WW Prob Lib1 Math course-section, semester year

Size: px
Start display at page:

Download "WW Prob Lib1 Math course-section, semester year"

Transcription

1 WW Prob Lib Math course-section, semester year WeBWorK assignment due /25/06 at :00 PM..( pt) Consider the parametric equation x = 7(cosθ + θsinθ) y = 7(sinθ θcosθ) What is the length of the curve for θ = 0 to θ = 5 2 π? 2.( pt) Let a = (0, 3, 0) and b = (5, 9, 0) be vectors. Compute the following vectors. A. a + b = (,, ) B. -a= (,, ) C. a - b= (,, ) D. a = 3.( pt) A child walks due east on the deck of a ship at 5 miles per hour. The ship is moving north at a speed of 8 miles per hour. Find the speed and direction of the child relative to the surface of the water. Speed = mph The angle of the direction from the north = (radians) 4.( pt) Find a b if a = 8, b = 7, π and the angle between a and b is 0 radians. a b = 5.( pt) Find a unit vector in the same direction as a = (2, 3, 0). (,, ) 6.( pt) Gandalf the Grey started in the Forest of Mirkwood at a point with coordinates (3, ) and arrived in the Iron Hills at the point with coordinates (5, 6). If he began walking in the direction of the vector v = 4i + j and changes direction only once, when he turns at a right angle, what are the coordinates of the point where he makes the turn. (, )

2 WeBWorK demonstration assignment The main purpose of this WeBWorK set is to familiarize yourself with WeBWorK. Here are some hints on how to use WeBWorK effectively: After first logging into WeBWorK change your password. Find out how to print a hard copy on the computer system that you are going to use. Print a hard copy of this assignment. Get to work on this set right away and answer these questions well before the deadline. Not only will this give you the chance to figure out what s wrong if an answer is not accepted, you also will avoid the likely rush and congestion prior to the deadline. The primary purpose of the WeBWorK assignments in this class is to give you the opportunity to learn by having instant feedback on your active solution of relevant problems. Make the best of it!.( pt) Evaluate 5(5 2) =. 2.( pt) Evaluate 2/(4 + ) =. Enter you answer as a decimal number listing at least 4 decimal digits. (WeBWorK will reject your answer if it differs by more than one tenth of percent from what it thinks the answer is.) 3.( pt) Let r = 9. Evaluate 4/π r =. Next, enter 4/(π r) = and let WeBWorK compute the result. b. 4.( pt) a + a+b. 5.( pt) a b a + b c + d If WeBWorK rejects your answer use the preview button to see what it thinks you are trying to tell it. 6.( pt) a + b 7.( pt) 8.( pt) a a + b a + b a + b x 2 + y 2 x x 2 + y 2 x + y x 2 + y 2 b + b 2 4ac 2a Note: this is an expression that gives the solution of a quadratic equation by the quadratic formula.

3 Math 220-4, Spring 2006 WeBWorK Assignment 2 due /30/06 at :00 PM This assignment will cover the material from Sections.4, 2. and 2.2..( pt) If a = (-8, -8, -5) and b = (4, 6, 2), find a b =. 2.( pt) What is the angle in radians between the vectors a = (5, -7, -0) and b = (-, -2, -0)? Angle: (radians) 3.( pt) Let a = (6, 2, -5) and b = (7, 0, -2) be vectors. Find the scalar, vector, and orthogonal projections of b onto a. Scalar Projection: Vector Projection: (,, ) Orthogonal Projection: (,, ) 4.( pt) Let a = (7, 8, 3) and b = (8, 2, 6) be vectors. Compute the cross product a b. (,, ) 5.( pt) Find the area of the parallelogram with vertices (4,), (8, 5), (3, 9), and (7, 3). 6.( pt) Find the tangential and normal components (a T and a N ) of the acceleration vector at t for r(t) = t 2 i +tj. a T = a N =

4 WW Prob Lib Math course-section, semester year WeBWorK assignment 3 due 2/8/06 at :00 PM..( pt) Find the distance from the point (, 5, 3) to the line x = 0,y = 5 + 5t,z = 3 + 2t. 2.( pt) A million years ago, an alien species built a vertical tower on a horizontal plane. When they returned they discovered that the ground had tilted so that measurements of 3 points on the ground gave coordinates of (0, 0, 0), (3, 2, 0), and (0, 3, 3). By what angle does the tower now deviate from the vertical? radians. 3.( pt) Find parametric equations for the tangent line at the point (cos( 2π 6 ),sin( 2π 6 ), 2π 6 )) on the curve x = cost, y = sint, z = t x(t) = y(t)= z(t)= 4.( pt) Match the surfaces with the appropriate descriptions.. z = x 2 2. x 2 + 2y 2 + 3z 2 = 3. z = 4 4. z = 2x + 3y 5. x 2 + y 2 = 5 6. z = y 2 2x 2 7. z = 2x 2 + 3y 2 A. parabolic cylinder B. nonhorizontal plane C. elliptic paraboloid D. horizontal plane E. hyperbolic paraboloid F. circular cylinder G. ellipsoid

