Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction

Size: px
Start display at page:

Download "Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction"

Transcription

1 Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering Introduction A SolidWorks simulation tutorial is just intended to illustrate where to find various icons that you would need in a real engineering analysis. It does not illustrate engineering considerations that a BS level engineer would probably follow. Here, some of the engineering aspects that were not considered in this study will be mentioned. Here a SolidWorks stress simulation tutorials will be re-visited to show how they just pick incorrect default icons for setting the boundary conditions in the tutorial rather than taking the space to explain what a realistic engineering choice may be. The best way to apply a boundary condition on a part is to actually connect the part to its supporting part(s) in an assembly and then apply the boundary conditions to the supporting parts in the assembly. That lets the flexibility of the surrounding parts provide flexible support rather than modeling the part alone and enforcing unrealistic rigid supports. Otherwise one must make different assumptions (and simulations) on how a part could be supported and look for the case that gives the worst stresses and/or displacements. Original Variable Pressure Simulation Tutorial This tutorial involves the bending of thin shell elements. Shell theory was developed (circa 1750) to treat thin solids that are primarily loaded in bending. Shell elements were developed about two hundred years later. There are six degrees of freedom (DOF) at each node of a shell element; three displacements and three (infinitesimal) rotations. This contrasts with a solid element which does not model bending and which has only three displacement DOF at each of its nodes. It takes five or more quadratic solid elements through the thickness of a part to accurately model bending in a thin region. The shell mesh is plotted on the middle surface of the shell. The stress components in the shell can be displayed on the top, middle (membrane), and/or bottom surfaces. As shown in the Figure 1 the middle plane carries the uniform inplane stresses while bending adds tension stresses on one side and compressive stresses on the other. By default SolidWorks plots stresses on the top surface. Other surface plots can be selected with Results Define a Stress Plot feature. The bending stiffness of a shell or plate element is proportional to the thickness cubed. Assuming this tank is aluminum with a one inch thickness suggests too much material is utilized and maybe a steel shell should be considered. Figure 1 Combining bending moments and center plane loads on a section This model had to be prepared for the simulation by adding additional features to the shell. Clicking on the Model tab shows the original side walls and bottom. They were modified with a split line, in sketch 2, to locate the position of the top of the liquid (Insert Curves Split Line), as shown in Figure 2. The intersection of that split line and an Page 1 of 10

2 original vertical model line provides a good origin to locate the coordinate system for defining the variable liquid pressure (Insert Reference Geometry Coordinate System). Note that the local Y axis is taken positive downward for later use in the pressure equation. (To get the worst case pressure loading the fluid level should have been set at the top of the tank.) Figure 2 Original part and a split line to locate the top of the fluid The tutorial stated that the specific weight of the fuel is γ = ρ g = 0.29 lb in 3 (but incorrectly calls it the density, ρ). It makes no sense to have an open fuel tank. Had the tank been an open top tank the proper specific weight would be γ = lb in 3. The pressure at a depth of h is p = γ h where in this case the depth is the local Y value downward, in inches, h = Y local. In order to apply the hydrostatic pressure loading it is necessary to introduce a reference coordinate system before starting the simulation. Those steps are illustrated in Figure 3 where the pressure equation is written with respect to that new coordinate system. Figure 3 Constructing a coordinate system for use in a pressure equation The tutorial boundary condition applied to the tank bottom was to assume that it was rigidly fixed to the supporting dirt or mud. All of the base deflections and rotations were set to zero. That meant that the strains (the gradients of the displacements) in the base plate are identically zero. The stresses are directly proportional to the strains (Hokes Law) so the stresses will be found to be identically zero too. That is nonsense because the outward pressure on the walls would Page 2 of 10

3 at least put the middle surface of the bottom plate in tension. Also, if the dirt is soft and allows the base plate to sag (develop a curvature) then bending occurs and even higher stresses will occur in the top and bottom of the base plate. As an aside, note that the tutorial incorrectly has the fuel pressure pulling up on the bottom of the tank (see Figure 4). That error was partially cancelled by incorrectly setting the vertical displacement of the tank bottom to zero so the bottom pressure did no work on the part. (Finite element stress simulations are based on the work-energy statement of equilibrium.) Figure 4 Tutorial error has fluid pulling up on the tank base The following figures show results from the original tutorial. The first two plots show the walls of the tank moving outward. The second plot shows a stress result (one of many) where the Von Mises stress is maximum on the wall and zero in the base. The bottom stresses cannot be zero since a normal pressure is applied to it. Page 3 of 10

