R asterisation. Part I: Simple Lines. Affine transformation. Transform Render. Rasterisation Line Rasterisation 2/16

Size: px
Start display at page:

Download "R asterisation. Part I: Simple Lines. Affine transformation. Transform Render. Rasterisation Line Rasterisation 2/16"

Transcription

1 ECM2410:GraphicsandAnimation R asterisation Part I: Simple Lines Rasterisation 1/16 Rendering a scene User space Device space Affine transformation Compose Transform Render Com pose from primitives (lines, ellipses, etc) in user space. Transform affine transformations: lines lines; ellipses ellipses Render primitives on device. Rasterisation Line Rasterisation 2/16 Rasterisation Vector displays Pen plotters Tektronix cathode ray tubes Raster displays Monitors Televisions Laser, ink-jet, dot matrix printers Liquid crystal displays Arrays of LEDs Rasterisation is the conversion of ideal, mathematical graphics primitives onto raster displays. Drawing lines Drawing circles and ellipses Filling areas Hearn & Baker, Chapter 2 for displays. Rasterisation Line Rasterisation 3/16

2 Fram ebuffer Raster display is a 2D array of picture elements: pixels Framebuffer: in-memory image of the display Screen coordinates of pixels are centered at the integers. Pixels are individually set or cleared (random access). Sequential readout by physical device. Graphical objects are continuous. Framebuffer is discrete. Rasterisation / Framebuffer Line Rasterisation 4/16 Rasterisation Rasterisation is the conversion of ideal, mathematical graphics primitives onto raster displays. Efficiency we seek efficient algorithms for computing the discrete approximation to continuous description. Scan Conversion rasterisation line by line of the raster display. Rasterisation / Framebuffer Line Rasterisation 5/16 Line Segm ents Problem: Draw a line from (X start, Y start ) to (X end, Y end ) Simplified: Draw a line from (0, 0) to (X end, Y end ) (X end > 0 and Y end > 0) (19,4) (0,0) Grid marks pixel centres Example: Line from (0, 0) to (X end, Y end ) = (19, 4) Lines Line Rasterisation 6/16

3 Whichpixelstoilluminate? Illuminate every pixel the line intersects Illuminate the pixel Lines / Which Pixel? Line Rasterisation 7/16 Gradient Gradient of line y = m x + c m = Y end Y start X end X start Simplified line from (0, 0) to (X end, Y end ): Lines / Gradient Line Rasterisation 8/16 NaïveMidpointAlgorithm Illuminate pixel vertically closest to the line 4/19 12/19 8/19 16/19 double m = Yend / Xend; double y = 0.0; while ( x <= Xend ) { y = m * x; iy = round(y); DDA Digital Differential Analyser. Hearn & Baker, p86. Lines / Naïve Algorithm Line Rasterisation 9/16

4 Rem ove round() Line coherence: As x x + 1 then y y + m 4/19 8/19 12/19 16/19 At each step: move right one pixel and up by midpoint indicates pixel centre above illuminated pixel. When y crosses vertical midpoint between two centres move up and compute new midpoint target. double m = Yend / Xend; int iy = 0; double y = 0.0; double midpoint = 0.5; while (x <= Xend) { y += m; if (y > midpoint) { Lines / Eliminating Floats Line Rasterisation 10/16 Integers only m = Y end X end y = m x = Y end x X end Multiply m, y and midpoint by twice total change in x; (i.e. ) m = 2 Y end y=8 16 y = 2 Y end x int m = 2 * Yend; int iy = 0; int y = 0; int midpoint = Xend; while (x <= Xend) { y += m; if (y > midpoint) { iy++; midpoint += 2 * Xend; 19 midpoint Lines / Eliminating Floats Line Rasterisation 11/16 Bresenham s algorithm Eliminate midpoint by adjusting y to start at the midpoint and decreasing to 0. y= => 33 Hearn & Baker, page int m = 2 * Yend; int iy = 0; int y = Xend; while (x <= Xend) { y -= m; if (y < 0) { iy++; y += 2 * Xend; Lines / Bresenham s Algorithm Line Rasterisation 12/16

5 Caveats Needsadjustmentfor: References Lines with different slope may have different brightness. Alleviated with anti-aliasing (give pixels different brightness). Hearn & Baker, pp Foley & van Dam Lines / Bresenham s Algorithm Line Rasterisation 13/16 Bresenham Circle A lgorithm Choose pixel with centre closest to circle. Work on a single octant and draw others by symmetry. Can be written in integer arithmetic. Details in Hearn & Baker, Foley et al. Lines / Bresenham Circle Algorithm Line Rasterisation 14/16 ThickPrimitives Colum n Replication Efficient, easily implemented. Perceived thickness varies with slope. Gaps at joins. Rectangular Pen Ends are thicker than middle. Perceived thickness varies with slope. Pixels are set multiple times. Lines / Thick Primitives Line Rasterisation 15/16

