EXACT BUCKLING SOLUTION OF COMPOSITE WEB/FLANGE ASSEMBLY

Size: px
Start display at page:

Download "EXACT BUCKLING SOLUTION OF COMPOSITE WEB/FLANGE ASSEMBLY"

Transcription

1 EXACT BUCKLING SOLUTION OF COMPOSITE WEB/FLANGE ASSEMBLY J. Sauvé 1*, M. Dubé 1, F. Dervault 2, G. Corriveau 2 1 Ecole de technologie superieure, Montreal, Canada 2 Airframe stress, Advanced Structures, Bombardier Aerospace, Montreal, Canada *Corresponding author (jeremie.sauve.1@ens.etsmtl.ca) Keywords: buckling, plate, web, flange, composite Introduction Composite materials are increasingly being used in aerospace structures and current design methodologies need to be improved in order to achieve lightweight efficient structures at low cost. The orthotropic properties of composite materials complexify analytical formulation development, especially for instability problems such as buckling. Buckling needs to be considered when designing a number of aerospace structures; for instance, it is an important design criteria for frames used to reinforce fuselage skins. In such a construction, the frames are attached to the fuselage skin and the junction between the frames and the skin provides some stiffness that can help prevent buckling. The web of the frames can be assumed to be a composite plate with a composite flange at one edge. Neglecting the radius of curvature, the frames buckling problem becomes one of a composite plate with a free flange and some boundary conditions on the remaining edges (Fig.1). Many authors worked on buckling of composite plates with a combination of free, simply supported, clamped and rotationally restrained boundary conditions [1-7] and a few authors proposed a formulation for plates reinforced by a flange. Mittelstedt [8] worked on the case of a composite plate having three simply supported edges and one edge reinforced by a free flange. He presented an exact analytical formulation and some approximate formulations for the prediction of the buckling load that was in good agreement with results of finite element analysis. In the present work, we develop an analytical formulation for the local and lateral buckling analyses of a composite plate, representing the web of a frame reinforced with a flange, assuming a different set of boundary conditions (see Fig.1). In effect, Mittelstedt used a simply supported boundary condition at the edge representing the junction with the fuselage skin. In the present study, this edge is assumed to be clamped, as it is shown that having a simply supported boundary condition is too conservative. A comparison between the predictions of the analytical formulation and those of finite element analyses is performed, in order to validate the developed analytical model. Problemstatement Fig.1 - Considered structure The considered structure is an orthotropic web, referred to as orthotropic plate on Fig. 1, of length a and width b. The web is simply supported and loaded in compression ( x ) at x = 0 and x = a and clamped at y = 0. A free flange of width h his considered at y = b, as shown on Fig.1. This flange consists of an orthotropic laminate and is represented by a extensional stiffness (EA f ), a bending stiffness (EI f ) and a torsional stiffness (GJ f ). The stress-strain relationship is based on classical laminate plate theory [9, 10] and symmetric and balanced stacking sequences are assumed. Thus, the bending-torsion coupling of the plate is neglected. The web thickness is assumed to be small compared to its dimensions and the displacements are linear and small compared to the thickness of the web. The following expression describes the relationship between the bending moments M and the laminate curvature 0. 1 Page

2 0 = (1) The matrix coefficients D ij (i, j = 1, 2 and 6) are the bending stiffness coefficients of the laminate. From the classical laminate theory, a relationship between curvature and deformation is given by: 2 (2) where w is the out of plane displacement of the web. The web governing differential equation is: +2( + 2 ) + =0 (3) The two loaded edges being simply supported at x = 0 and x = a, the deformation shape in the x direction is assumed to be sinusoidal: ()= sin () (4) where () is assumed to be a function of y only and m expresses the number of half-waves in the buckling mode. Finding the fundamental solution for () [11], the deformation equation becomes: ()= sin + + (5) where B 1,2,3,4 are unknown parameters and k 1 and k 2 are calculated [11]: = 1 ( + 2 ) ± ( + 2 ) 2.1Boundaryconditions (6) A clamped boundary condition is considered at y = 0: =0 (8) These two equations reduce the number of unknown parameters B 1,2,3,4 from four to two: (9) (10) The deformation shape equation is then reduced to: () + (11) At y = b, the bending moment of the web works against the torsion of the flange, as stipulated by Mittelstedt [10]: =0 (12) Finally, a relationship between shear force in the web and the bending and compression in the flange exists at y = b: + ) =0 (13) where N x is the load per unit width on the web and is the ratio of the flange extensional stiffness (EA f ) to the web extensional stiffness (EA w ): = = (14) where E x is the equivalent Young s modulus of the web in the x direction and t is the thickness of the web. =0 (7) 2 Page

3 2.2Solution Equations (12) and (13) cannot be solved directly. Instead, the system of two equations is solved by setting its determinant equal to zero: cosh cos + cosh sin + sinh cos + sinh sin =0 where = (15a) ( + 4 ) ( + 2 )( ) (15b) ( ) + = (15c) ( ) 1 ( + ) +1 ( ) (15d) (15e) (15f) Solving equation (15) for N x is done using a numeric algorithm because of the transcendental nature of this equation. Results The formulation just developed for a clamped boundary condition at y = 0 is compared to that of a simply supported boundary condition using a simple example representing a typical fuselage frame. The frame web has a length a = 450 mm and a height b = 85 mm. The width of the flange h is ranged from 0 mm to 100 mm. The web stacking sequence is [(45 /90 45 /0 )(45 /90 45 /0 )] leading to a total thickness of 3.48 mm. The flange stacking sequence is [(45 /90 45 /0 ) (45 / /0 )] corresponding to a total thickness of 5.51 mm. The flange and web are made of the same fibre reinforced material having the properties: E 11 = 149 GPa E 22 = 10.1 GPa = 0.33 G 12 = 4.55 GPa Ply thickness = mm Buckling loads were predicted using the analytical formulation presented in the current work for the case of a clamped boundary condition (at y = 0), and compared to those of Mittlestedt for the case of a simply supported boundary condition (at y = 0). The analytical results were compared to the finite element analysis method using Nastran software. In the finite element model (Fig.2), the plates, both web and flange, are made of CQUAD4 elements having 4 nodes with 6 degrees of freedom (x, y, z translations and x, y, z rotations). A convergence study was conducted in order to refine the mesh to satisfactory results. For the size of the plates considered in this paper, the final mesh consists of square element of 5 mm width. Forces are applied on nodes of the web and flange edges at x = 0 and x = b (Fig.2). The first buckling mode obtained for each flange width was considered and the corresponding buckling load was recorded. Comparison of buckling loads predicted by the analytical formulation and finite element model are presented on Fig.3 for simply supported (Mittlestedt) and clamped boundary conditions at y = 0. Analytical formulation seems to be in good agreement with the finite element analysis for a flange width below 70 mm (clamped boundary condition) and 78 mm (simply supported boundary condition). With larger flanges, the buckling mode is changed from web buckling (local or lateral) to a flange local buckling mode (Fig.3), which is not captured in the analytical formulation. This flange local buckling mode must be studied using a different formulation as the analytical formulation presented in this study focuses on web buckling only. The results also demonstrate that, in this case, having a flange larger than 42 mm gives no additional stiffness to the frame against buckling. This can be seen as a minimal yet acceptable flange width [8] providing simply supported condition to the web. 3 Page

