker: Yucong Shen 4/5/2018 Develop of Object Detection 1 DPM (Deformable parts models) 2 R-CNN 3 Fast R-CNN 4 Faster

More information

Semantic Segmentation

Semantic Segmentation Semantic Segmentation UCLA:https://goo.gl/images/I0VTi2 OUTLINE Semantic Segmentation Why? Paper to talk about: Fully Convolutional Networks for Semantic Segmentation. J. Long, E. Shelhamer, and T. Darrell,

More information

DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material

DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material Yi Li 1, Gu Wang 1, Xiangyang Ji 1, Yu Xiang 2, and Dieter Fox 2 1 Tsinghua University, BNRist 2 University of Washington

More information

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION Kingsley Kuan 1, Gaurav Manek 1, Jie Lin 1, Yuan Fang 1, Vijay Chandrasekhar 1,2 Institute for Infocomm Research, A*STAR, Singapore 1 Nanyang Technological

More information

G-CNN: an Iterative Grid Based Object Detector

G-CNN: an Iterative Grid Based Object Detector G-CNN: an Iterative Grid Based Object Detector Magyar Najibi Univ. Maryland Mohammad Rastegari Univ. Maryland Larry S. Davis Univ. Maryland CVPR, 2016 VGG Reading Group - Sam Albanie Motivation: Proposals

More information

Lecture 7: Semantic Segmentation

Lecture 7: Semantic Segmentation Semantic Segmentation CSED703R: Deep Learning for Visual Recognition (207F) Segmenting images based on its semantic notion Lecture 7: Semantic Segmentation Bohyung Han Computer Vision Lab. bhhanpostech.ac.kr

More information

Finding Tiny Faces Supplementary Materials

Finding Tiny Faces Supplementary Materials Finding Tiny Faces Supplementary Materials Peiyun Hu, Deva Ramanan Robotics Institute Carnegie Mellon University {peiyunh,deva}@cs.cmu.edu 1. Error analysis Quantitative analysis We plot the distribution

More information

In-Place Activated BatchNorm for Memory- Optimized Training of DNNs

In-Place Activated BatchNorm for Memory- Optimized Training of DNNs In-Place Activated BatchNorm for Memory- Optimized Training of DNNs Samuel Rota Bulò, Lorenzo Porzi, Peter Kontschieder Mapillary Research Paper: https://arxiv.org/abs/1712.02616 Code: https://github.com/mapillary/inplace_abn

More information

Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization. Presented by: Karen Lucknavalai and Alexandr Kuznetsov

Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization. Presented by: Karen Lucknavalai and Alexandr Kuznetsov Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization Presented by: Karen Lucknavalai and Alexandr Kuznetsov Example Style Content Result Motivation Transforming content of an image

More information

Advanced Video Analysis & Imaging

Advanced Video Analysis & Imaging Advanced Video Analysis & Imaging (5LSH0), Module 09B Machine Learning with Convolutional Neural Networks (CNNs) - Workout Farhad G. Zanjani, Clint Sebastian, Egor Bondarev, Peter H.N. de With ( p.h.n.de.with@tue.nl

More information

MoonRiver: Deep Neural Network in C++

MoonRiver: Deep Neural Network in C++ MoonRiver: Deep Neural Network in C++ Chung-Yi Weng Computer Science & Engineering University of Washington chungyi@cs.washington.edu Abstract Artificial intelligence resurges with its dramatic improvement

More information

An Anchor-Free Region Proposal Network for Faster R-CNN based Text Detection Approaches

An Anchor-Free Region Proposal Network for Faster R-CNN based Text Detection Approaches An Anchor-Free Region Proposal Network for Faster R-CNN based Text Detection Approaches Zhuoyao Zhong 1,2,*, Lei Sun 2, Qiang Huo 2 1 School of EIE., South China University of Technology, Guangzhou, China

More information

arxiv: v1 [cs.cv] 14 Dec 2015

arxiv: v1 [cs.cv] 14 Dec 2015 Instance-aware Semantic Segmentation via Multi-task Network Cascades Jifeng Dai Kaiming He Jian Sun Microsoft Research {jifdai,kahe,jiansun}@microsoft.com arxiv:1512.04412v1 [cs.cv] 14 Dec 2015 Abstract

More information

A Deep Learning Approach to Vehicle Speed Estimation

A Deep Learning Approach to Vehicle Speed Estimation A Deep Learning Approach to Vehicle Speed Estimation Benjamin Penchas bpenchas@stanford.edu Tobin Bell tbell@stanford.edu Marco Monteiro marcorm@stanford.edu ABSTRACT Given car dashboard video footage,

More information

POINT CLOUD DEEP LEARNING

POINT CLOUD DEEP LEARNING POINT CLOUD DEEP LEARNING Innfarn Yoo, 3/29/28 / 57 Introduction AGENDA Previous Work Method Result Conclusion 2 / 57 INTRODUCTION 3 / 57 2D OBJECT CLASSIFICATION Deep Learning for 2D Object Classification

More information

An Analysis of Scale Invariance in Object Detection SNIP

An Analysis of Scale Invariance in Object Detection SNIP An Analysis of Scale Invariance in Object Detection SNIP Bharat Singh Larry S. Davis University of Maryland, College Park {bharat,lsd}@cs.umd.edu Abstract An analysis of different techniques for recognizing