6 ThickPrimitives Circular Pen Thickness independent of slope. Pixels are set multiple times. Can be made efficient by setting only boundary pixels. Lines / Thick Primitives Line Rasterisation 16/16

CS Rasterization. Junqiao Zhao 赵君峤

CS Rasterization. Junqiao Zhao 赵君峤 CS10101001 Rasterization Junqiao Zhao 赵君峤 Department of Computer Science and Technology College of Electronics and Information Engineering Tongji University Vector Graphics Algebraic equations describe

More information

From Ver(ces to Fragments: Rasteriza(on

From Ver(ces to Fragments: Rasteriza(on From Ver(ces to Fragments: Rasteriza(on From Ver(ces to Fragments 3D vertices vertex shader rasterizer fragment shader final pixels 2D screen fragments l determine fragments to be covered l interpolate

More information

Chapter - 2: Geometry and Line Generations

Chapter - 2: Geometry and Line Generations Chapter - 2: Geometry and Line Generations In Computer graphics, various application ranges in different areas like entertainment to scientific image processing. In defining this all application mathematics

More information

In today s lecture we ll have a look at: A simple technique The mid-point circle algorithm

In today s lecture we ll have a look at: A simple technique The mid-point circle algorithm Drawing Circles In today s lecture we ll have a look at: Circle drawing algorithms A simple technique The mid-point circle algorithm Polygon fill algorithms Summary raster drawing algorithms A Simple Circle

More information

Graphics System. Processor. Output Display. Input Devices. Frame Buffer. Memory. Array of pixels. Resolution: # of pixels Depth: # of bits/pixel

Graphics System. Processor. Output Display. Input Devices. Frame Buffer. Memory. Array of pixels. Resolution: # of pixels Depth: # of bits/pixel Graphics System Input Devices Processor Memory Frame Buffer Output Display Array of pixels Resolution: # of pixels Depth: # of bits/pixel Input Devices Physical Devices: Keyboard, Mouse, Tablet, etc. Logical

More information

Computer Graphics : Bresenham Line Drawing Algorithm, Circle Drawing & Polygon Filling

Computer Graphics : Bresenham Line Drawing Algorithm, Circle Drawing & Polygon Filling Computer Graphics : Bresenham Line Drawing Algorithm, Circle Drawing & Polygon Filling Downloaded from :www.comp.dit.ie/bmacnamee/materials/graphics/006- Contents In today s lecture we ll have a loo at:

More information

Rasterization: Geometric Primitives

Rasterization: Geometric Primitives Rasterization: Geometric Primitives Outline Rasterizing lines Rasterizing polygons 1 Rasterization: What is it? How to go from real numbers of geometric primitives vertices to integer coordinates of pixels

More information

Line Drawing. Foundations of Computer Graphics Torsten Möller

Line Drawing. Foundations of Computer Graphics Torsten Möller Line Drawing Foundations of Computer Graphics Torsten Möller Rendering Pipeline Hardware Modelling Transform Visibility Illumination + Shading Perception, Interaction Color Texture/ Realism Reading Angel

More information

Line Drawing. Introduction to Computer Graphics Torsten Möller / Mike Phillips. Machiraju/Zhang/Möller

Line Drawing. Introduction to Computer Graphics Torsten Möller / Mike Phillips. Machiraju/Zhang/Möller Line Drawing Introduction to Computer Graphics Torsten Möller / Mike Phillips Rendering Pipeline Hardware Modelling Transform Visibility Illumination + Shading Perception, Color Interaction Texture/ Realism

More information

OpenGL Graphics System. 2D Graphics Primitives. Drawing 2D Graphics Primitives. 2D Graphics Primitives. Mathematical 2D Primitives.

OpenGL Graphics System. 2D Graphics Primitives. Drawing 2D Graphics Primitives. 2D Graphics Primitives. Mathematical 2D Primitives. D Graphics Primitives Eye sees Displays - CRT/LCD Frame buffer - Addressable pixel array (D) Graphics processor s main function is to map application model (D) by projection on to D primitives: points,

More information

Tópicos de Computação Gráfica Topics in Computer Graphics 10509: Doutoramento em Engenharia Informática. Chap. 2 Rasterization.

Tópicos de Computação Gráfica Topics in Computer Graphics 10509: Doutoramento em Engenharia Informática. Chap. 2 Rasterization. Tópicos de Computação Gráfica Topics in Computer Graphics 10509: Doutoramento em Engenharia Informática Chap. 2 Rasterization Rasterization Outline : Raster display technology. Basic concepts: pixel, resolution,

More information

From 3D World to 2D Screen. Hendrik Speleers

From 3D World to 2D Screen. Hendrik Speleers Hendrik Speleers Overview Synthetic camera Rendering pipeline World window versus viewport Clipping Cohen-Sutherland algorithm Rasterizing Bresenham algorithm Three different actors in a scene Objects:

More information

COMP371 COMPUTER GRAPHICS

COMP371 COMPUTER GRAPHICS COMP371 COMPUTER GRAPHICS LECTURE 14 RASTERIZATION 1 Lecture Overview Review of last class Line Scan conversion Polygon Scan conversion Antialiasing 2 Rasterization The raster display is a matrix of picture

More information

Scan Conversion. CMP 477 Computer Graphics S. A. Arekete

Scan Conversion. CMP 477 Computer Graphics S. A. Arekete Scan Conversion CMP 477 Computer Graphics S. A. Areete What is Scan-Conversion? 2D or 3D objects in real world space are made up of graphic primitives such as points, lines, circles and filled polygons.