4 Figure 5 Unlikely displacements due to poor restraint assumptions Figure 6 Incorrect von Mises stresses due to poor restraint assumptions A typical engineering check would have identified at least one error in this simulation. That is to check the reaction forces and verify that they are equal and opposite (within numerical round off) to what you thought you applied. That operation is found at the Results header, with a right click: Results List Force Result. That creates the reaction table and plot, in Figure 7, when the bottom support region is selected: Page 4 of 10

5 Figure 7 Checking the tutorial support reaction incorrectly shows the soil pulling down on the tank This shows that the given bottom fixture causes the ground to pull down on the loaded tank rather than pushing up against the bottom. This highlights two possible errors in the first simulation: 1. The pressure may have been applied in the wrong direction (which it was) and/or 2. The fixture (support boundary condition) in that region needs to be changed from zero Y displacement to a No penetration condition that allows a gap to develop wherever a reaction tries to pull on the part. (A No penetration contact requires a slow iterative solution which may become kinematically unstable, due to rigid body motions, and cause the solution to fail with large displacements.) Alternate simulation models There are several other displacement boundary conditions that might apply when the tank is supported in different ways. For example, most tanks that sit on the ground typically have a small vertical lip under the vertical wall. Assume that the tank is only vertically supported (restrained) on that wall lip, as shown in Figure 8. All structure simulations must be supported to prevent rigid body translations along the three global axes, as well as rotations about those axes. The vertical edge boundary condition assumption only prevents a Y translation and rotations about the X and Z axes. Even though the loads are self-equilibrating the solution is likely to fail (yield a singular stiffness matrix) due to round-off error in the solution of the equations of equilibrium. Then infinite displacement values may be seen for any or all of the three remaining rigid body modes. Page 5 of 10

6 Figure 8 An edge support assumption allows bending of the tank bottom Since self-equilibrating loads are common the solver has a soft springs option to stabilize the displacement solution and possibly avoid the explicit input of other fixtures. That option is found at Study Name Properties Soft springs. To assure that the matrix equations do not become singular the three remaining rigid body motions will be eliminated with three extra fixtures. Because the problem has doubly symmetric in geometry, material properties, and loads the middle bottom point does not translate along the centerline directions (the X and Z axes) and it does not rotate about a vertical axis (Y axis). To apply those restraint conditions split lines were added along the bottom centerlines. Those lines also are used later to graph selected results. The bottom center point was selected for applying the required boundary conditions and the bottom plane was selected to define the directions of the fixtures. The two displacements tangent to the flat plane were set to zero, as was the rotation normal to the plane. Since there is no adjacent material at that point the reactions at those restraints must (and will be) recovered as zero. (Those fixture symbols were made larger and assigned a different color to stand out in Figure 9.) Figure 9 Mathematical restraints required to prevent rigid body motions Page 6 of 10

7 At this point the model was ready to solve for the displacements (the most accurate quantity) and post-process them to recover the strains and stresses (the least accurate quantities). The strains are generally not important except for brittle materials and biological materials. Figure 10 Revise tank displacements compared to those of the tutorial In this case, the computed displacements in Figure 10 are quite different in that the bottom plate moves downward and the top sides move inward. Once the displacements are known the reaction forces and/or moments required to enforce those fixtures can be recovered. The X and Y reaction forces should be zero because the horizontal pressures cancel each other. The vertical, Z, reaction force must equal the weight of the contained liquid (bottom area times the bottom pressure). These are found at Results List Result Force where the fixture region is selected and the reactions on that region are listed and plotted. When all of the edge vertical fixtures are selected the reaction equal and opposite to the downward weight is about 1.83e6 Newtons upwards (see Figure 11). When the center point RBM restraint is selected its vertical reaction is about a million times smaller at 0.24 Newtons. That value should be zero but the fast iterative solver is not as accurate in recovering reactions as the slow direct solver (Study Name Properties Direct Sparse Solver). Page 7 of 10

8 Figure 11 The edge base reactions (left) and center point reactions (right) in the revised study There are at least twelve stress measures that can be displayed on any of the three shell element surfaces. The user has to select the ones that are important for a particular operation. The default plot is of the von Mises Stress which a failure criterion for ductile materials (like aluminum) that have the same yield stress in tension and compression. (It has the units of stress but it is a measure of the distortional strain energy at a point.) Comparing to the original von Mises top surface plot on the first page the new top surface values due to a change in support boundary conditions (fixtures) is quite different as seen in Figure 12. Figure 12 The revised (left) and original tutorial von Mises stress (distortional energy) distribution Another important stress component for brittle materials (like ceramics) is the maximum tensile stress, P1, (the first principal stress). Here the bottom middle plane tension stresses are plotted as pseudo-vectors in Figure 13. The magnitude of the maximum middle plane tensile stress is graphed below along the center split line from the tank wall to the center point in Figure 14. Page 8 of 10