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

arxiv: v2 [cs.cv] 19 Apr 2018

arxiv: v2 [cs.cv] 19 Apr 2018 arxiv:1804.06215v2 [cs.cv] 19 Apr 2018 DetNet: A Backbone network for Object Detection Zeming Li 1, Chao Peng 2, Gang Yu 2, Xiangyu Zhang 2, Yangdong Deng 1, Jian Sun 2 1 School of Software, Tsinghua University,

More information

Real-time Object Detection CS 229 Course Project

Real-time Object Detection CS 229 Course Project Real-time Object Detection CS 229 Course Project Zibo Gong 1, Tianchang He 1, and Ziyi Yang 1 1 Department of Electrical Engineering, Stanford University December 17, 2016 Abstract Objection detection

More information

Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs

Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs Ritchie Zhao 1, Weinan Song 2, Wentao Zhang 2, Tianwei Xing 3, Jeng-Hau Lin 4, Mani Srivastava 3, Rajesh Gupta 4, Zhiru

More information

Optimizing Object Detection:

Optimizing Object Detection: Lecture 10: Optimizing Object Detection: A Case Study of R-CNN, Fast R-CNN, and Faster R-CNN and Single Shot Detection Visual Computing Systems Today s task: object detection Image classification: what

More information

Face Recognition A Deep Learning Approach

Face Recognition A Deep Learning Approach Face Recognition A Deep Learning Approach Lihi Shiloh Tal Perl Deep Learning Seminar 2 Outline What about Cat recognition? Classical face recognition Modern face recognition DeepFace FaceNet Comparison

More information

Real-time convolutional networks for sonar image classification in low-power embedded systems

Real-time convolutional networks for sonar image classification in low-power embedded systems Real-time convolutional networks for sonar image classification in low-power embedded systems Matias Valdenegro-Toro Ocean Systems Laboratory - School of Engineering & Physical Sciences Heriot-Watt University,

More information

CAP 6412 Advanced Computer Vision

CAP 6412 Advanced Computer Vision CAP 6412 Advanced Computer Vision http://www.cs.ucf.edu/~bgong/cap6412.html Boqing Gong April 21st, 2016 Today Administrivia Free parameters in an approach, model, or algorithm? Egocentric videos by Aisha

More information

CS 1674: Intro to Computer Vision. Object Recognition. Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018

CS 1674: Intro to Computer Vision. Object Recognition. Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018 CS 1674: Intro to Computer Vision Object Recognition Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018 Different Flavors of Object Recognition Semantic Segmentation Classification + Localization

More information

FaceNet. Florian Schroff, Dmitry Kalenichenko, James Philbin Google Inc. Presentation by Ignacio Aranguren and Rahul Rana

FaceNet. Florian Schroff, Dmitry Kalenichenko, James Philbin Google Inc. Presentation by Ignacio Aranguren and Rahul Rana FaceNet Florian Schroff, Dmitry Kalenichenko, James Philbin Google Inc. Presentation by Ignacio Aranguren and Rahul Rana Introduction FaceNet learns a mapping from face images to a compact Euclidean Space

More information

A Comparison of CNN-based Face and Head Detectors for Real-Time Video Surveillance Applications

A Comparison of CNN-based Face and Head Detectors for Real-Time Video Surveillance Applications A Comparison of CNN-based Face and Head Detectors for Real-Time Video Surveillance Applications Le Thanh Nguyen-Meidine 1, Eric Granger 1, Madhu Kiran 1 and Louis-Antoine Blais-Morin 2 1 École de technologie

More information

Volume 6, Issue 12, December 2018 International Journal of Advance Research in Computer Science and Management Studies

Volume 6, Issue 12, December 2018 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) e-isjn: A4372-3114 Impact Factor: 7.327 Volume 6, Issue 12, December 2018 International Journal of Advance Research in Computer Science and Management Studies Research Article

More information

arxiv: v1 [cs.cv] 22 Mar 2018

arxiv: v1 [cs.cv] 22 Mar 2018 Single-Shot Bidirectional Pyramid Networks for High-Quality Object Detection Xiongwei Wu, Daoxin Zhang, Jianke Zhu, Steven C.H. Hoi School of Information Systems, Singapore Management University, Singapore

More information

arxiv: v4 [cs.cv] 12 Jul 2018

arxiv: v4 [cs.cv] 12 Jul 2018 Joint 3D Proposal Generation and Object Detection from View Aggregation Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, and Steven L. Waslander arxiv:1712.02294v4 [cs.cv] 12 Jul 2018 Abstract We

More information

arxiv: v5 [cs.cv] 11 Dec 2018

arxiv: v5 [cs.cv] 11 Dec 2018 Fire SSD: Wide Fire Modules based Single Shot Detector on Edge Device HengFui, Liau, 1, Nimmagadda, Yamini, 2 and YengLiong, Wong 1 {heng.hui.liau,yamini.nimmagadda,yeng.liong.wong}@intel.com, arxiv:1806.05363v5

More information

An Analysis of Scale Invariance in Object Detection SNIP

An Analysis of Scale Invariance in Object Detection SNIP An Analysis of Scale Invariance in Object Detection SNIP Bharat Singh Larry S. Davis University of Maryland, College Park {bharat,lsd}@cs.umd.edu Abstract An analysis of different techniques for recognizing

More information