More information

Line Drawing Week 6, Lecture 9

Line Drawing Week 6, Lecture 9 CS 536 Computer Graphics Line Drawing Week 6, Lecture 9 David Breen, William Regli and axim Peysakhov Department of Computer Science Drexel University Outline Line drawing Digital differential analyzer

More information

Computer Graphics. - Rasterization - Philipp Slusallek

Computer Graphics. - Rasterization - Philipp Slusallek Computer Graphics - Rasterization - Philipp Slusallek Rasterization Definition Given some geometry (point, 2D line, circle, triangle, polygon, ), specify which pixels of a raster display each primitive

More information

Overview of Computer Graphics

Overview of Computer Graphics Application of Computer Graphics UNIT- 1 Overview of Computer Graphics Computer-Aided Design for engineering and architectural systems etc. Objects maybe displayed in a wireframe outline form. Multi-window

More information

Rasterization, or What is glbegin(gl_lines) really doing?

Rasterization, or What is glbegin(gl_lines) really doing? Rasterization, or What is glbegin(gl_lines) really doing? Course web page: http://goo.gl/eb3aa February 23, 2012 Lecture 4 Outline Rasterizing lines DDA/parametric algorithm Midpoint/Bresenham s algorithm

More information

Scan Conversion. Drawing Lines Drawing Circles

Scan Conversion. Drawing Lines Drawing Circles Scan Conversion Drawing Lines Drawing Circles 1 How to Draw This? 2 Start From Simple How to draw a line: y(x) = mx + b? 3 Scan Conversion, a.k.a. Rasterization Ideal Picture Raster Representation Scan

More information

Computer Graphics. Lecture 2. Doç. Dr. Mehmet Gokturk

Computer Graphics. Lecture 2. Doç. Dr. Mehmet Gokturk Computer Graphics Lecture 2 Doç. Dr. Mehmet Gokturk Mathematical Foundations l Hearn and Baker (A1 A4) appendix gives good review l Some of the mathematical tools l Trigonometry l Vector spaces l Points,

More information

Announcements. Midterms graded back at the end of class Help session on Assignment 3 for last ~20 minutes of class. Computer Graphics

Announcements. Midterms graded back at the end of class Help session on Assignment 3 for last ~20 minutes of class. Computer Graphics Announcements Midterms graded back at the end of class Help session on Assignment 3 for last ~20 minutes of class 1 Scan Conversion Overview of Rendering Scan Conversion Drawing Lines Drawing Polygons

More information

Display Technologies: CRTs Raster Displays

Display Technologies: CRTs Raster Displays Rasterization Display Technologies: CRTs Raster Displays Raster: A rectangular array of points or dots Pixel: One dot or picture element of the raster Scanline: A row of pixels Rasterize: find the set

More information

From Vertices to Fragments: Rasterization. Reading Assignment: Chapter 7. Special memory where pixel colors are stored.

From Vertices to Fragments: Rasterization. Reading Assignment: Chapter 7. Special memory where pixel colors are stored. From Vertices to Fragments: Rasterization Reading Assignment: Chapter 7 Frame Buffer Special memory where pixel colors are stored. System Bus CPU Main Memory Graphics Card -- Graphics Processing Unit (GPU)

More information

0. Introduction: What is Computer Graphics? 1. Basics of scan conversion (line drawing) 2. Representing 2D curves

0. Introduction: What is Computer Graphics? 1. Basics of scan conversion (line drawing) 2. Representing 2D curves CSC 418/2504: Computer Graphics Course web site (includes course information sheet): http://www.dgp.toronto.edu/~elf Instructor: Eugene Fiume Office: BA 5266 Phone: 416 978 5472 (not a reliable way) Email:

More information

Output Primitives. Dr. S.M. Malaek. Assistant: M. Younesi

Output Primitives. Dr. S.M. Malaek. Assistant: M. Younesi Output Primitives Dr. S.M. Malaek Assistant: M. Younesi Output Primitives Output Primitives: Basic geometric structures (points, straight line segment, circles and other conic sections, quadric surfaces,

More information

CPSC / Scan Conversion

CPSC / Scan Conversion CPSC 599.64 / 601.64 Computer Screens: Raster Displays pixel rasters (usually) square pixels in rectangular raster evenly cover the image problem no such things such as lines, circles, etc. scan conversion

More information

1 Introduction to Graphics

1 Introduction to Graphics 1 1.1 Raster Displays The screen is represented by a 2D array of locations called pixels. Zooming in on an image made up of pixels The convention in these notes will follow that of OpenGL, placing the