5 WW Prob Lib Math course-section, semester year WeBWorK assignment 4 due 2/5/06 at :00 PM..( pt) What are the rectangular coordinates of the point whose cylindrical coordinates are (r = 8, θ = 4π 5, z = 0)? x = y = z = 2.( pt) What are the spherical coordinates of the point whose rectangular coordinates are (4, 3, )? ρ = θ = φ = 3.( pt) What are the cylindrical coordinates of the point whose spherical coordinates are (5, 4, 3π 6 )? r = θ = z= 4.( pt) Match the given equation with the verbal description of the surface: A. Cone B. Elliptic or Circular Paraboloid C. Half plane D. Circular Cylinder E. Plane F. Sphere. r = 4 2. r 2 + z 2 = 6 3. ρ = 2cos(φ) 4. φ = π 3 5. z = r 2 6. r = 2cos(θ) 7. θ = π 3 8. ρcos(φ) = 4 9. ρ = 4 5.( pt) Find the first partial derivatives of f (x,y) = 4x 4y 4x+4y at the point (x,y) = (3, 3). f x (3,3) = f y (3,3) = 6.( pt) Find the first partial derivatives of f (x, y, z) = z arctan( y x ) at the point (5, 5, -5). A. f x (5,5, 5) = B. f y (5,5, 5) = C. f z (5,5, 5) =

6 WW Prob Lib Math course-section, semester year WeBWorK assignment 5 due 3/3/06 at :00 PM..( pt) If sin( 4x + 4y + z) = 0, find the first partial derivatives z z x and y at the point (0, 0, 0). A. z x (0,0,0) = B. z y (0,0,0) = 2.( pt) Suppose w = y x + y z, x = et, y = 2+sin(2t), z = 2 + cos(5t). A. Use the chain rule to find dw dt as a function of x, y, z, and t. Do not rewrite x, y, and z in terms of t, and do not rewrite e t as x. dw dt = Note: Use exp() for the exponential function. Your answer should be an expression in x, y, z, and t; e.g. 3x - 4y B. Use part A to evaluate dw dt when t = 0. 3.( pt) The axis of a light in a lighthouse is tilted. When the light points east, it is inclined upward at 7 degree(s). When it points north, it is inclined upward at 3 degree(s). What is its maximum angle of elevation? degrees 4.( pt) Suppose f (x,y) = x 2 + y 2 4x 2y + 2 (A) How many critical points does f have in R 2? (B) If there is a local minimum, what is the value of the discriminant D at that point? If there is none, type N. (C) If there is a local maximum, what is the value of the discriminant D at that point? If there is none, type N. (D) If there is a saddle point, what is the value of the discriminant D at that point? If there is none, type N. (E) What is the maximum value of f on R 2? If there is none, type N. (F) What is the minimum value of f on R 2? If there is none, type N. 5.( pt) Suppose f (x,y) = xy ax by. (A) How many local minimum points does f have in R 2? (The answer is an integer). (B) How many local maximum points does f have in R 2? (C) How many saddle points does f have in R 2?

7 WW Prob Lib Math course-section, semester year WeBWorK assignment 6 due 3/8/06 at :00 PM..( pt) The radius of a right circular cone is increasing at a rate of 2 inches per second and its height is decreasing at a rate of 4 inches per second. At what rate is the volume of the cone changing when the radius is 30 inches and the height is 40 inches? cubic inches per second 2.( pt) Suppose f (x,y) = xy( 9x 7y). f (x,y) has 4 critical points. List them in increasing lexographic order. By that we mean that (x, y) comes before (z, w) if x < z or if x = z and y < w. Also, describe the type of critical point by typing MA if it is a local maximum, MI if it is a local minimim, and S if it is a saddle point. First point (, ) of type Second point (, ) of type Third point (, ) of type Fourth point (, ) of type 3.( pt) You are to manufacture a rectangular box with 3 dimensions x, y and z, and volume v = 728. Find the dimensions which minimize the surface area of this box. x = y = z = 4.( pt) Find the maximum and minimum values of f (x,y) = 7x + y on the ellipse x y 2 = maximum value: minimum value:

8 WW Prob Lib Math course-section, semester year WeBWorK assignment 7 due 3/29/06 at :00 PM..( pt) Evaluate the integral by reversing the order of integration. Z Z 2 0 2y e x2 dxdy = 2.( pt) Match the following integrals with the verbal descriptions of the solids whose volumes they give. Put the letter of the verbal description to the left of the corresponding integral. Z 2 Z 2. 4 y 2 dydx Z Z x 2 Z 3 Z 2 3y 2 x2 y 2 dydx x 2 4x 2 3y 2 dxdy 0 0 Z 2 Z 4+ 4 x Z Z y 0 y 2 4x + 3y dydx 4x 2 + 3y 2 dxdy A. One half of a cylindrical rod. B. Solid under a plane and over one half of a circular disk. C. Solid under an elliptic paraboloid and over a planar region bounded by two parabolas. D. One eighth of an ellipsoid. E. Solid bounded by a circular paraboloid and a plane. 3.( pt) Z ZUsing polar coordinates, evaluate the integral sin(x 2 + y 2 )da where R is the region 4 x 2 + R y ( pt) Using polar coordinates, evaluate the integral which gives the area which lies in the first quadrant between the circles x 2 +y 2 = 64 and x 2 8x+y 2 = 0. 5.( pt) A sprinkler distributes water in a circular pattern, supplying water to a depth of e r feet per hour at a distance of r feet from the sprinkler. A. What is the total amount of water supplied per hour inside of a circle of radius 4? ft 3 /h B. What is the total amount of water that goes throught the sprinkler per hour? ft 3 /h