4 Fig.2 - Finite element model of considered structure, displacements are indicated by U. SS Theory SS FEM C Theory C FEM Buckling load N x (N/mm) Flange width, h (mm) Fig.3 - Buckling load predicted by analytical formulation (Theory) versus finite element method (FEM). The simply supported boundary condition at y = 0 is indicated by (SS) and the clamped boundary condition is indicated by (C). The selected example shows that using a simply supported rather than a clamped boundary condition (at y = 0) reduces the predicted buckling load by 30% for large flanges and even more for small flanges. Assuming the real-life condition is closer to the clamped boundary condition, the simply supported boundary condition would lead to overdesign of the composite frame. With a real airplane fuselage, the skin-stringer assembly gives a support to the frame web at the skin location (y = 0). The support that the skin-stringer assembly provides to the web is somewhere between the simply supported and clamped boundary conditions. To compare the simply supported and clamped boundary conditions with a realistic case, a skin-stringer support example is presented. This example represents a skin-stringer assembly having a 4 P age

5 typical stiffness used in the aerospace industry. The stringer consists of an I-beam and is assumed to be perfectly fused to the skin. Dimensions and properties of the skin-stringer assembly are presented in Table 1. The finite element models used to find the rotational stiffness of the skin-stringer assembly (at y = z = 0) are presented in Fig.4 and Fig.5. In those models, a transverse load is applied on the frame to create a moment at y = z = 0 and the deformation angle is recorded. As shown on Fig.6, the average angle (neglecting edge effect) obtained with the skin-stringer assembly is matched using rotational springs. Then, those rotational springs are added to the frame finite element model (Fig.2) at y = 0. Those rotational springs are a third boundary condition for the web. Then, all three boundary conditions are compared using finite element analysis and results are shown on Fig.7. The results confirmed the previous assumption that the buckling load of a typical skin-stringer assembly is much closer to the buckling load of a clamped boundary condition than that of a simply supported boundary condition. Fig.4 - Finite element model (skin, stringer and frame web) used to find the skin-stringer rotational stiffness at y = 0, displacements are indicated by U and rotation by R. 5 P age

6 Fig.5 - Finite element model (frame web and rotational springs) used to find the skin-stringer rotational stiffness at y = 0, displacements are indicated by U and rotation by R. Skin-stringer Rotational springs 2.5E E-05 Angle (mm/mm) 1.5E E E E Position z (mm) Fig.6 - Rotation at y = 0 using the skin-stringer and rotational springs finite element results 6 P age

7 C FEM SS FEM RS FEM Allowable N 11 (N/mm) Flange width (mm) Fig.7 - Predicted buckling load for various boundary conditions at y = 0 using the finite element method. Boundary conditions are indicated by SS (simply supported), C (clamped) and RS (rotational springs representing the skin-stringer support). The properties of the skin-stringer assembly are indicated in Table 1. Table 1 - Dimensions and laminates of the skin-stringer assembly Skin-Stringer Laminate Thickness Size Name mm mm Inner flange [(45 /90 /45 /0 )(45 /90 /45 /0 )] Web [(45 /90 /45 /0 )] Bottom flange [(45 /90 /45 /0 )] skin [(45 /90 /45 /0 )] 1.16 Stringer spacing P age

8 Conclusionandfuturework The present work demonstrated that assuming a simply supported boundary condition at the skin is a conservative assumption. On the other hand, the proposed formulation for a clamped boundary condition is closer to the reality but overestimates the buckling loads. Therefore, a mathematical formulation for the case of a rotationally restraining boundary condition will be developed in the future. This case would better represent the real-life boundary condition, which is somewhere between the simply supported and clamped boundary conditions. This will allow the development of efficient lightweight frames. The formulation presented in the current paper is not a closed-form solution and needs to be solved numerically. In order to provide the aerospace industry with a quick way of estimating the buckling load of a frame, an approximate closed-form formulation should be developed in the future. Furthermore, the straight web-flange formulation presented in this study should be extended to incorporate the radius effect in order to get a more accurate representation of a real aerospace frame. Acknowledgments This work was supported by NSERC, FRQNT and Bombardier Aerospace through the BMP Industrial Innovation Scholarships Program. References [1] W. M. Banks and J. Rhodes, "INSTABILITY OF COMPOSITE CHANNEL SECTIONS," in Composite Structures 2: Proceedings of the 2nd International Conference., Paisley, Scotl, 1983, pp [2] L. C. Bank and Y. Jiansheng, "Buckling of orthotropic plates with free and rotationally restrained unloaded edges," Thin-Walled Structures, vol. 24, pp , [3] E. J. Barbero and I. G. Raftoyiannis, "Local buckling of FRP beams and columns," Journal of Materials in Civil Engineering, vol. 5, pp , [4] C. Mittelstedt, "Stability behaviour of arbitrarily laminated composite plates with free and elastically restrained unloaded edges," International Journal of Mechanical Sciences, vol. 49, pp , [5] L. P. Kollar, "Local buckling of fiber reinforced plastic composite structural members with open and closed cross sections," Journal of Structural Engineering, vol. 129, pp , [6] P. Qiao and L. Shan, "Explicit local buckling analysis and design of fiber-reinforced plastic composite structural shapes," Composite Structures, vol. 70, pp , [7] L. Shan and P. Qiao, "Explicit local buckling analysis of rotationally restrained composite plates under uniaxial compression," Engineering Structures, vol. 30, pp , [8] C. Mittelstedt and M. Schagerl, "A composite view on Windenburg's problem: Buckling and minimum stiffness requirements of compressively loaded orthotropic plates with edge reinforcements," MS International Journal of Mechanical Sciences, vol. 52, pp , [9] R. F. Gibson, Principles of composite material mechanics. Boca Raton: CRC Press, [10] L. P. Kollar, G. S. Springer, and Knovel, Mechanics of composite structures. Cambridge New York: Cambridge University Press, [11] P. Qiao and G. Zou, "Local buckling of elastically restrained fiber-reinforced plastic plates and its application to box sections," Journal of Engineering Mechanics, vol. 128, pp , P age