More information

CS 450: COMPUTER GRAPHICS REVIEW: DRAWING LINES AND CIRCLES SPRING 2015 DR. MICHAEL J. REALE

CS 450: COMPUTER GRAPHICS REVIEW: DRAWING LINES AND CIRCLES SPRING 2015 DR. MICHAEL J. REALE CS 450: COMPUTER GRAPHICS REVIEW: DRAWING LINES AND CIRCLES SPRING 2015 DR. MICHAEL J. REALE DRAWING PRIMITIVES: LEGACY VS. NEW Legacy: specify primitive in glbegin() glbegin(gl_points); glvertex3f(1,5,0);

More information

Rendering. A simple X program to illustrate rendering

Rendering. A simple X program to illustrate rendering Rendering A simple X program to illustrate rendering The programs in this directory provide a simple x based application for us to develop some graphics routines. Please notice the following: All points

More information

An Improved Algorithm for Scan-converting a Line

An Improved Algorithm for Scan-converting a Line An Improved Algorithm for Scan-converting a Line *Md. Hasanul Kabir 1, Md. Imrul Hassan 2, Abdullah Azfar 1 1 Department of Computer Science & Information Technology (CIT) 2 Department of Electrical &

More information

Chapter 8: Implementation- Clipping and Rasterization

Chapter 8: Implementation- Clipping and Rasterization Chapter 8: Implementation- Clipping and Rasterization Clipping Fundamentals Cohen-Sutherland Parametric Polygons Circles and Curves Text Basic Concepts: The purpose of clipping is to remove objects or

More information

Topic #1: Rasterization (Scan Conversion)

Topic #1: Rasterization (Scan Conversion) Topic #1: Rasterization (Scan Conversion) We will generally model objects with geometric primitives points, lines, and polygons For display, we need to convert them to pixels for points it s obvious but

More information

Department of Computer Sciences Graphics Fall 2003 (Lecture 2) Pixels

Department of Computer Sciences Graphics Fall 2003 (Lecture 2) Pixels Pixels Pixel: Intensity or color sample. Raster Image: Rectangular grid of pixels. Rasterization: Conversion of a primitive s geometric representation into A set of pixels. An intensity or color for each

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Participating Media Measuring BRDFs 3D Digitizing & Scattering BSSRDFs Monte Carlo Simulation Dipole Approximation Today Ray Casting / Tracing Advantages? Ray

More information

Raster Displays and Scan Conversion. Computer Graphics, CSCD18 Fall 2008 Instructor: Leonid Sigal

Raster Displays and Scan Conversion. Computer Graphics, CSCD18 Fall 2008 Instructor: Leonid Sigal Raster Displays and Scan Conversion Computer Graphics, CSCD18 Fall 28 Instructor: Leonid Sigal Rater Displays Screen is represented by 2D array of locations called piels y Rater Displays Screen is represented

More information

CS 4300 Computer Graphics. Prof. Harriet Fell Fall 2012 Lecture 5 September 13, 2012

CS 4300 Computer Graphics. Prof. Harriet Fell Fall 2012 Lecture 5 September 13, 2012 CS 4300 Computer Graphics Prof. Harriet Fell Fall 2012 Lecture 5 September 13, 2012 1 Today s Topics Vectors review Shirley et al. 2.4 Rasters Shirley et al. 3.0-3.2.1 Rasterizing Lines Shirley et al.

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Final Projects Proposals due Thursday 4/8 Proposed project summary At least 3 related papers (read & summarized) Description of series of test cases Timeline & initial task assignment The Traditional Graphics

More information

GRAPHICS OUTPUT PRIMITIVES

GRAPHICS OUTPUT PRIMITIVES CHAPTER 3 GRAPHICS OUTPUT PRIMITIVES LINE DRAWING ALGORITHMS DDA Line Algorithm Bresenham Line Algorithm Midpoint Circle Algorithm Midpoint Ellipse Algorithm CG - Chapter-3 LINE DRAWING Line drawing is

More information

UNIT -8 IMPLEMENTATION

UNIT -8 IMPLEMENTATION UNIT -8 IMPLEMENTATION 1. Discuss the Bresenham s rasterization algorithm. How is it advantageous when compared to other existing methods? Describe. (Jun2012) 10M Ans: Consider drawing a line on a raster

More information

Graphics (Output) Primitives. Chapters 3 & 4

Graphics (Output) Primitives. Chapters 3 & 4 Graphics (Output) Primitives Chapters 3 & 4 Graphic Output and Input Pipeline Scan conversion converts primitives such as lines, circles, etc. into pixel values geometric description a finite scene area

More information

Unit 2 Output Primitives and their Attributes

Unit 2 Output Primitives and their Attributes Unit 2 Output Primitives and their Attributes Shapes and colors of the objects can be described internally with pixel arrays or with sets of basic geometric structures, such as straight line segments and