9 WW Prob Lib Math course-section, semester year WeBWorK assignment 8 due 4/7/06 at :00 PM..( pt) Find the surface area of the part of the plane 5x + 5y + z = 2 that lies inside the cylinder x 2 + y 2 = ( pt) Find the mass of the region (in cylindrical coordinates) r 3 z 3, where the density function is ρ(r,θ,z) = 6z. Answer:. 3.( pt) Evaluate the triple integral Z Z Z xyzdv E where E is the solid: 0 z 3, 0 y z, 0 x y. 4.( pt) Find the average value of the function f (x,y,z) = x 2 + y 2 + z 2 over the rectangular prism 0 x 4, 0 y 2, 0 z 5.( pt) Use cylindrical coordinates to evaluate the triple integral RRR E x 2 + y 2 dv, where E is the solid bounded by the circular paraboloid z = 4 4 ( x 2 + y 2) and the xy-plane. 6.( pt) Use spherical coordinates to evaluate the triple integral RRR E x2 + y 2 + z 2 dv, where E is the ball: x 2 + y 2 + z 2 36.

10 WW Prob Lib Math course-section, semester year WeBWorK assignment 9 due 4/4/06 at :00 PM..( pt) Compute the total mass of a wire bent in a quarter circle with parametric equations: x = cost, y = sint, 0 t π 2 and density function ρ(x,y) = x2 + y 2. 2.( pt) Let C be the curve which is the union of two line segments, the first going from (0, 0) to (3, -2) and the second going from Z (3, -2) to (6, 0). Computer the line integral 3dy + 2dx. 3.( pt) Let F be the radial force field F = xi + yj. Find the work done by this force along the following two curves, both which go from (0, 0) to (9, 8). (Compare your answers!) A. ZIf C is the parabola: x = t, y = t 2, 0 t 9, then F dr = C B. If C 2 is the straight Z line segment: x = 9t 2, y = 8t 2, 0 t, then F dr = C 2 C 4.( pt) For each of the following vector fields F, decide whether it is conservative or not by computing curl F. Type in a potential function f (that is, f = F). If it is not conservative, type N. A. F(x,y) = ( 6x + 7y)i + (7x + 6y)j f (x,y) = B. F(x,y) = 3yi 2xj f (x,y) = C. F(x,y,z) = 3xi 2yj + k f (x,y,z) = D. F(x,y) = ( 3siny)i + (4y 3xcosy)j f (x,y) = E. F(x,y,z) = 3x 2 i + 7y 2 j + 3z 2 k f (x,y,z) = Note: Your answers should be either expressions of x, y and z (e.g. 3xy + 2yz ), or the letter N 5.( pt) Suppose C is any curve from (0, 0, 0) to (,,) and F(x,y,z) = (3z + 2y)i + (2z + 2x)j + (2y + 3x)k. Compute the line integral R C F dr.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus III-Final review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the corresponding position vector. 1) Define the points P = (-,

More information

Math Exam III Review

Math Exam III Review Math 213 - Exam III Review Peter A. Perry University of Kentucky April 10, 2019 Homework Exam III is tonight at 5 PM Exam III will cover 15.1 15.3, 15.6 15.9, 16.1 16.2, and identifying conservative vector

More information

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals MATH 234 Excercises on Integration in everal Variables I. Double Integrals Problem 1. D = {(x, y) : y x 1, 0 y 1}. Compute D ex3 da. Problem 2. Find the volume of the solid bounded above by the plane 3x

More information

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. . Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. f (x, y) = x y, x + y = 8. Set up the triple integral of an arbitrary continuous function

More information

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Math 2130 Practice Problems Sec Name. Change the Cartesian integral to an equivalent polar integral, and then evaluate.

Math 2130 Practice Problems Sec Name. Change the Cartesian integral to an equivalent polar integral, and then evaluate. Math 10 Practice Problems Sec 1.-1. Name Change the Cartesian integral to an equivalent polar integral, and then evaluate. 1) 5 5 - x dy dx -5 0 A) 5 B) C) 15 D) 5 ) 0 0-8 - 6 - x (8 + ln 9) A) 1 1 + x

More information

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2 PURE MATHEMATICS 212 Multivariable Calculus CONTENTS Page 1. Assignment Summary... i 2. Summary...1 3. Assignments...2 i PMTH212, Multivariable Calculus Assignment Summary 2010 Assignment Date to be Posted

More information

MATH 2023 Multivariable Calculus

MATH 2023 Multivariable Calculus MATH 2023 Multivariable Calculus Problem Sets Note: Problems with asterisks represent supplementary informations. You may want to read their solutions if you like, but you don t need to work on them. Set

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

Chapter 15 Vector Calculus

Chapter 15 Vector Calculus Chapter 15 Vector Calculus 151 Vector Fields 152 Line Integrals 153 Fundamental Theorem and Independence of Path 153 Conservative Fields and Potential Functions 154 Green s Theorem 155 urface Integrals

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

MATH 230 FALL 2004 FINAL EXAM DECEMBER 13, :20-2:10 PM

MATH 230 FALL 2004 FINAL EXAM DECEMBER 13, :20-2:10 PM Problem Score 1 2 Name: SID: Section: Instructor: 3 4 5 6 7 8 9 10 11 12 Total MATH 230 FALL 2004 FINAL EXAM DECEMBER 13, 2004 12:20-2:10 PM INSTRUCTIONS There are 12 problems on this exam for a total

More information

Chapter 15 Notes, Stewart 7e

Chapter 15 Notes, Stewart 7e Contents 15.2 Iterated Integrals..................................... 2 15.3 Double Integrals over General Regions......................... 5 15.4 Double Integrals in Polar Coordinates..........................