Application of Shell elements to buckling-analyses of thin-walled composite laminates

Application of Shell elements to buckling-analyses of thin-walled composite laminates Application of Shell elements to buckling-analyses of thin-walled composite laminates B.A. Gӧttgens MT 12.02 Internship report Coach: Dr. R. E. Erkmen University of Technology Sydney Department of Civil

More information

A MODELING METHOD OF CURING DEFORMATION FOR CFRP COMPOSITE STIFFENED PANEL WANG Yang 1, GAO Jubin 1 BO Ma 1 LIU Chuanjun 1

A MODELING METHOD OF CURING DEFORMATION FOR CFRP COMPOSITE STIFFENED PANEL WANG Yang 1, GAO Jubin 1 BO Ma 1 LIU Chuanjun 1 21 st International Conference on Composite Materials Xi an, 20-25 th August 2017 A MODELING METHOD OF CURING DEFORMATION FOR CFRP COMPOSITE STIFFENED PANEL WANG Yang 1, GAO Jubin 1 BO Ma 1 LIU Chuanjun

More information

FINITE ELEMENT ANALYSIS OF A COMPOSITE CATAMARAN

FINITE ELEMENT ANALYSIS OF A COMPOSITE CATAMARAN NAFEMS WORLD CONGRESS 2013, SALZBURG, AUSTRIA FINITE ELEMENT ANALYSIS OF A COMPOSITE CATAMARAN Dr. C. Lequesne, Dr. M. Bruyneel (LMS Samtech, Belgium); Ir. R. Van Vlodorp (Aerofleet, Belgium). Dr. C. Lequesne,

More information

Guidelines for proper use of Plate elements

Guidelines for proper use of Plate elements Guidelines for proper use of Plate elements In structural analysis using finite element method, the analysis model is created by dividing the entire structure into finite elements. This procedure is known

More information

OPTFAIL Manual. A1.1 Introduction. APPENDIX 1 SPROPS, PROFAIL, and

OPTFAIL Manual. A1.1 Introduction. APPENDIX 1 SPROPS, PROFAIL, and APPENDIX 1 SPROPS, PROFAIL, and OPTFAIL Manual A1.1 Introduction OPTFAIL is a computer code written in FORTRAN developed by Woodson (1994) to optimize circular frames laminated from uniaxial tape composites

More information

ME 475 FEA of a Composite Panel

ME 475 FEA of a Composite Panel ME 475 FEA of a Composite Panel Objectives: To determine the deflection and stress state of a composite panel subjected to asymmetric loading. Introduction: Composite laminates are composed of thin layers

More information

Computer modelling and simulation of the mechanical response of composite lattice structures

Computer modelling and simulation of the mechanical response of composite lattice structures 22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 mssanz.org.au/modsim2017 Computer modelling and simulation of the mechanical response of composite

More information

CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 15 - FINITE ELEMENT ANALYSIS - PART 1

CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 15 - FINITE ELEMENT ANALYSIS - PART 1 Outcome 1 The learner can: CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 15 - FINITE ELEMENT ANALYSIS - PART 1 Calculate stresses, strain and deflections in a range of components under

More information

Multilevel optimization of. of Composite panels under complex load and boundary conditions.

Multilevel optimization of. of Composite panels under complex load and boundary conditions. Loughborough University Institutional Repository Multilevel optimization of composite panels under complex load and boundary conditions This item was submitted to Loughborough University's Institutional

More information

Simulation of fiber reinforced composites using NX 8.5 under the example of a 3- point-bending beam

Simulation of fiber reinforced composites using NX 8.5 under the example of a 3- point-bending beam R Simulation of fiber reinforced composites using NX 8.5 under the example of a 3- point-bending beam Ralph Kussmaul Zurich, 08-October-2015 IMES-ST/2015-10-08 Simulation of fiber reinforced composites

More information

OPTIMIZATION OF STIFFENED LAMINATED COMPOSITE CYLINDRICAL PANELS IN THE BUCKLING AND POSTBUCKLING ANALYSIS.

OPTIMIZATION OF STIFFENED LAMINATED COMPOSITE CYLINDRICAL PANELS IN THE BUCKLING AND POSTBUCKLING ANALYSIS. OPTIMIZATION OF STIFFENED LAMINATED COMPOSITE CYLINDRICAL PANELS IN THE BUCKLING AND POSTBUCKLING ANALYSIS. A. Korjakin, A.Ivahskov, A. Kovalev Stiffened plates and curved panels are widely used as primary

More information

Non-Linear Analysis of Bolted Flush End-Plate Steel Beam-to-Column Connection Nur Ashikin Latip, Redzuan Abdulla

Non-Linear Analysis of Bolted Flush End-Plate Steel Beam-to-Column Connection Nur Ashikin Latip, Redzuan Abdulla Non-Linear Analysis of Bolted Flush End-Plate Steel Beam-to-Column Connection Nur Ashikin Latip, Redzuan Abdulla 1 Faculty of Civil Engineering, Universiti Teknologi Malaysia, Malaysia redzuan@utm.my Keywords:

More information

Application of Finite Volume Method for Structural Analysis

Application of Finite Volume Method for Structural Analysis Application of Finite Volume Method for Structural Analysis Saeed-Reza Sabbagh-Yazdi and Milad Bayatlou Associate Professor, Civil Engineering Department of KNToosi University of Technology, PostGraduate

More information

3D Finite Element Software for Cracks. Version 3.2. Benchmarks and Validation

3D Finite Element Software for Cracks. Version 3.2. Benchmarks and Validation 3D Finite Element Software for Cracks Version 3.2 Benchmarks and Validation October 217 1965 57 th Court North, Suite 1 Boulder, CO 831 Main: (33) 415-1475 www.questintegrity.com http://www.questintegrity.com/software-products/feacrack

More information

Revised Sheet Metal Simulation, J.E. Akin, Rice University

Revised Sheet Metal Simulation, J.E. Akin, Rice University Revised Sheet Metal Simulation, J.E. Akin, Rice University A SolidWorks simulation tutorial is just intended to illustrate where to find various icons that you would need in a real engineering analysis.