More information

Computer Graphics Lecture Notes

Computer Graphics Lecture Notes Computer Graphics Lecture Notes UNIT- Overview of Computer Graphics. Application of Computer Graphics Computer-Aided Design for engineering and architectural systems etc. Objects maybe displayed in a wireframe

More information

Efficient Plotting Algorithm

Efficient Plotting Algorithm Efficient Plotting Algorithm Sushant Ipte 1, Riddhi Agarwal 1, Murtuza Barodawala 1, Ravindra Gupta 1, Prof. Shiburaj Pappu 1 Computer Department, Rizvi College of Engineering, Mumbai, Maharashtra, India

More information

Rendering. A simple X program to illustrate rendering

Rendering. A simple X program to illustrate rendering Rendering A simple X program to illustrate rendering The programs in this directory provide a simple x based application for us to develop some graphics routines. Please notice the following: All points

More information

Computer Graphics D Graphics Algorithms

Computer Graphics D Graphics Algorithms ! Computer Graphics 2014! 2. 2D Graphics Algorithms Hongxin Zhang State Key Lab of CAD&CG, Zhejiang University 2014-09-26! Screen Nikon D40 Sensors 3 Rasterization - The task of displaying a world modeled

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Reading for Today A Practical Model for Subsurface Light Transport, Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001 Participating Media Measuring BRDFs

More information

UNIT 2 GRAPHIC PRIMITIVES

UNIT 2 GRAPHIC PRIMITIVES UNIT 2 GRAPHIC PRIMITIVES Structure Page Nos. 2.1 Introduction 46 2.2 Objectives 46 2.3 Points and Lines 46 2.4 Line Generation Algorithms 48 2.4.1 DDA Algorithm 49 2.4.2 Bresenhams Line Generation Algorithm

More information

Polygon Filling. Can write frame buffer one word at time rather than one bit. 2/3/2000 CS 4/57101 Lecture 6 1

Polygon Filling. Can write frame buffer one word at time rather than one bit. 2/3/2000 CS 4/57101 Lecture 6 1 Polygon Filling 2 parts to task which pixels to fill what to fill them with First consider filling unclipped primitives with solid color Which pixels to fill consider scan lines that intersect primitive

More information

COMP30019 Graphics and Interaction Scan Converting Polygons and Lines

COMP30019 Graphics and Interaction Scan Converting Polygons and Lines COMP30019 Graphics and Interaction Scan Converting Polygons and Lines Department of Computer Science and Software Engineering The Lecture outline Introduction Scan conversion Scan-line algorithm Edge coherence

More information

Raster Scan Displays. Framebuffer (Black and White)

Raster Scan Displays. Framebuffer (Black and White) Raster Scan Displays Beam of electrons deflected onto a phosphor coated screen Phosphors emit light when excited by the electrons Phosphor brightness decays -- need to refresh the display Phosphors make

More information

Computer Graphics: Line Drawing Algorithms

Computer Graphics: Line Drawing Algorithms Computer Graphics: Line Drawing Algorithms 1 Graphics hardware The problem scan conversion Considerations Line equations Scan converting algorithms A very simple solution The DDA algorithm, Bresenham algorithm

More information

CS6504 & Computer Graphics Unit I Page 1

CS6504 & Computer Graphics Unit I Page 1 Introduction Computer contains two components. Computer hardware Computer hardware contains the graphics workstations, graphic input devices and graphic output devices. Computer Software Computer software

More information

Incremental Form. Idea. More efficient if we look at d k, the value of the decision variable at x = k

Incremental Form. Idea. More efficient if we look at d k, the value of the decision variable at x = k Idea 1 m 0 candidates last pixel Note that line could have passed through any part of this pixel Decision variable: d = x(a-b) d is an integer d < 0 use upper pixel d > 0 use lower pixel Incremental Form

More information

Output Primitives Lecture: 3. Lecture 3. Output Primitives. Assuming we have a raster display, a picture is completely specified by:

Output Primitives Lecture: 3. Lecture 3. Output Primitives. Assuming we have a raster display, a picture is completely specified by: Lecture 3 Output Primitives Assuming we have a raster display, a picture is completely specified by: - A set of intensities for the pixel positions in the display. - A set of complex objects, such as trees

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Computer Graphics

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Computer Graphics r About the Tutorial To display a picture of any size on a computer screen is a difficult process. Computer graphics are used to simplify this process. Various algorithms and techniques are used to generate

More information

CS 4731: Computer Graphics Lecture 21: Raster Graphics: Drawing Lines. Emmanuel Agu

CS 4731: Computer Graphics Lecture 21: Raster Graphics: Drawing Lines. Emmanuel Agu CS 4731: Computer Graphics Lecture 21: Raster Graphics: Drawing Lines Emmanuel Agu 2D Graphics Pipeline Clipping Object World Coordinates Applying world window Object subset window to viewport mapping

More information

EF432. Introduction to spagetti and meatballs

EF432. Introduction to spagetti and meatballs EF432 Introduction to spagetti and meatballs CSC 418/2504: Computer Graphics Course web site (includes course information sheet): http://www.dgp.toronto.edu/~karan/courses/418/fall2015 Instructor: Karan

More information

Chapter 3. Sukhwinder Singh

Chapter 3. Sukhwinder Singh Chapter 3 Sukhwinder Singh PIXEL ADDRESSING AND OBJECT GEOMETRY Object descriptions are given in a world reference frame, chosen to suit a particular application, and input world coordinates are ultimately

More information

U.C. Berkeley, EECS, Computer Science TAKE HOME EXAM. Your Class Computer Account: DO NOT OPEN THIS INSIDE SODA HALL -- WAIT UNTIL YOU ARE ALONE!