More information

MATH 261 EXAM III PRACTICE PROBLEMS

MATH 261 EXAM III PRACTICE PROBLEMS MATH 6 EXAM III PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam 3 typically has 5 (not 6!) problems on it, with no more than one problem of any given

More information

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals)

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals) MA 43 Calculus III Fall 8 Dr. E. Jacobs Assignments Reading assignments are found in James Stewart s Calculus (Early Transcendentals) Assignment. Spheres and Other Surfaces Read. -. and.6 Section./Problems

More information

UNIVERSITI TEKNOLOGI MALAYSIA SSCE 1993 ENGINEERING MATHEMATICS II TUTORIAL 2. 1 x cos dy dx x y dy dx. y cosxdy dx

UNIVERSITI TEKNOLOGI MALAYSIA SSCE 1993 ENGINEERING MATHEMATICS II TUTORIAL 2. 1 x cos dy dx x y dy dx. y cosxdy dx UNIVESITI TEKNOLOI MALAYSIA SSCE 99 ENINEEIN MATHEMATICS II TUTOIAL. Evaluate the following iterated integrals. (e) (g) (i) x x x sinx x e x y dy dx x dy dx y y cosxdy dx xy x + dxdy (f) (h) (y + x)dy

More information

Math 253, Section 102, Fall 2006 Practice Final Solutions

Math 253, Section 102, Fall 2006 Practice Final Solutions Math 253, Section 102, Fall 2006 Practice Final Solutions 1 2 1. Determine whether the two lines L 1 and L 2 described below intersect. If yes, find the point of intersection. If not, say whether they

More information

Math Spring WeBWorK assignment number set1. Hsiang-Ping Huang. due 01/28/2009 at 11:59pm MST

Math Spring WeBWorK assignment number set1. Hsiang-Ping Huang. due 01/28/2009 at 11:59pm MST Math 160- Spring 009 WeBWorK assignment number set1 Hsiang-Ping Huang due 01/8/009 at 11:59pm MST This is the first home work set for this class. As discussed in class, home work sets will usually open

More information

18.02 Final Exam. y = 0

18.02 Final Exam. y = 0 No books, notes or calculators. 5 problems, 50 points. 8.0 Final Exam Useful formula: cos (θ) = ( + cos(θ)) Problem. (0 points) a) (5 pts.) Find the equation in the form Ax + By + z = D of the plane P

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z.

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z. Week 1 Worksheet Sections from Thomas 13 th edition: 12.4, 12.5, 12.6, 13.1 1. A plane is a set of points that satisfies an equation of the form c 1 x + c 2 y + c 3 z = c 4. (a) Find any three distinct

More information

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points.

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. 1. Evaluate the area A of the triangle with the vertices

More information

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

MA 174: Multivariable Calculus Final EXAM (practice) NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper.

MA 174: Multivariable Calculus Final EXAM (practice) NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper. MA 174: Multivariable alculus Final EXAM (practice) NAME lass Meeting Time: NO ALULATOR, BOOK, OR PAPER ARE ALLOWED. Use the back of the test pages for scrap paper. Points awarded 1. (5 pts). (5 pts).

More information

10/4/2011 FIRST HOURLY PRACTICE VI Math 21a, Fall Name:

10/4/2011 FIRST HOURLY PRACTICE VI Math 21a, Fall Name: 10/4/2011 FIRST HOURLY PRACTICE VI Math 21a, Fall 2011 Name: MWF 9 Chao Li MWF 9 Thanos Papaïoannou MWF 10 Emily Riehl MWF 10 Jameel Al-Aidroos MWF 11 Oliver Knill MWF 11 Tatyana Kobylyatskaya MWF 12 Tatyana

More information

MATH 251 Fall 2016 EXAM III - VERSION A

MATH 251 Fall 2016 EXAM III - VERSION A MATH 51 Fall 16 EXAM III - VERSION A LAST NAME: FIRST NAME: SECTION NUMBER: UIN: DIRECTIONS: 1. You may use a calculator on this exam.. TURN OFF cell phones and put them away. If a cell phone is seen during

More information

Math 11 Fall 2016 Section 1 Monday, October 17, 2016

Math 11 Fall 2016 Section 1 Monday, October 17, 2016 Math 11 Fall 16 Section 1 Monday, October 17, 16 First, some important points from the last class: f(x, y, z) dv, the integral (with respect to volume) of f over the three-dimensional region, is a triple

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

MATH 261 FALL 2000 FINAL EXAM INSTRUCTIONS. 1. This test booklet has 14 pages including this one. There are 25 questions, each worth 8 points.