More information

COMPUTER AIDED DESIGN OF COMPOSITE STIFFENED PANELS

COMPUTER AIDED DESIGN OF COMPOSITE STIFFENED PANELS COMPUTER AIDED DESIGN OF COMPOSITE STIFFENED PANELS Kim Nielsen Martinez and Ever J. Barbero West Virginia University Morgantown WV 26506-6106 ABSTRACT New software for the design of composite stiffened

More information

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force CHAPTER 4 Numerical Models This chapter presents the development of numerical models for sandwich beams/plates subjected to four-point bending and the hydromat test system. Detailed descriptions of the

More information

FAILURE ANALYSIS OF CURVED LAYERED TIMBER CONSTRUCTIONS

FAILURE ANALYSIS OF CURVED LAYERED TIMBER CONSTRUCTIONS FAILURE ANALYSIS OF CURVED LAYERED TIMBER CONSTRUCTIONS Stevan Maksimovic 1) and Milorad Komnenovic ) 1) VTI Aeronautical Institute, Ratka Resanovica 1, 11000 Belgrade, Serbia and Montenegro e-mail: s.maksimovic@net.yu

More information

Module 1: Introduction to Finite Element Analysis. Lecture 4: Steps in Finite Element Analysis

Module 1: Introduction to Finite Element Analysis. Lecture 4: Steps in Finite Element Analysis 25 Module 1: Introduction to Finite Element Analysis Lecture 4: Steps in Finite Element Analysis 1.4.1 Loading Conditions There are multiple loading conditions which may be applied to a system. The load

More information

Numerical Calculations of Stability of Spherical Shells

Numerical Calculations of Stability of Spherical Shells Mechanics and Mechanical Engineering Vol. 14, No. 2 (2010) 325 337 c Technical University of Lodz Numerical Calculations of Stability of Spherical Shells Tadeusz Niezgodziński Department of Dynamics Technical

More information

Modelling of an Improvement Device for a Tension Test Machine in Crippling Tests

Modelling of an Improvement Device for a Tension Test Machine in Crippling Tests Modelling of an Improvement Device for a Tension Test Machine in Crippling Tests Iván Lafuente *, José L. Alcaraz **, and Iñigo Ortiz de Zárate * * Dpto. de Cálculo. Aernnova Engineering Solutions. 01510

More information

WP1 NUMERICAL BENCHMARK INVESTIGATION

WP1 NUMERICAL BENCHMARK INVESTIGATION WP1 NUMERICAL BENCHMARK INVESTIGATION 1 Table of contents 1 Introduction... 3 2 1 st example: beam under pure bending... 3 2.1 Definition of load application and boundary conditions... 4 2.2 Definition

More information

NEW WAVE OF CAD SYSTEMS AND ITS APPLICATION IN DESIGN

NEW WAVE OF CAD SYSTEMS AND ITS APPLICATION IN DESIGN Vol 4 No 3 NEW WAVE OF CAD SYSTEMS AND ITS APPLICATION IN DESIGN Ass Lecturer Mahmoud A Hassan Al-Qadisiyah University College of Engineering hasaaneng@yahoocom ABSTRACT This paper provides some lighting

More information

TABLE OF CONTENTS SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 SECTION 3 WAVE REFLECTION AND TRANSMISSION IN RODS Introduction...

TABLE OF CONTENTS SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 SECTION 3 WAVE REFLECTION AND TRANSMISSION IN RODS Introduction... TABLE OF CONTENTS SECTION 1 INTRODUCTION... 1 1.1 Introduction... 1 1.2 Objectives... 1 1.3 Report organization... 2 SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 2.1 Introduction... 3 2.2 Wave propagation

More information

Static analysis of an isotropic rectangular plate using finite element analysis (FEA)

Static analysis of an isotropic rectangular plate using finite element analysis (FEA) Journal of Mechanical Engineering Research Vol. 4(4), pp. 148-162, April 2012 Available online at http://www.academicjournals.org/jmer DOI: 10.5897/JMER11.088 ISSN 2141-2383 2012 Academic Journals Full

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 2, Issue 3, September 2012

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 2, Issue 3, September 2012 Mitigation Curves for Determination of Relief Holes to Mitigate Concentration Factor in Thin Plates Loaded Axially for Different Discontinuities Shubhrata Nagpal, S.Sanyal, Nitin Jain Abstract In many

More information

Elfini Solver Verification

Elfini Solver Verification Page 1 Elfini Solver Verification Preface Using this Guide Where to Find More Information Conventions What's new User Tasks Static Analysis Cylindrical Roof Under its Own Weight Morley's Problem Twisted

More information

Analysis of Composite Aerospace Structures Finite Elements Professor Kelly

Analysis of Composite Aerospace Structures Finite Elements Professor Kelly Analysis of Composite Aerospace Structures Finite Elements Professor Kelly John Middendorf #3049731 Assignment #3 I hereby certify that this is my own and original work. Signed, John Middendorf Analysis

More information

A Multiple Constraint Approach for Finite Element Analysis of Moment Frames with Radius-cut RBS Connections

A Multiple Constraint Approach for Finite Element Analysis of Moment Frames with Radius-cut RBS Connections A Multiple Constraint Approach for Finite Element Analysis of Moment Frames with Radius-cut RBS Connections Dawit Hailu +, Adil Zekaria ++, Samuel Kinde +++ ABSTRACT After the 1994 Northridge earthquake

More information

Challenge Problem 5 - The Solution Dynamic Characteristics of a Truss Structure

Challenge Problem 5 - The Solution Dynamic Characteristics of a Truss Structure Challenge Problem 5 - The Solution Dynamic Characteristics of a Truss Structure In the final year of his engineering degree course a student was introduced to finite element analysis and conducted an assessment

More information

THE EFFECT OF THE FREE SURFACE ON THE SINGULAR STRESS FIELD AT THE FATIGUE CRACK FRONT

THE EFFECT OF THE FREE SURFACE ON THE SINGULAR STRESS FIELD AT THE FATIGUE CRACK FRONT Journal of MECHANICAL ENGINEERING Strojnícky časopis, VOL 67 (2017), NO 2, 69-76 THE EFFECT OF THE FREE SURFACE ON THE SINGULAR STRESS FIELD AT THE FATIGUE CRACK FRONT OPLT Tomáš 1,2, POKORNÝ Pavel 2,

More information

The Mechanics of Composites Collection Material Minds Software A Product of Materials Sciences Corporation

The Mechanics of Composites Collection Material Minds Software A Product of Materials Sciences Corporation The Mechanics of Composites Collection Material Minds Software A Product of Materials Sciences Corporation aterial inds Software The Materials Minds Philosophy Engineers are smart people that want the

More information

Finite Element Buckling Analysis Of Stiffened Plates

Finite Element Buckling Analysis Of Stiffened Plates International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 2 (February 2014), PP.79-83 Finite Element Buckling Analysis Of Stiffened

More information

FE ANALYSES OF STABILITY OF SINGLE AND DOUBLE CORRUGATED BOARDS

FE ANALYSES OF STABILITY OF SINGLE AND DOUBLE CORRUGATED BOARDS Proceedings of ICAD26 FE ANALYSES OF STABILITY OF SINGLE AND DOUBLE CORRUGATED BOARDS ICAD-26-43 Enrico Armentani enrico.armentani@unina.it University of Naples P.le V. Tecchio, 8 8125 Naples Italy Francesco

More information

A sizing method for cylindrical grid-stiffened structures in composite material

A sizing method for cylindrical grid-stiffened structures in composite material A sizing method for cylindrical grid-stiffened structures in composite material G. Gatta & F. Romano Structural Design & Aeroelasticity Laboratory CIRA - Italian Aerospace Research Center, Italy Abstract

More information

AXIAL OF OF THE. M. W. Hyer. To mitigate the. Virginia. SUMMARY. the buckling. circumference, Because of their. could.