U.C. Berkeley, EECS, Computer Science TAKE HOME EXAM. Your Class Computer Account: DO NOT OPEN THIS INSIDE SODA HALL -- WAIT UNTIL YOU ARE ALONE! Page 1 of 7 U.C. Berkeley, EECS, Computer Science CS 184 - Spring 2011 COMPUTER GRAPHICS Prof. C. H. Séquin TAKE HOME EXAM Your Name: Your Class Computer Account: Your student ID #: DO NOT OPEN THIS INSIDE

More information

CS 543: Computer Graphics. Rasterization

CS 543: Computer Graphics. Rasterization CS 543: Computer Graphics Rasterization Robert W. Lindeman Associate Professor Interactive Media & Game Development Department of Computer Science Worcester Polytechnic Institute gogo@wpi.edu (with lots

More information

Output Primitives Lecture: 4. Lecture 4

Output Primitives Lecture: 4. Lecture 4 Lecture 4 Circle Generating Algorithms Since the circle is a frequently used component in pictures and graphs, a procedure for generating either full circles or circular arcs is included in most graphics

More information

Institutionen för systemteknik

Institutionen för systemteknik Code: Day: Lokal: M7002E 19 March E1026 Institutionen för systemteknik Examination in: M7002E, Computer Graphics and Virtual Environments Number of sections: 7 Max. score: 100 (normally 60 is required

More information

Scan Converting Lines

Scan Converting Lines Scan Conversion 1 Scan Converting Lines Line Drawing Draw a line on a raster screen between two points What s wrong with the statement of the problem? it doesn t say anything about which points are allowed

More information

Department of Computer Science Engineering, Mits - Jadan, Pali, Rajasthan, India

Department of Computer Science Engineering, Mits - Jadan, Pali, Rajasthan, India International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2018 IJSRCSEIT Volume 3 Issue 1 ISSN : 2456-3307 Performance Analysis of OpenGL Java Bindings with

More information

SRM ARTS AND SCIENCE COLLEGE SRM NAGAR, KATTANKULATHUR

SRM ARTS AND SCIENCE COLLEGE SRM NAGAR, KATTANKULATHUR SRM ARTS AND SCIENCE COLLEGE SRM NAGAR, KATTANKULATHUR 603203 DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS QUESTION BANK (2017-2018) Course / Branch : BCA Semester / Year : IV / II Subject Name : Computer

More information

Topic 0. Introduction: What Is Computer Graphics? CSC 418/2504: Computer Graphics EF432. Today s Topics. What is Computer Graphics?

Topic 0. Introduction: What Is Computer Graphics? CSC 418/2504: Computer Graphics EF432. Today s Topics. What is Computer Graphics? EF432 Introduction to spagetti and meatballs CSC 418/2504: Computer Graphics Course web site (includes course information sheet): http://www.dgp.toronto.edu/~karan/courses/418/ Instructors: L0101, W 12-2pm

More information

Einführung in Visual Computing

Einführung in Visual Computing Einführung in Visual Computing 186.822 Rasterization Werner Purgathofer Rasterization in the Rendering Pipeline scene objects in object space transformed vertices in clip space scene in normalized device

More information

SAZ4C COMPUTER GRAPHICS. Unit : 1-5. SAZ4C Computer Graphics

SAZ4C COMPUTER GRAPHICS. Unit : 1-5. SAZ4C Computer Graphics SAZ4C COMPUTER GRAPHICS Unit : 1-5 1 UNIT :1 SYLLABUS Introduction to computer Graphics Video display devices Raster scan Systems Random Scan Systems Interactive input devices Hard copy devices Graphics

More information

Lecture 6 of 41. Scan Conversion 1 of 2: Midpoint Algorithm for Lines and Ellipses

Lecture 6 of 41. Scan Conversion 1 of 2: Midpoint Algorithm for Lines and Ellipses Scan Conversion 1 of 2: Midpoint Algorithm for Lines and Ellipses William H. Hsu Department of Computing and Information Sciences, KSU KSOL course pages: http://bit.ly/hgvxlh / http://bit.ly/evizre Public

More information

Lecture 6 of 41. Scan Conversion 1 of 2: Midpoint Algorithm for Lines and Ellipses

Lecture 6 of 41. Scan Conversion 1 of 2: Midpoint Algorithm for Lines and Ellipses Scan Conversion 1 of 2: Midpoint Algorithm for Lines and Ellipses William H. Hsu Department of Computing and Information Sciences, KSU KSOL course pages: http://bit.ly/hgvxlh / http://bit.ly/evizre Public