9 Figure 13 tension stresses in the middle plane of the tank bottom plate Figure 14 Magnitude of tension on the middle plane center line Page 9 of 10

10 In closing, it should be noted that this application has quarter symmetry in the geometry, material properties, loads, and supports. Therefore, only one fourth of the structure needs to be analyzed. Keeping just one fourth of the body means that only one-fourth as much memory is required (you never have a big enough computer), and it will execute about 64 times faster. However, wherever the rest of the part is cut away symmetry boundary conditions must be applied on those planes. A detailed example of solving this problem with quarter symmetry is included in the online reference book in section 9.2. Figure 15 The part has two plane of symmetry In general, the worst stresses develop in a symmetric structure when the loads and/or supports are not symmetrical. Appendix: The matrix equilibrium equations, S u = c can be partitioned in terms of the unknown nodal displacements, u u, and the known essential boundary values of the displacements (fixtures) u k : [ S uu S uk ] { u u S ku S kk u } = { c u k r } k where the resultant applied forces (from the pressure) are c u, and the unknown reaction forces at the fixtures are r k. The sub-matrices S uu and S kk are square, whereas S uk and S ku are rectangular. In a finite element formulation all of the coefficients in the S and c u matrices are known. The above matrix equations can be re-written in expanded form as: S uu u u + S uk u k = c u S ku u u + S kk u k = r k so that the unknown nodal displacements are obtained by inverting the non-singular square matrix S uu in the top partitioned rows. That is, 1 u u = S uu (c u S uk u k ). The values of the necessary reactions, r k, at the fixtures can now be determined from r k = S ku u u + S kk u k c k. Next, the displacement gradients are calculated in every element and they are combined to define the strains. Then the material stress-strain law is used to calculate the components of the stress tensor. The components of the stress tensor are then used to calculate the most common failure criteria, like the von Mises stress and the Intensity (twice the maximum shear stress). Page 10 of 10

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Here SolidWorks stress simulation tutorials will be re-visited to show how they

More information

Revised Sheet Metal Simulation, J.E. Akin, Rice University

Revised Sheet Metal Simulation, J.E. Akin, Rice University Revised Sheet Metal Simulation, J.E. Akin, Rice University A SolidWorks simulation tutorial is just intended to illustrate where to find various icons that you would need in a real engineering analysis.

More information

Quarter Symmetry Tank Stress (Draft 4 Oct 24 06)

Quarter Symmetry Tank Stress (Draft 4 Oct 24 06) Quarter Symmetry Tank Stress (Draft 4 Oct 24 06) Introduction You need to carry out the stress analysis of an outdoor water tank. Since it has quarter symmetry you start by building only one-fourth of

More information

Modeling Skills Stress Analysis J.E. Akin, Rice University, Mech 417

Modeling Skills Stress Analysis J.E. Akin, Rice University, Mech 417 Introduction Modeling Skills Stress Analysis J.E. Akin, Rice University, Mech 417 Most finite element analysis tasks involve utilizing commercial software, for which you do not have the source code. Thus,

More information

16 SW Simulation design resources

16 SW Simulation design resources 16 SW Simulation design resources 16.1 Introduction This is simply a restatement of the SW Simulation online design scenarios tutorial with a little more visual detail supplied on the various menu picks

More information

Similar Pulley Wheel Description J.E. Akin, Rice University

Similar Pulley Wheel Description J.E. Akin, Rice University Similar Pulley Wheel Description J.E. Akin, Rice University The SolidWorks simulation tutorial on the analysis of an assembly suggested noting another type of boundary condition that is not illustrated

More information

2: Static analysis of a plate

2: Static analysis of a plate 2: Static analysis of a plate Topics covered Project description Using SolidWorks Simulation interface Linear static analysis with solid elements Finding reaction forces Controlling discretization errors

More information

The part to be analyzed is the bracket from the tutorial of Chapter 3.