AXIAL OF OF THE. M. W. Hyer. To mitigate the. Virginia. SUMMARY. the buckling. circumference, Because of their. could. IMPROVEMENT OF THE AXIAL BUCKLING CAPACITY OF COMPOSITE ELLIPTICAL CYLINDRICAL SHELLS M. W. Hyer Department of Engineering Science and Mechanics (0219) Virginia Polytechnic Institute and State University

More information

Chapter 3 Analysis of Original Steel Post

Chapter 3 Analysis of Original Steel Post Chapter 3. Analysis of original steel post 35 Chapter 3 Analysis of Original Steel Post This type of post is a real functioning structure. It is in service throughout the rail network of Spain as part

More information

Modelling Flat Spring Performance Using FEA

Modelling Flat Spring Performance Using FEA Modelling Flat Spring Performance Using FEA Blessing O Fatola, Patrick Keogh and Ben Hicks Department of Mechanical Engineering, University of Corresponding author bf223@bath.ac.uk Abstract. This paper

More information

GBTUL 1.0. Buckling and Vibration Analysis of Thin-Walled Members USER MANUAL. Rui Bebiano Nuno Silvestre Dinar Camotim

GBTUL 1.0. Buckling and Vibration Analysis of Thin-Walled Members USER MANUAL. Rui Bebiano Nuno Silvestre Dinar Camotim GBTUL 1.0 Buckling and Vibration Analysis of Thin-Walled Members USER MANUAL Rui Bebiano Nuno Silvestre Dinar Camotim Department of Civil Engineering and Architecture, DECivil/IST Technical University

More information

Introduction to Finite Element Analysis using ANSYS

Introduction to Finite Element Analysis using ANSYS Introduction to Finite Element Analysis using ANSYS Sasi Kumar Tippabhotla PhD Candidate Xtreme Photovoltaics (XPV) Lab EPD, SUTD Disclaimer: The material and simulations (using Ansys student version)

More information

DESIGN OF CFRP WITH FIBERS PLACED BY USING AN EMBROIDERY MACHINE

DESIGN OF CFRP WITH FIBERS PLACED BY USING AN EMBROIDERY MACHINE 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS DESIGN OF CFRP WITH FIBERS PLACED BY USING AN EMBROIDERY MACHINE K. Oka 1, T. Ikeda 2 *, A. Senba 2, T. Ueda 1 1 Department of Aerospace Engineering,

More information

Targeting Composite Wing Performance Optimising the Composite Lay-Up Design

Targeting Composite Wing Performance Optimising the Composite Lay-Up Design Targeting Composite Wing Performance Optimising the Composite Lay-Up Design Sam Patten Optimisation Specialist, Altair Engineering Ltd Imperial House, Holly Walk, Royal Leamington Spa, CV32 4JG sam.patten@uk.altair.com

More information

DESIGN & ANALYSIS OF CONNECTING ROD OF FORMING AND CUTTING DIE PILLAR STATION OF VACUUM FORMING MACHINE

DESIGN & ANALYSIS OF CONNECTING ROD OF FORMING AND CUTTING DIE PILLAR STATION OF VACUUM FORMING MACHINE Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 3, No. 3, July, 2014 2014 IJMERR. All Rights Reserved DESIGN & ANALYSIS OF CONNECTING ROD OF FORMING AND CUTTING DIE PILLAR STATION OF VACUUM FORMING MACHINE

More information

Simulation of a Steel Wire Straightening Taking into Account Nonlinear Hardening of Material

Simulation of a Steel Wire Straightening Taking into Account Nonlinear Hardening of Material ETASR - Engineering, Technology & Applied Science Research Vol. 2, No. 6, 2012, 320-324 320 Simulation of a Steel Wire Straightening Taking into Account Nonlinear Hardening of Material Ilya Khromov Dept.

More information

Computations of stresses with volume-elements in rectangular and HE sections

Computations of stresses with volume-elements in rectangular and HE sections CT3000: Bachelor Thesis Report, Izik Shalom (4048180) Computations of stresses with volume-elements in rectangular and HE sections Supervisors: dr. ir. P.C.J. Hoogenboom en Ir. R. Abspoel June 2013 Preface

More information

Investigating the influence of local fiber architecture in textile composites by the help of a mapping tool

Investigating the influence of local fiber architecture in textile composites by the help of a mapping tool Investigating the influence of local fiber architecture in textile composites by the help of a mapping tool M. Vinot 1, Martin Holzapfel 1, Christian Liebold 2 1 Institute of Structures and Design, German

More information

TOPOLOGY OPTIMIZATION OF WING RIBS IN CESSNA CITATION

TOPOLOGY OPTIMIZATION OF WING RIBS IN CESSNA CITATION TOPOLOGY OPTIMIZATION OF WING RIBS IN CESSNA CITATION [1],Sathiyavani S [2], Arun K K [3] 1,2 student, 3 Assistant professor Kumaraguru College of technology, Coimbatore Abstract Structural design optimization

More information

COMPLIANCE MODELLING OF 3D WEAVES

COMPLIANCE MODELLING OF 3D WEAVES 6 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS COMPLIANCE MODELLING OF 3D WEAVES Prasad Potluri *, Andrew Long **, Robert J Young *, Hua Lin **, Yat-Tarng Shyng *, A Manan * * School of Materials,

More information

A NEW APPROACH IN STACKING SEQUENCE OPTIMIZATION OF COMPOSITE LAMINATES USING GENESIS STRUCTURAL ANALYSIS AND OPTIMIZATION SOFTWARE