MATH 261 FALL 2000 FINAL EXAM INSTRUCTIONS. 1. This test booklet has 14 pages including this one. There are 25 questions, each worth 8 points. MATH 261 FALL 2 FINAL EXAM STUDENT NAME - STUDENT ID - RECITATION HOUR - RECITATION INSTRUCTOR INSTRUCTOR - INSTRUCTIONS 1. This test booklet has 14 pages including this one. There are 25 questions, each

More information

MATH 200 WEEK 9 - WEDNESDAY TRIPLE INTEGRALS

MATH 200 WEEK 9 - WEDNESDAY TRIPLE INTEGRALS MATH WEEK 9 - WEDNESDAY TRIPLE INTEGRALS MATH GOALS Be able to set up and evaluate triple integrals using rectangular, cylindrical, and spherical coordinates MATH TRIPLE INTEGRALS We integrate functions

More information

Math 2374 Spring 2007 Midterm 3 Solutions - Page 1 of 6 April 25, 2007

Math 2374 Spring 2007 Midterm 3 Solutions - Page 1 of 6 April 25, 2007 Math 374 Spring 7 Midterm 3 Solutions - Page of 6 April 5, 7. (3 points) Consider the surface parametrized by (x, y, z) Φ(x, y) (x, y,4 (x +y )) between the planes z and z 3. (i) (5 points) Set up the

More information

Integration using Transformations in Polar, Cylindrical, and Spherical Coordinates

Integration using Transformations in Polar, Cylindrical, and Spherical Coordinates ections 15.4 Integration using Transformations in Polar, Cylindrical, and pherical Coordinates Cylindrical Coordinates pherical Coordinates MATH 127 (ection 15.5) Applications of Multiple Integrals The

More information

Section Parametrized Surfaces and Surface Integrals. (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals

Section Parametrized Surfaces and Surface Integrals. (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals Section 16.4 Parametrized Surfaces and Surface Integrals (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals MATH 127 (Section 16.4) Parametrized Surfaces and Surface Integrals

More information

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Introduction Timetable Assignments...

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Introduction Timetable Assignments... PURE MATHEMATICS 212 Multivariable Calculus CONTENTS Page 1. Assignment Summary... i 2. Introduction...1 3. Timetable... 3 4. Assignments...5 i PMTH212, Multivariable Calculus Assignment Summary 2009

More information

Exam 2 Preparation Math 2080 (Spring 2011) Exam 2: Thursday, May 12.

Exam 2 Preparation Math 2080 (Spring 2011) Exam 2: Thursday, May 12. Multivariable Calculus Exam 2 Preparation Math 28 (Spring 2) Exam 2: Thursday, May 2. Friday May, is a day off! Instructions: () There are points on the exam and an extra credit problem worth an additional

More information

Multiple Integrals. max x i 0

Multiple Integrals. max x i 0 Multiple Integrals 1 Double Integrals Definite integrals appear when one solves Area problem. Find the area A of the region bounded above by the curve y = f(x), below by the x-axis, and on the sides by

More information

MA 114 Worksheet #17: Average value of a function

MA 114 Worksheet #17: Average value of a function Spring 2019 MA 114 Worksheet 17 Thursday, 7 March 2019 MA 114 Worksheet #17: Average value of a function 1. Write down the equation for the average value of an integrable function f(x) on [a, b]. 2. Find

More information

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V Boise State Math 275 (Ultman) Worksheet 3.4: Triple Integrals in Cylindrical Coordinates From the Toolbox (what you need from previous classes) Know what the volume element dv represents. Be able to find

More information

Double Integrals over Polar Coordinate

Double Integrals over Polar Coordinate 1. 15.4 DOUBLE INTEGRALS OVER POLAR COORDINATE 1 15.4 Double Integrals over Polar Coordinate 1. Polar Coordinates. The polar coordinates (r, θ) of a point are related to the rectangular coordinates (x,y)

More information

Calculus IV. Exam 2 November 13, 2003

Calculus IV. Exam 2 November 13, 2003 Name: Section: Calculus IV Math 1 Fall Professor Ben Richert Exam November 1, Please do all your work in this booklet and show all the steps. Calculators and note-cards are not allowed. Problem Possible

More information

First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). Surfaces will need two parameters.

First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). Surfaces will need two parameters. Math 55 - Vector Calculus II Notes 14.6 urface Integrals Let s develop some surface integrals. First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). urfaces

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

8/5/2010 FINAL EXAM PRACTICE IV Maths 21a, O. Knill, Summer 2010

8/5/2010 FINAL EXAM PRACTICE IV Maths 21a, O. Knill, Summer 2010 8/5/21 FINAL EXAM PRACTICE IV Maths 21a, O. Knill, Summer 21 Name: Start by printing your name in the above box. Try to answer each question on the same page as the question is asked. If needed, use the

More information

2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0.

2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0. Midterm 3 Review Short Answer 2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0. 3. Compute the Riemann sum for the double integral where for the given grid

More information

Dr. Allen Back. Nov. 21, 2014

Dr. Allen Back. Nov. 21, 2014 Dr. Allen Back of Nov. 21, 2014 The most important thing you should know (e.g. for exams and homework) is how to setup (and perhaps compute if not too hard) surface integrals, triple integrals, etc. But

More information

Coordinate Transformations in Advanced Calculus

Coordinate Transformations in Advanced Calculus Coordinate Transformations in Advanced Calculus by Sacha Nandlall T.A. for MATH 264, McGill University Email: sacha.nandlall@mail.mcgill.ca Website: http://www.resanova.com/teaching/calculus/ Fall 2006,

More information

Curves: We always parameterize a curve with a single variable, for example r(t) =