The part to be analyzed is the bracket from the tutorial of Chapter 3. Introduction to Solid Modeling Using SolidWorks 2007 COSMOSWorks Tutorial Page 1 In this tutorial, we will use the COSMOSWorks finite element analysis (FEA) program to analyze the response of a component

More information

Learning Module 8 Shape Optimization

Learning Module 8 Shape Optimization Learning Module 8 Shape Optimization What is a Learning Module? Title Page Guide A Learning Module (LM) is a structured, concise, and self-sufficient learning resource. An LM provides the learner with

More information

Simulation of AJWSP10033_FOLDED _ST_FR

Simulation of AJWSP10033_FOLDED _ST_FR Phone: 01922 453038 www.hyperon-simulation-and-cad-services.co.uk Simulation of AJWSP10033_FOLDED _ST_FR Date: 06 May 2017 Designer: Study name: AJWSP10033_FOLDED_STATIC Analysis type: Static Description

More information

Generative Part Structural Analysis Fundamentals

Generative Part Structural Analysis Fundamentals CATIA V5 Training Foils Generative Part Structural Analysis Fundamentals Version 5 Release 19 September 2008 EDU_CAT_EN_GPF_FI_V5R19 About this course Objectives of the course Upon completion of this course

More information

Guidelines for proper use of Plate elements

Guidelines for proper use of Plate elements Guidelines for proper use of Plate elements In structural analysis using finite element method, the analysis model is created by dividing the entire structure into finite elements. This procedure is known

More information

Module 1: Introduction to Finite Element Analysis. Lecture 4: Steps in Finite Element Analysis

Module 1: Introduction to Finite Element Analysis. Lecture 4: Steps in Finite Element Analysis 25 Module 1: Introduction to Finite Element Analysis Lecture 4: Steps in Finite Element Analysis 1.4.1 Loading Conditions There are multiple loading conditions which may be applied to a system. The load

More information

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force CHAPTER 4 Numerical Models This chapter presents the development of numerical models for sandwich beams/plates subjected to four-point bending and the hydromat test system. Detailed descriptions of the

More information

SDC. Engineering Analysis with COSMOSWorks. Paul M. Kurowski Ph.D., P.Eng. SolidWorks 2003 / COSMOSWorks 2003

SDC. Engineering Analysis with COSMOSWorks. Paul M. Kurowski Ph.D., P.Eng. SolidWorks 2003 / COSMOSWorks 2003 Engineering Analysis with COSMOSWorks SolidWorks 2003 / COSMOSWorks 2003 Paul M. Kurowski Ph.D., P.Eng. SDC PUBLICATIONS Design Generator, Inc. Schroff Development Corporation www.schroff.com www.schroff-europe.com

More information

Engineering Analysis with

Engineering Analysis with Engineering Analysis with SolidWorks Simulation 2013 Paul M. Kurowski SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com Visit the following websites

More information

Engineering Analysis with SolidWorks Simulation 2012

Engineering Analysis with SolidWorks Simulation 2012 Engineering Analysis with SolidWorks Simulation 2012 Paul M. Kurowski SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com Visit the following websites

More information

Pro MECHANICA STRUCTURE WILDFIRE 4. ELEMENTS AND APPLICATIONS Part I. Yves Gagnon, M.A.Sc. Finite Element Analyst & Structural Consultant SDC

Pro MECHANICA STRUCTURE WILDFIRE 4. ELEMENTS AND APPLICATIONS Part I. Yves Gagnon, M.A.Sc. Finite Element Analyst & Structural Consultant SDC Pro MECHANICA STRUCTURE WILDFIRE 4 ELEMENTS AND APPLICATIONS Part I Yves Gagnon, M.A.Sc. Finite Element Analyst & Structural Consultant SDC PUBLICATIONS Schroff Development Corporation www.schroff.com

More information

LIGO Scissors Table Static Test and Analysis Results

LIGO Scissors Table Static Test and Analysis Results LIGO-T980125-00-D HYTEC-TN-LIGO-31 LIGO Scissors Table Static Test and Analysis Results Eric Swensen and Franz Biehl August 30, 1998 Abstract Static structural tests were conducted on the LIGO scissors

More information

Internal Forces and Moments

Internal Forces and Moments Introduction Internal Forces and Moments To a very large extend this chapter is simply an extension of Section 6.3, The Method of Sections. The section on curved cables is new material. The section on

More information

Abstract. Introduction:

Abstract. Introduction: Abstract This project analyzed a lifecycle test fixture for stress under generic test loading. The maximum stress is expected to occur near the shrink fit pin on the lever arm. The model was constructed