A NEW APPROACH IN STACKING SEQUENCE OPTIMIZATION OF COMPOSITE LAMINATES USING GENESIS STRUCTURAL ANALYSIS AND OPTIMIZATION SOFTWARE 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization 4-6 September 2002, Atlanta, Georgia AIAA 2002-5451 A NEW APPROACH IN STACKING SEQUENCE OPTIMIZATION OF COMPOSITE LAMINATES USING

More information

Investigation of the behaviour of single span reinforced concrete historic bridges by using the finite element method

Investigation of the behaviour of single span reinforced concrete historic bridges by using the finite element method Structural Studies, Repairs and Maintenance of Heritage Architecture XI 279 Investigation of the behaviour of single span reinforced concrete historic bridges by using the finite element method S. B. Yuksel

More information

Example 24 Spring-back

Example 24 Spring-back Example 24 Spring-back Summary The spring-back simulation of sheet metal bent into a hat-shape is studied. The problem is one of the famous tests from the Numisheet 93. As spring-back is generally a quasi-static

More information

Strength of Overlapping Multi-Planar KK Joints in CHS Sections

Strength of Overlapping Multi-Planar KK Joints in CHS Sections Strength of Overlapping Multi-Planar KK Joints in CHS Sections Peter Gerges 1, Mohamed Hussein 1, Sameh Gaawan 2 Structural Engineer, Department of Structures, Dar Al-Handasah Consultants, Giza, Egypt

More information

Beams. Lesson Objectives:

Beams. Lesson Objectives: Beams Lesson Objectives: 1) Derive the member local stiffness values for two-dimensional beam members. 2) Assemble the local stiffness matrix into global coordinates. 3) Assemble the structural stiffness

More information

Coupled analysis of material flow and die deflection in direct aluminum extrusion

Coupled analysis of material flow and die deflection in direct aluminum extrusion Coupled analysis of material flow and die deflection in direct aluminum extrusion W. Assaad and H.J.M.Geijselaers Materials innovation institute, The Netherlands w.assaad@m2i.nl Faculty of Engineering

More information

SCIA stands for scientific analyser. The C in SCIA Engineering is not pronounced. Note that the first c in science is not pronounced either.

SCIA stands for scientific analyser. The C in SCIA Engineering is not pronounced. Note that the first c in science is not pronounced either. Design of a reinforced concrete 4-hypar shell with edge beams P.C.J. Hoogenboom, 22 May 2016 SCIA stands for scientific analyser. The C in SCIA Engineering is not pronounced. Note that the first c in science

More information

Study of Convergence of Results in Finite Element Analysis of a Plane Stress Bracket

Study of Convergence of Results in Finite Element Analysis of a Plane Stress Bracket RESEARCH ARTICLE OPEN ACCESS Study of Convergence of Results in Finite Element Analysis of a Plane Stress Bracket Gowtham K L*, Shivashankar R. Srivatsa** *(Department of Mechanical Engineering, B. M.

More information

studying of the prying action effect in steel connection

studying of the prying action effect in steel connection studying of the prying action effect in steel connection Saeed Faraji Graduate Student, Department of Civil Engineering, Islamic Azad University, Ahar Branch S-faraji@iau-ahar.ac.ir Paper Reference Number:

More information

A NUMERICAL SIMULATION OF DAMAGE DEVELOPMENT FOR LAMINATED WOVEN FABRIC COMPOSITES

A NUMERICAL SIMULATION OF DAMAGE DEVELOPMENT FOR LAMINATED WOVEN FABRIC COMPOSITES A NUMERICAL SIMULATION OF DAMAGE DEVELOPMENT FOR LAMINATED WOVEN FABRIC COMPOSITES Tetsusei Kurashiki 1, Yujiro Momoji 1, Hiroaki Nakai 1, and Masaru Zako 1 1 Department of Management of Industry and Technology,

More information

Settlement of a circular silo foundation

Settlement of a circular silo foundation Engineering manual No. 22 Updated: 02/2018 Settlement of a circular silo foundation Program: FEM File: Demo_manual_22.gmk The objective of this manual is to describe the solution to a circular silo foundation

More information

COMPUTER AIDED ENGINEERING. Part-1

COMPUTER AIDED ENGINEERING. Part-1 COMPUTER AIDED ENGINEERING Course no. 7962 Finite Element Modelling and Simulation Finite Element Modelling and Simulation Part-1 Modeling & Simulation System A system exists and operates in time and space.

More information

Application of a FEA Model for Conformability Calculation of Tip Seal in Compressor

Application of a FEA Model for Conformability Calculation of Tip Seal in Compressor Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2008 Application of a FEA Model for Conformability Calculation of Tip Seal in Compressor

More information

VARIOUS APPROACHES USED IN THE SEISMIC QUALIFICATION OF THE PIPING SYSTEMS IN NUCLEAR FACILITIES. Introduction

VARIOUS APPROACHES USED IN THE SEISMIC QUALIFICATION OF THE PIPING SYSTEMS IN NUCLEAR FACILITIES. Introduction VARIOUS APPROACHES USED IN THE SEISMIC QUALIFICATION OF THE PIPING SYSTEMS IN NUCLEAR FACILITIES A. Musil, P. Markov Stevenson&Associates, Pilsen, Czech Republic Introduction In the firm Stevenson&Associates

More information

Recent Advances on Higher Order 27-node Hexahedral Element in LS-DYNA

Recent Advances on Higher Order 27-node Hexahedral Element in LS-DYNA 14 th International LS-DYNA Users Conference Session: Simulation Recent Advances on Higher Order 27-node Hexahedral Element in LS-DYNA Hailong Teng Livermore Software Technology Corp. Abstract This paper

More information

Influence of geometric imperfections on tapered roller bearings life and performance

Influence of geometric imperfections on tapered roller bearings life and performance Influence of geometric imperfections on tapered roller bearings life and performance Rodríguez R a, Calvo S a, Nadal I b and Santo Domingo S c a Computational Simulation Centre, Instituto Tecnológico de

More information

ANALYSIS OF BOX CULVERT - COST OPTIMIZATION FOR DIFFERENT ASPECT RATIOS OF CELL

ANALYSIS OF BOX CULVERT - COST OPTIMIZATION FOR DIFFERENT ASPECT RATIOS OF CELL ANALYSIS OF BOX CULVERT - COST OPTIMIZATION FOR DIFFERENT ASPECT RATIOS OF CELL M.G. Kalyanshetti 1, S.A. Gosavi 2 1 Assistant professor, Civil Engineering Department, Walchand Institute of Technology,

More information

1. Carlos A. Felippa, Introduction to Finite Element Methods,

1. Carlos A. Felippa, Introduction to Finite Element Methods, Chapter Finite Element Methods In this chapter we will consider how one can model the deformation of solid objects under the influence of external (and possibly internal) forces. As we shall see, the coupled