Curves: We always parameterize a curve with a single variable, for example r(t) = Final Exam Topics hapters 16 and 17 In a very broad sense, the two major topics of this exam will be line and surface integrals. Both of these have versions for scalar functions and vector fields, and

More information

A1:Orthogonal Coordinate Systems

A1:Orthogonal Coordinate Systems A1:Orthogonal Coordinate Systems A1.1 General Change of Variables Suppose that we express x and y as a function of two other variables u and by the equations We say that these equations are defining a

More information

Kevin James. MTHSC 206 Section 15.6 Directional Derivatives and the Gra

Kevin James. MTHSC 206 Section 15.6 Directional Derivatives and the Gra MTHSC 206 Section 15.6 Directional Derivatives and the Gradient Vector Definition We define the directional derivative of the function f (x, y) at the point (x 0, y 0 ) in the direction of the unit vector

More information

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 covers essentially the same material as MAT201, but is more in depth and theoretical. Exam problems are often more sophisticated in scope and difficulty

More information

Math 265 Exam 3 Solutions

Math 265 Exam 3 Solutions C Roettger, Fall 16 Math 265 Exam 3 Solutions Problem 1 Let D be the region inside the circle r 5 sin θ but outside the cardioid r 2 + sin θ. Find the area of D. Note that r and θ denote polar coordinates.

More information

(c) 0 (d) (a) 27 (b) (e) x 2 3x2

(c) 0 (d) (a) 27 (b) (e) x 2 3x2 1. Sarah the architect is designing a modern building. The base of the building is the region in the xy-plane bounded by x =, y =, and y = 3 x. The building itself has a height bounded between z = and

More information

5. y 2 + z 2 + 4z = 0 correct. 6. z 2 + x 2 + 2x = a b = 4 π

5. y 2 + z 2 + 4z = 0 correct. 6. z 2 + x 2 + 2x = a b = 4 π M408D (54690/95/00), Midterm #2 Solutions Multiple choice questions (20 points) See last two pages. Question #1 (25 points) Dene the vector-valued function r(t) = he t ; 2; 3e t i: a) At what point P (x

More information

MAC2313 Test 3 A E g(x, y, z) dy dx dz

MAC2313 Test 3 A E g(x, y, z) dy dx dz MAC2313 Test 3 A (5 pts) 1. If the function g(x, y, z) is integrated over the cylindrical solid bounded by x 2 + y 2 = 3, z = 1, and z = 7, the correct integral in Cartesian coordinates is given by: A.

More information

Applications of Triple Integrals

Applications of Triple Integrals Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

the straight line in the xy plane from the point (0, 4) to the point (2,0)

the straight line in the xy plane from the point (0, 4) to the point (2,0) Math 238 Review Problems for Final Exam For problems #1 to #6, we define the following paths vector fields: b(t) = the straight line in the xy plane from the point (0, 4) to the point (2,0) c(t) = the

More information

Final Exam Review. Name: Class: Date: Short Answer

Final Exam Review. Name: Class: Date: Short Answer Name: Class: Date: ID: A Final Exam Review Short Answer 1. Find the distance between the sphere (x 1) + (y + 1) + z = 1 4 and the sphere (x 3) + (y + ) + (z + ) = 1. Find, a a + b, a b, a, and 3a + 4b

More information

Math 240 Practice Problems

Math 240 Practice Problems Math 4 Practice Problems Note that a few of these questions are somewhat harder than questions on the final will be, but they will all help you practice the material from this semester. 1. Consider the

More information

Math 251 Quiz 5 Fall b. Calculate. 2. Sketch the region. Write as one double integral by interchanging the order of integration: 2

Math 251 Quiz 5 Fall b. Calculate. 2. Sketch the region. Write as one double integral by interchanging the order of integration: 2 Math 251 Quiz 5 Fall 2002 1. a. Calculate 5 1 0 1 x dx dy b. Calculate 1 5 1 0 xdxdy 2. Sketch the region. Write as one double integral by interchanging the order of integration: 0 2 dx 2 x dy f(x,y) +

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 252 FALL 2008 KUNIYUKI SCORED OUT OF 125 POINTS MULTIPLIED BY % POSSIBLE

QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 252 FALL 2008 KUNIYUKI SCORED OUT OF 125 POINTS MULTIPLIED BY % POSSIBLE QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 5 FALL 8 KUNIYUKI SCORED OUT OF 15 POINTS MULTIPLIED BY.84 15% POSSIBLE 1) Reverse the order of integration, and evaluate the resulting double integral: 16 y dx dy. Give

More information

Quiz problem bank. Quiz 1 problems. 1. Find all solutions (x, y) to the following:

Quiz problem bank. Quiz 1 problems. 1. Find all solutions (x, y) to the following: Quiz problem bank Quiz problems. Find all solutions x, y) to the following: xy x + y = x + 5x + 4y = ) x. Let gx) = ln. Find g x). sin x 3. Find the tangent line to fx) = xe x at x =. 4. Let hx) = x 3

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

Determine whether or not F is a conservative vector field. If it is, find a function f such that F = enter NONE.

Determine whether or not F is a conservative vector field. If it is, find a function f such that F = enter NONE. Ch17 Practice Test Sketch the vector field F. F(x, y) = (x - y)i + xj Evaluate the line integral, where C is the given curve. C xy 4 ds. C is the right half of the circle x 2 + y 2 = 4 oriented counterclockwise.