More information

Tutorial 1: Welded Frame - Problem Description

Tutorial 1: Welded Frame - Problem Description Tutorial 1: Welded Frame - Problem Description Introduction In this first tutorial, we will analyse a simple frame: firstly as a welded frame, and secondly as a pin jointed truss. In each case, we will

More information

Modeling Skills Thermal Analysis J.E. Akin, Rice University

Modeling Skills Thermal Analysis J.E. Akin, Rice University Introduction Modeling Skills Thermal Analysis J.E. Akin, Rice University Most finite element analysis tasks involve utilizing commercial software, for which you do not have the source code. Thus, you need

More information

Contact Analysis. Learn how to: define surface contact solve a contact analysis display contact results. I-DEAS Tutorials: Simulation Projects

Contact Analysis. Learn how to: define surface contact solve a contact analysis display contact results. I-DEAS Tutorials: Simulation Projects Contact Analysis I-DEAS Tutorials: Simulation Projects This tutorial shows how to analyze surface contact. The electrical flash contacts in a 35mm camera will be modeled to calculate the contact forces.

More information

Exercise 2: Bike Frame Analysis

Exercise 2: Bike Frame Analysis Exercise 2: Bike Frame Analysis This exercise will analyze a new, innovative mountain bike frame design under structural loads. The objective is to determine the maximum stresses in the frame due to the

More information

Finite Element Method. Chapter 7. Practical considerations in FEM modeling

Finite Element Method. Chapter 7. Practical considerations in FEM modeling Finite Element Method Chapter 7 Practical considerations in FEM modeling Finite Element Modeling General Consideration The following are some of the difficult tasks (or decisions) that face the engineer

More information

Multiframe May 2010 Release Note

Multiframe May 2010 Release Note Multiframe 12.02 18 May 2010 Release Note This release note describes the version 12.02 release of Multiframe, Steel Designer and Section Maker. This release will run on Windows XP/2003/Vista/7. Contents

More information

General modeling guidelines

General modeling guidelines General modeling guidelines Some quotes from industry FEA experts: Finite element analysis is a very powerful tool with which to design products of superior quality. Like all tools, it can be used properly,

More information

Chapter 3 Analysis of Original Steel Post

Chapter 3 Analysis of Original Steel Post Chapter 3. Analysis of original steel post 35 Chapter 3 Analysis of Original Steel Post This type of post is a real functioning structure. It is in service throughout the rail network of Spain as part

More information

COMPUTER AIDED ENGINEERING. Part-1

COMPUTER AIDED ENGINEERING. Part-1 COMPUTER AIDED ENGINEERING Course no. 7962 Finite Element Modelling and Simulation Finite Element Modelling and Simulation Part-1 Modeling & Simulation System A system exists and operates in time and space.

More information

Beams. Lesson Objectives:

Beams. Lesson Objectives: Beams Lesson Objectives: 1) Derive the member local stiffness values for two-dimensional beam members. 2) Assemble the local stiffness matrix into global coordinates. 3) Assemble the structural stiffness

More information

MSC/PATRAN LAMINATE MODELER COURSE PAT 325 Workbook

MSC/PATRAN LAMINATE MODELER COURSE PAT 325 Workbook MSC/PATRAN LAMINATE MODELER COURSE PAT 325 Workbook P3*V8.0*Z*Z*Z*SM-PAT325-WBK - 1 - - 2 - Table of Contents Page 1 Composite Model of Loaded Flat Plate 2 Failure Criteria for Flat Plate 3 Making Plies

More information

Example Lecture 12: The Stiffness Method Prismatic Beams. Consider again the two span beam previously discussed and determine

Example Lecture 12: The Stiffness Method Prismatic Beams. Consider again the two span beam previously discussed and determine Example 1.1 Consider again the two span beam previously discussed and determine The shearing force M1 at end B of member B. The bending moment M at end B of member B. The shearing force M3 at end B of

More information

Chapter 7 Practical Considerations in Modeling. Chapter 7 Practical Considerations in Modeling

Chapter 7 Practical Considerations in Modeling. Chapter 7 Practical Considerations in Modeling CIVL 7/8117 1/43 Chapter 7 Learning Objectives To present concepts that should be considered when modeling for a situation by the finite element method, such as aspect ratio, symmetry, natural subdivisions,

More information

Exercise 2: Bike Frame Analysis

Exercise 2: Bike Frame Analysis Exercise 2: Bike Frame Analysis This exercise will analyze a new, innovative mountain bike frame design under structural loads. The objective is to determine the maximum stresses in the frame due to the