More information

Mixed Mode Fracture of Through Cracks In Nuclear Reactor Steam Generator Helical Coil Tube

Mixed Mode Fracture of Through Cracks In Nuclear Reactor Steam Generator Helical Coil Tube Journal of Materials Science & Surface Engineering Vol. 3 (4), 2015, pp 298-302 Contents lists available at http://www.jmsse.org/ Journal of Materials Science & Surface Engineering Mixed Mode Fracture

More information

Design Optimization of Robotic Arms

Design Optimization of Robotic Arms Design Optimization of Robotic Arms 1. Prof. L. S Utpat Professor, Mechanical Engineering Dept., MMCOE, Pune -52 Pune University, Maharashtra, India 2. Prof. Chavan Dattatraya K Professor, Mechanical Engineering

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction GTU Paper Analysis (New Syllabus) Sr. No. Questions 26/10/16 11/05/16 09/05/16 08/12/15 Theory 1. What is graphic standard? Explain different CAD standards. 2. Write Bresenham s

More information

Learning Module 8 Shape Optimization

Learning Module 8 Shape Optimization Learning Module 8 Shape Optimization What is a Learning Module? Title Page Guide A Learning Module (LM) is a structured, concise, and self-sufficient learning resource. An LM provides the learner with

More information

MAE Advanced Computer Aided Design. 01. Introduction Doc 02. Introduction to the FINITE ELEMENT METHOD

MAE Advanced Computer Aided Design. 01. Introduction Doc 02. Introduction to the FINITE ELEMENT METHOD MAE 656 - Advanced Computer Aided Design 01. Introduction Doc 02 Introduction to the FINITE ELEMENT METHOD The FEM is A TOOL A simulation tool The FEM is A TOOL NOT ONLY STRUCTURAL! Narrowing the problem

More information

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 07, 2015 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 07, 2015 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 07, 2015 ISSN (online): 2321-0613 Uncertainty Analysis of Hollow Rectangular Beam by using Finite Element Method Mr. Sachin

More information

Effectiveness of Element Free Galerkin Method over FEM

Effectiveness of Element Free Galerkin Method over FEM Effectiveness of Element Free Galerkin Method over FEM Remya C R 1, Suji P 2 1 M Tech Student, Dept. of Civil Engineering, Sri Vellappaly Natesan College of Engineering, Pallickal P O, Mavelikara, Kerala,

More information

Part 07: BEAM-Analysis with MEANS V FEM-System MEANS V11. BEAM-Analysis for Calculation of Displacements and Stresses

Part 07: BEAM-Analysis with MEANS V FEM-System MEANS V11. BEAM-Analysis for Calculation of Displacements and Stresses Part 07: BEAM-Analysis with MEANS V11 125 FEM-System MEANS V11 BEAM-Analysis for Calculation of Displacements and Stresses (C) 2018 by Ing.Büro HTA-Software www.femcad.de www.fem-infos.com Part 07: BEAM-Analysis

More information

Advanced Professional Training

Advanced Professional Training Advanced Professional Training Non Linea rand Stability All information in this document is subject to modification without prior notice. No part of this manual may be reproduced, stored in a database

More information

Figure 30. Degrees of freedom of flat shell elements

Figure 30. Degrees of freedom of flat shell elements Shell finite elements There are three types of shell finite element; 1) flat elements, 2) elements based on the Sanders-Koiter equations and 3) elements based on reduction of a solid element. Flat elements

More information

The Dynamic Response of an Euler-Bernoulli Beam on an Elastic Foundation by Finite Element Analysis using the Exact Stiffness Matrix

The Dynamic Response of an Euler-Bernoulli Beam on an Elastic Foundation by Finite Element Analysis using the Exact Stiffness Matrix Journal of Physics: Conference Series The Dynamic Response of an Euler-Bernoulli Beam on an Elastic Foundation by Finite Element Analysis using the Exact Stiffness Matrix To cite this article: Jeong Soo

More information

STATIC BENDING ANALYSIS OF AN ISOTROPIC CIRCULAR PLATE USING FINITE ELEMENT METHOD

STATIC BENDING ANALYSIS OF AN ISOTROPIC CIRCULAR PLATE USING FINITE ELEMENT METHOD International Journal Modern Trends in Engineering and Research www.ijmter.com e-issn :2349-9745, Date: 28-30 April, 20 STATIC BENDING ANALYSIS OF AN ISOTROPIC CIRCULAR PLATE USING FINITE ELEMENT METHOD

More information

Set No. 1 IV B.Tech. I Semester Regular Examinations, November 2010 FINITE ELEMENT METHODS (Mechanical Engineering) Time: 3 Hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks

More information

THREE DIMENSIONAL ACES MODELS FOR BRIDGES

THREE DIMENSIONAL ACES MODELS FOR BRIDGES THREE DIMENSIONAL ACES MODELS FOR BRIDGES Noel Wenham, Design Engineer, Wyche Consulting Joe Wyche, Director, Wyche Consulting SYNOPSIS Plane grillage models are widely used for the design of bridges,

More information

Efficient Beam-Type Structural Modeling of Rotor Blades

Efficient Beam-Type Structural Modeling of Rotor Blades Downloaded from orbit.dtu.dk on: Dec 8, 28 Efficient Beam-Type Structural Modeling of Rotor Blades Couturier, Philippe; Krenk, Steen Published in: Proceedings of the EWEA Annual Event and Exhibition 25

More information

ANSYS AIM Tutorial Structural Analysis of a Plate with Hole

ANSYS AIM Tutorial Structural Analysis of a Plate with Hole ANSYS AIM Tutorial Structural Analysis of a Plate with Hole Author(s): Sebastian Vecchi, ANSYS Created using ANSYS AIM 18.1 Problem Specification Pre-Analysis & Start Up Analytical vs. Numerical Approaches

More information

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering Introduction A SolidWorks simulation tutorial is just intended to illustrate where to

More information

Introduction to 2 nd -order Lagrangian Element in LS-DYNA

Introduction to 2 nd -order Lagrangian Element in LS-DYNA Introduction to 2 nd -order Lagrangian Element in LS-DYNA Hailong Teng Livermore Software Technology Corporation Nov, 2017 Motivation Users are requesting higher order elements for implicit. Replace shells.