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III October 26, 2012 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Chapter 10 Homework: Parametric Equations and Polar Coordinates

Chapter 10 Homework: Parametric Equations and Polar Coordinates Chapter 1 Homework: Parametric Equations and Polar Coordinates Name Homework 1.2 1. Consider the parametric equations x = t and y = 3 t. a. Construct a table of values for t =, 1, 2, 3, and 4 b. Plot the

More information

Name: Final Exam Review. (b) Reparameterize r(t) with respect to arc length measured for the point (1, 0, 1) in the direction of increasing t.

Name: Final Exam Review. (b) Reparameterize r(t) with respect to arc length measured for the point (1, 0, 1) in the direction of increasing t. MATH 127 ALULU III Name: 1. Let r(t) = e t i + e t sin t j + e t cos t k (a) Find r (t) Final Exam Review (b) Reparameterize r(t) with respect to arc length measured for the point (1,, 1) in the direction

More information

Ma MULTIPLE INTEGRATION

Ma MULTIPLE INTEGRATION Ma 7 - MULTIPLE INTEGATION emark: The concept of a function of one variable in which y gx may be extended to two or more variables. If z is uniquely determined by values of the variables x and y, thenwesayz

More information

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution 13 Functions of Several Variables 13.1 Introduction to Functions of Several Variables Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Objectives Understand

More information

1 Double Integrals over Rectangular Regions

1 Double Integrals over Rectangular Regions Contents ouble Integrals over Rectangular Regions ouble Integrals Over General Regions 7. Introduction.................................... 7. Areas of General Regions............................. 9.3 Region

More information

Dr. Allen Back. Nov. 19, 2014

Dr. Allen Back. Nov. 19, 2014 Why of Dr. Allen Back Nov. 19, 2014 Graph Picture of T u, T v for a Lat/Long Param. of the Sphere. Why of Graph Basic Picture Why of Graph Why Φ(u, v) = (x(u, v), y(u, v), z(u, v)) Tangents T u = (x u,

More information

Worksheet 3.5: Triple Integrals in Spherical Coordinates. Warm-Up: Spherical Coordinates (ρ, φ, θ)

Worksheet 3.5: Triple Integrals in Spherical Coordinates. Warm-Up: Spherical Coordinates (ρ, φ, θ) Boise State Math 275 (Ultman) Worksheet 3.5: Triple Integrals in Spherical Coordinates From the Toolbox (what you need from previous classes) Know what the volume element dv represents. Be able to find

More information

Double Integrals, Iterated Integrals, Cross-sections

Double Integrals, Iterated Integrals, Cross-sections Chapter 14 Multiple Integrals 1 ouble Integrals, Iterated Integrals, Cross-sections 2 ouble Integrals over more general regions, efinition, Evaluation of ouble Integrals, Properties of ouble Integrals

More information

CALCULUS III SM221/P Final Exam Page 1 of Monday 15 December 2008 Alpha Code Section

CALCULUS III SM221/P Final Exam Page 1 of Monday 15 December 2008 Alpha Code Section CALCULUS III SM221/P Final Exam Page 1 of9 Name Alpha Code Section This exam is composed of 3 parts. Part A. Manual Computation (20%). There are four problems. For this part of the exam, you will not be

More information

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Textbook: Section 16.6 Big Ideas A surface in R 3 is a 2-dimensional object in 3-space. Surfaces can be described using two variables.

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space In Figure 11.43, consider the line L through the point P(x 1, y 1, z 1 ) and parallel to the vector. The vector v is a direction vector for the line L, and a, b, and c

More information

MATH SPRING 2000 (Test 01) FINAL EXAM INSTRUCTIONS

MATH SPRING 2000 (Test 01) FINAL EXAM INSTRUCTIONS MATH 61 - SPRING 000 (Test 01) Name Signature Instructor Recitation Instructor Div. Sect. No. FINAL EXAM INSTRUCTIONS 1. You must use a # pencil on the mark-sense sheet (answer sheet).. If you have test

More information

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota Questions to:

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota   Questions to: Lab_B.nb Lab B Parametrizing Surfaces Math 37 University of Minnesota http://www.math.umn.edu/math37 Questions to: rogness@math.umn.edu Introduction As in last week s lab, there is no calculus in this

More information

1 Vector Functions and Space Curves

1 Vector Functions and Space Curves ontents 1 Vector Functions and pace urves 2 1.1 Limits, Derivatives, and Integrals of Vector Functions...................... 2 1.2 Arc Length and urvature..................................... 2 1.3 Motion

More information

MATH 2400, Analytic Geometry and Calculus 3

MATH 2400, Analytic Geometry and Calculus 3 MATH 2400, Analytic Geometry and Calculus 3 List of important Definitions and Theorems 1 Foundations Definition 1. By a function f one understands a mathematical object consisting of (i) a set X, called

More information

MAT175 Overview and Sample Problems

MAT175 Overview and Sample Problems MAT175 Overview and Sample Problems The course begins with a quick review/overview of one-variable integration including the Fundamental Theorem of Calculus, u-substitutions, integration by parts, and

More information

Math 210, Exam 2, Spring 2010 Problem 1 Solution

Math 210, Exam 2, Spring 2010 Problem 1 Solution Math, Exam, Spring Problem Solution. Find and classify the critical points of the function f(x,y) x 3 +3xy y 3. Solution: By definition, an interior point (a,b) in the domain of f is a critical point of