More information

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 14

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 14 Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 14 Scan Converting Lines, Circles and Ellipses Hello everybody, welcome again

More information

CS 450: COMPUTER GRAPHICS RASTERIZING LINES SPRING 2016 DR. MICHAEL J. REALE

CS 450: COMPUTER GRAPHICS RASTERIZING LINES SPRING 2016 DR. MICHAEL J. REALE CS 45: COMPUTER GRAPHICS RASTERIZING LINES SPRING 6 DR. MICHAEL J. REALE OBJECT-ORDER RENDERING We going to start on how we will perform object-order rendering Object-order rendering Go through each OBJECT

More information

EF432. Introduction to spagetti and meatballs

EF432. Introduction to spagetti and meatballs EF432 Introduction to spagetti and meatballs CSC 418/2504: Computer Graphics Course web site (includes course information sheet): http://www.dgp.toronto.edu/~karan/courses/418/ Instructors: L2501, T 6-8pm

More information

Lets assume each object has a defined colour. Hence our illumination model is looks unrealistic.

Lets assume each object has a defined colour. Hence our illumination model is looks unrealistic. Shading Models There are two main types of rendering that we cover, polygon rendering ray tracing Polygon rendering is used to apply illumination models to polygons, whereas ray tracing applies to arbitrary

More information

(Refer Slide Time: 9:36)

(Refer Slide Time: 9:36) Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 13 Scan Converting Lines, Circles and Ellipses Hello and welcome to the lecture

More information

CSCI 4620/8626. Coordinate Reference Frames

CSCI 4620/8626. Coordinate Reference Frames CSCI 4620/8626 Computer Graphics Graphics Output Primitives Last update: 2014-02-03 Coordinate Reference Frames To describe a picture, the world-coordinate reference frame (2D or 3D) must be selected.

More information

SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF COMPUTER APPLICATIONS COURSE PLAN

SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF COMPUTER APPLICATIONS COURSE PLAN SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF COMPUTER APPLICATIONS COURSE PLAN Course Code : MC0665 Course Title : Computer Graphics Semester : III Course Time : July November 2011

More information

MODULE - 4. e-pg Pathshala

MODULE - 4. e-pg Pathshala e-pg Pathshala MODULE - 4 Subject : Computer Science Paper: Computer Graphics and Visualization Module: Midpoint Circle Drawing Procedure Module No: CS/CGV/4 Quadrant 1 e-text Before going into the Midpoint

More information

OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS

OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS YEAR/SEM.: III/V STAFF NAME: T.ELANGOVAN SUBJECT NAME: Computer Graphics SUB. CODE:

More information

Scan Conversion. Lines and Circles

Scan Conversion. Lines and Circles Scan Conversion Lines and Circles (Chapter 3 in Foley & Van Dam) 2D Line Implicit representation: αx + βy + γ = 0 Explicit representation: y y = mx+ B m= x Parametric representation: x P= y P = t y P +

More information

Fall CSCI 420: Computer Graphics. 7.1 Rasterization. Hao Li.

Fall CSCI 420: Computer Graphics. 7.1 Rasterization. Hao Li. Fall 2015 CSCI 420: Computer Graphics 7.1 Rasterization Hao Li http://cs420.hao-li.com 1 Rendering Pipeline 2 Outline Scan Conversion for Lines Scan Conversion for Polygons Antialiasing 3 Rasterization

More information

Pipeline implementation II

Pipeline implementation II Pipeline implementation II Overview Line Drawing Algorithms DDA Bresenham Filling polygons Antialiasing Rasterization Rasterization (scan conversion) Determine which pixels that are inside primitive specified

More information

CS602 MCQ,s for midterm paper with reference solved by Shahid

CS602 MCQ,s for midterm paper with reference solved by Shahid #1 Rotating a point requires The coordinates for the point The rotation angles Both of above Page No 175 None of above #2 In Trimetric the direction of projection makes unequal angle with the three principal

More information

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY SRM INSTITUTE OF SCIENCE AND TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK SUB.NAME: COMPUTER GRAPHICS SUB.CODE: IT307 CLASS : III/IT UNIT-1 2-marks 1. What is the various applications

More information

Realtime 3D Computer Graphics Virtual Reality

Realtime 3D Computer Graphics Virtual Reality Realtime 3D Computer Graphics Virtual Reality From Vertices to Fragments Overview Overall goal recapitulation: Input: World description, e.g., set of vertices and states for objects, attributes, camera,

More information

Implementation III. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Implementation III. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Implementation III Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Objectives Survey Line Drawing Algorithms - DDA - Bresenham 2 Rasterization

More information

U.C. Berkeley, EECS, Computer Science TAKE HOME EXAM. Your Class Computer Account: Your student ID #:

U.C. Berkeley, EECS, Computer Science TAKE HOME EXAM. Your Class Computer Account: Your student ID #: U.C. Berkeley, EECS, Computer Science CS 184 - Spring 2009 COMPUTER GRAPHICS Prof. C. H. Séquin TAKE HOME EXAM Your Name: Your Class Computer Account: Your student ID #: DO NOT OPEN THIS INSIDE SODA HALL

More information

03 Vector Graphics. Multimedia Systems. 2D and 3D Graphics, Transformations

03 Vector Graphics. Multimedia Systems. 2D and 3D Graphics, Transformations Multimedia Systems 03 Vector Graphics 2D and 3D Graphics, Transformations Imran Ihsan Assistant Professor, Department of Computer Science Air University, Islamabad, Pakistan www.imranihsan.com Lectures

More information

(Refer Slide Time: 00:02:00)

(Refer Slide Time: 00:02:00) Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 18 Polyfill - Scan Conversion of a Polygon Today we will discuss the concepts

More information

Rasterization. CS4620/5620: Lecture 12. Announcements. Turn in HW 1. PPA 1 out. Friday lecture. History of graphics PPA 1 in 4621.

Rasterization. CS4620/5620: Lecture 12. Announcements. Turn in HW 1. PPA 1 out. Friday lecture. History of graphics PPA 1 in 4621. CS4620/5620: Lecture 12 Rasterization 1 Announcements Turn in HW 1 PPA 1 out Friday lecture History of graphics PPA 1 in 4621 2 The graphics pipeline The standard approach to object-order graphics Many

More information

Computer Graphics. Modelling in 2D. 2D primitives. Lines and Polylines. OpenGL polygon primitives. Special polygons

Computer Graphics. Modelling in 2D. 2D primitives. Lines and Polylines. OpenGL polygon primitives. Special polygons Computer Graphics Modelling in D Lecture School of EECS Queen Mar, Universit of London D primitives Digital line algorithms Digital circle algorithms Polgon filling CG - p.hao@qmul.ac.uk D primitives Line

More information

CSCI 420 Computer Graphics Lecture 14. Rasterization. Scan Conversion Antialiasing [Angel Ch. 6] Jernej Barbic University of Southern California

CSCI 420 Computer Graphics Lecture 14. Rasterization. Scan Conversion Antialiasing [Angel Ch. 6] Jernej Barbic University of Southern California CSCI 420 Computer Graphics Lecture 14 Rasterization Scan Conversion Antialiasing [Angel Ch. 6] Jernej Barbic University of Southern California 1 Rasterization (scan conversion) Final step in pipeline:

More information

CS 130. Scan Conversion. Raster Graphics

CS 130. Scan Conversion. Raster Graphics CS 130 Scan Conversion Raster Graphics 2 1 Image Formation Computer graphics forms images, generally two dimensional, using processes analogous to physical imaging systems like: - Cameras - Human visual

More information

A New Line Drawing Algorithm Based on Sample Rate Conversion

A New Line Drawing Algorithm Based on Sample Rate Conversion A New Line Drawing Algorithm Based on Sample Rate Conversion c 2002, C. Bond. All rights reserved. February 5, 2002 1 Overview In this paper, a new method for drawing straight lines suitable for use on

More information

CS-321 Thursday 12 September 2002 Quiz (3 pts.) What is the purpose of a control grid in a cathode ray tube (CRT)?

CS-321 Thursday 12 September 2002 Quiz (3 pts.) What is the purpose of a control grid in a cathode ray tube (CRT)? Name CS-321 Thursday 12 September 2002 Quiz 1 1. (3 pts.) What is the purpose of a control grid in a cathode ray tube (CRT)? 2. (7 pts.) For the same resolution in pixels (for example, 640x480), why does

More information

1. (10 pts) Order the following three images by how much memory they occupy:

1. (10 pts) Order the following three images by how much memory they occupy: CS 47 Prelim Tuesday, February 25, 2003 Problem : Raster images (5 pts). (0 pts) Order the following three images by how much memory they occupy: A. a 2048 by 2048 binary image B. a 024 by 024 grayscale

More information

Rasterization. Rasterization (scan conversion) Digital Differential Analyzer (DDA) Rasterizing a line. Digital Differential Analyzer (DDA)

Rasterization. Rasterization (scan conversion) Digital Differential Analyzer (DDA) Rasterizing a line. Digital Differential Analyzer (DDA) CSCI 420 Computer Graphics Lecture 14 Rasterization Jernej Barbic University of Southern California Scan Conversion Antialiasing [Angel Ch. 6] Rasterization (scan conversion) Final step in pipeline: rasterization

More information

Rasterization and Graphics Hardware. Not just about fancy 3D! Rendering/Rasterization. The simplest case: Points. When do we care?

Rasterization and Graphics Hardware. Not just about fancy 3D! Rendering/Rasterization. The simplest case: Points. When do we care? Where does a picture come from? Rasterization and Graphics Hardware CS559 Course Notes Not for Projection November 2007, Mike Gleicher Result: image (raster) Input 2D/3D model of the world Rendering term

More information

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

More information

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

More information