More information

ME Optimization of a Frame

ME Optimization of a Frame ME 475 - Optimization of a Frame Analysis Problem Statement: The following problem will be analyzed using Abaqus. 4 7 7 5,000 N 5,000 N 0,000 N 6 6 4 3 5 5 4 4 3 3 Figure. Full frame geometry and loading

More information

CHAPTER-10 DYNAMIC SIMULATION USING LS-DYNA

CHAPTER-10 DYNAMIC SIMULATION USING LS-DYNA DYNAMIC SIMULATION USING LS-DYNA CHAPTER-10 10.1 Introduction In the past few decades, the Finite Element Method (FEM) has been developed into a key indispensable technology in the modeling and simulation

More information

CE2351-STRUCTURAL ANALYSIS II

CE2351-STRUCTURAL ANALYSIS II CE2351-STRUCTURAL ANALYSIS II QUESTION BANK UNIT-I FLEXIBILITY METHOD PART-A 1. What are determinate structures? 2. What is meant by indeterminate structures? 3. What are the conditions of equilibrium?

More information

Buckling Analysis of a Thin Plate

Buckling Analysis of a Thin Plate Buckling Analysis of a Thin Plate Outline 1 Description 2 Modeling approach 3 Finite Element Model 3.1 Units 3.2 Geometry definition 3.3 Properties 3.4 Boundary conditions 3.5 Loads 3.6 Meshing 4 Structural

More information

COLLAPSE LOAD OF PIPE BENDS WITH ASSUMED AND ACTUAL CROSS SECTIONS UNDER IN-PLANE AND OUT-OF-PLANE MOMENTS

COLLAPSE LOAD OF PIPE BENDS WITH ASSUMED AND ACTUAL CROSS SECTIONS UNDER IN-PLANE AND OUT-OF-PLANE MOMENTS VOL., NO., NOVEMBER 6 ISSN 8968 6-6 Asian Research Publishing Network (ARPN). All rights reserved. COLLAPSE LOAD OF PIPE BENDS WITH ASSUMED AND ACTUAL CROSS SECTIONS UNDER IN-PLANE AND OUT-OF-PLANE MOMENTS

More information

ANALYTICAL MODEL FOR THIN PLATE DYNAMICS

ANALYTICAL MODEL FOR THIN PLATE DYNAMICS ANALYTICAL MODEL FOR THIN PLATE DYNAMICS Joyson Menezes 1, Kadir Kiran 2 and Tony L. Schmitz 1 1 Mechanical Engineering and Engineering Science University of North Carolina at Charlotte Charlotte, NC,

More information

Top Layer Subframe and Node Analysis

Top Layer Subframe and Node Analysis Top Layer Subframe and Node Analysis By Paul Rasmussen 2 August, 2012 Introduction The top layer of the CCAT backing structure forms a critical interface between the truss and the primary subframes. Ideally

More information

Dubey Rohit Kumar, International Journal of Advance Research, Ideas and Innovations in Technology

Dubey Rohit Kumar, International Journal of Advance Research, Ideas and Innovations in Technology ISSN: 2454-132X Impact factor: 4.295 (Volume 4, Issue 1) Report On Studying the Effect of Mesh Density on Finite Element Analysis and Establish an Optimal Mesh Density for Finite Element Analysis of a

More information

VIRTUAL TESTING OF AIRCRAFT FUSELAGE STIFFENED PANELS

VIRTUAL TESTING OF AIRCRAFT FUSELAGE STIFFENED PANELS 4 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES VIRTUAL TESTING OF AIRCRAFT FUSELAGE STIFFENED PANELS Peter Linde*, Jürgen Pleitner*, Wilhelm Rust** *Airbus, Hamburg, Germany, **CAD-FE GmbH, Burgdorf

More information

Predicting the mechanical behaviour of large composite rocket motor cases

Predicting the mechanical behaviour of large composite rocket motor cases High Performance Structures and Materials III 73 Predicting the mechanical behaviour of large composite rocket motor cases N. Couroneau DGA/CAEPE, St Médard en Jalles, France Abstract A method to develop

More information

BUCKLING AND POSTBUCKLING ANALYSIS OF A CFRP STIFFENED PANEL FOR A BETTER MATERIAL EXPLOITATION

BUCKLING AND POSTBUCKLING ANALYSIS OF A CFRP STIFFENED PANEL FOR A BETTER MATERIAL EXPLOITATION BUCKLING AND POSTBUCKLING ANALYSIS OF A CFRP STIFFENED PANEL FOR A BETTER MATERIAL EXPLOITATION Richard DEGENHARDT 1 Jean-Pierre DELSEMME 2 1 DLR, Institute of Structural Mechanics, Braunschweig, Germany

More information

D DAVID PUBLISHING. Stability Analysis of Tubular Steel Shores. 1. Introduction

D DAVID PUBLISHING. Stability Analysis of Tubular Steel Shores. 1. Introduction Journal of Civil Engineering and Architecture 1 (216) 563-567 doi: 1.17265/1934-7359/216.5.5 D DAVID PUBLISHING Fábio André Frutuoso Lopes, Fernando Artur Nogueira Silva, Romilde Almeida de Oliveira and

More information

BUCKLING COEFFICIENTS FOR SIMPLY SUPPORTED AND CLAMPED FLAT, RECTANGULAR SANDWICH PANELS UNDER EDGEWISE COMPRESSION

BUCKLING COEFFICIENTS FOR SIMPLY SUPPORTED AND CLAMPED FLAT, RECTANGULAR SANDWICH PANELS UNDER EDGEWISE COMPRESSION U. S. DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY MADlSON, WIS. U.S. FOREST SERVICE RESEARCH NOTE FPL-070 December 1964 BUCKLING COEFFICIENTS FOR SIMPLY SUPPORTED AND CLAMPED FLAT,

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction ME 475: Computer-Aided Design of Structures 1-1 CHAPTER 1 Introduction 1.1 Analysis versus Design 1.2 Basic Steps in Analysis 1.3 What is the Finite Element Method? 1.4 Geometrical Representation, Discretization

More information

APPLICATION OF STRUCTURAL OPTIMISATION WITH BOSS QUATTRO TO A380 RIB1 OPTIMISATION

APPLICATION OF STRUCTURAL OPTIMISATION WITH BOSS QUATTRO TO A380 RIB1 OPTIMISATION December 2003 FENet Presented by Ghislaine MALHERBE (SAMTECH France) Collaboration with Stéphane Grihon ESANT - (AIRBUS France) Cesare CRUCCAS (SAMTECH France) APPLICATION OF STRUCTURAL OPTIMISATION WITH

More information

An explicit feature control approach in structural topology optimization

An explicit feature control approach in structural topology optimization th World Congress on Structural and Multidisciplinary Optimisation 07 th -2 th, June 205, Sydney Australia An explicit feature control approach in structural topology optimization Weisheng Zhang, Xu Guo

More information