More information

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim Chapter 14 Multiple Integrals..1 Double Integrals, Iterated Integrals, Cross-sections.2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals.3

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley FINAL EXAMINATION, Fall 2012 DURATION: 3 hours Department of Mathematics MATH 53 Multivariable Calculus Examiner: Sean Fitzpatrick Total: 100 points Family Name: Given

More information

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures Grad operator, triple and line integrals Notice: this material must not be used as a substitute for attending the lectures 1 .1 The grad operator Let f(x 1, x,..., x n ) be a function of the n variables

More information

Equation of tangent plane: for implicitly defined surfaces section 12.9

Equation of tangent plane: for implicitly defined surfaces section 12.9 Equation of tangent plane: for implicitly defined surfaces section 12.9 Some surfaces are defined implicitly, such as the sphere x 2 + y 2 + z 2 = 1. In general an implicitly defined surface has the equation

More information

Volumes of Solids of Revolution Lecture #6 a

Volumes of Solids of Revolution Lecture #6 a Volumes of Solids of Revolution Lecture #6 a Sphereoid Parabaloid Hyperboloid Whateveroid Volumes Calculating 3-D Space an Object Occupies Take a cross-sectional slice. Compute the area of the slice. Multiply

More information

Math 126C: Week 3 Review

Math 126C: Week 3 Review Math 126C: Week 3 Review Note: These are in no way meant to be comprehensive reviews; they re meant to highlight the main topics and formulas for the week. Doing homework and extra problems is always the

More information

Math Boot Camp: Coordinate Systems

Math Boot Camp: Coordinate Systems Math Boot Camp: Coordinate Systems You can skip this boot camp if you can answer the following question: Staying on a sphere of radius R, what is the shortest distance between the point (0, 0, R) on the

More information

Parametrization. Surface. Parametrization. Surface Integrals. Dr. Allen Back. Nov. 17, 2014

Parametrization. Surface. Parametrization. Surface Integrals. Dr. Allen Back. Nov. 17, 2014 Dr. Allen Back Nov. 17, 2014 Paraboloid z = x 2 + 4y 2 The graph z = F (x, y) can always be parameterized by Φ(u, v) =< u, v, F (u, v) >. Paraboloid z = x 2 + 4y 2 The graph z = F (x, y) can always be

More information

The diagram above shows a sketch of the curve C with parametric equations

The diagram above shows a sketch of the curve C with parametric equations 1. The diagram above shows a sketch of the curve C with parametric equations x = 5t 4, y = t(9 t ) The curve C cuts the x-axis at the points A and B. (a) Find the x-coordinate at the point A and the x-coordinate

More information

Calculus III Meets the Final

Calculus III Meets the Final Calculus III Meets the Final Peter A. Perry University of Kentucky December 7, 2018 Homework Review for Final Exam on Thursday, December 13, 6:00-8:00 PM Be sure you know which room to go to for the final!

More information

MATH 010B - Spring 2018 Worked Problems - Section 6.2. ze x2 +y 2

MATH 010B - Spring 2018 Worked Problems - Section 6.2. ze x2 +y 2 MATH B - Spring 8 orked Problems - Section 6.. Compute the following double integral x +y 9 z 3 ze x +y dv Solution: Here, we can t hope to integrate this directly in Cartesian coordinates, since the the

More information

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv.

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv. MAC2313 Final A (5 pts) 1. Let f(x, y, z) be a function continuous in R 3 and let S be a surface parameterized by r(u, v) with the domain of the parameterization given by R; how many of the following are

More information

Solution of final examination

Solution of final examination of final examination Math 20, pring 201 December 9, 201 Problem 1 Let v(t) (2t e t ) i j + π cos(πt) k be the velocity of a particle with initial position r(0) ( 1, 0, 2). Find the accelaration at the

More information

MATH 2400: CALCULUS 3 MAY 9, 2007 FINAL EXAM

MATH 2400: CALCULUS 3 MAY 9, 2007 FINAL EXAM MATH 4: CALCULUS 3 MAY 9, 7 FINAL EXAM I have neither given nor received aid on this exam. Name: 1 E. Kim................ (9am) E. Angel.............(1am) 3 I. Mishev............ (11am) 4 M. Daniel...........

More information

MATH203 Calculus. Dr. Bandar Al-Mohsin. School of Mathematics, KSU

MATH203 Calculus. Dr. Bandar Al-Mohsin. School of Mathematics, KSU School of Mathematics, KSU Theorem The rectangular coordinates (x, y, z) and the cylindrical coordinates (r, θ, z) of a point P are related as follows: x = r cos θ, y = r sin θ, tan θ = y x, r 2 = x 2

More information

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics Lecture 5 August 31 2016 Topics: Polar coordinate system Conversion of polar coordinates to 2-D

More information

9/30/2014 FIRST HOURLY PRACTICE VIII Math 21a, Fall Name:

9/30/2014 FIRST HOURLY PRACTICE VIII Math 21a, Fall Name: 9/30/2014 FIRST HOURLY PRACTICE VIII Math 21a, Fall 2014 Name: MWF 9 Oliver Knill MWF 9 Chao Li MWF 10 Gijs Heuts MWF 10 Yu-Wen Hsu MWF 10 Yong-Suk Moon MWF 11 Rosalie Belanger-Rioux MWF 11 Gijs Heuts

More information