More information

Introduction. Section 3: Structural Analysis Concepts - Review

Introduction. Section 3: Structural Analysis Concepts - Review Introduction In this class we will focus on the structural analysis of framed structures. Framed structures consist of components with lengths that are significantly larger than crosssectional areas. We

More information

Simulation of Connector Assembly C

Simulation of Connector Assembly C Simulation of Connector Assembly C Date: Sunday, March 6, 2016 Designer: Solidworks Study name: Horizontal Stress Test on C inner bend Analysis type: Static Table of Contents Model Information... 2 Study

More information

CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 15 - FINITE ELEMENT ANALYSIS - PART 1

CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 15 - FINITE ELEMENT ANALYSIS - PART 1 Outcome 1 The learner can: CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 15 - FINITE ELEMENT ANALYSIS - PART 1 Calculate stresses, strain and deflections in a range of components under

More information

Example 24 Spring-back

Example 24 Spring-back Example 24 Spring-back Summary The spring-back simulation of sheet metal bent into a hat-shape is studied. The problem is one of the famous tests from the Numisheet 93. As spring-back is generally a quasi-static

More information

Some Aspects for the Simulation of a Non-Linear Problem with Plasticity and Contact

Some Aspects for the Simulation of a Non-Linear Problem with Plasticity and Contact Some Aspects for the Simulation of a Non-Linear Problem with Plasticity and Contact Eduardo Luís Gaertner Marcos Giovani Dropa de Bortoli EMBRACO S.A. Abstract A linear elastic model is often not appropriate

More information

ENGINEERING TRIPOS PART IIA FINITE ELEMENT METHOD

ENGINEERING TRIPOS PART IIA FINITE ELEMENT METHOD ENGINEERING TRIPOS PART IIA LOCATION: DPO EXPERIMENT 3D7 FINITE ELEMENT METHOD Those who have performed the 3C7 experiment should bring the write-up along to this laboratory Objectives Show that the accuracy

More information

An Overview of Computer Aided Design and Finite Element Analysis

An Overview of Computer Aided Design and Finite Element Analysis An Overview of Computer Aided Design and Finite Element Analysis by James Doane, PhD, PE Contents 1.0 Course Overview... 4 2.0 General Concepts... 4 2.1 What is Computer Aided Design... 4 2.1.1 2D verses

More information

ixcube 4-10 Brief introduction for membrane and cable systems.

ixcube 4-10 Brief introduction for membrane and cable systems. ixcube 4-10 Brief introduction for membrane and cable systems. ixcube is the evolution of 20 years of R&D in the field of membrane structures so it takes a while to understand the basic features. You must

More information

Solid and shell elements

Solid and shell elements Solid and shell elements Theodore Sussman, Ph.D. ADINA R&D, Inc, 2016 1 Overview 2D and 3D solid elements Types of elements Effects of element distortions Incompatible modes elements u/p elements for incompressible

More information

MAE 323: Lab 7. Instructions. Pressure Vessel Alex Grishin MAE 323 Lab Instructions 1

MAE 323: Lab 7. Instructions. Pressure Vessel Alex Grishin MAE 323 Lab Instructions 1 Instructions MAE 323 Lab Instructions 1 Problem Definition Determine how different element types perform for modeling a cylindrical pressure vessel over a wide range of r/t ratios, and how the hoop stress

More information

Finite Element Analysis Using NEi Nastran

Finite Element Analysis Using NEi Nastran Appendix B Finite Element Analysis Using NEi Nastran B.1 INTRODUCTION NEi Nastran is engineering analysis and simulation software developed by Noran Engineering, Inc. NEi Nastran is a general purpose finite

More information

ANSYS AIM Tutorial Structural Analysis of a Plate with Hole

ANSYS AIM Tutorial Structural Analysis of a Plate with Hole ANSYS AIM Tutorial Structural Analysis of a Plate with Hole Author(s): Sebastian Vecchi, ANSYS Created using ANSYS AIM 18.1 Problem Specification Pre-Analysis & Start Up Analytical vs. Numerical Approaches

More information

ANSYS AIM Tutorial Stepped Shaft in Axial Tension

ANSYS AIM Tutorial Stepped Shaft in Axial Tension ANSYS AIM Tutorial Stepped Shaft in Axial Tension Author(s): Sebastian Vecchi, ANSYS Created using ANSYS AIM 18.1 Contents: Problem Specification 3 Learning Goals 4 Pre-Analysis & Start Up 5 Calculation

More information

[3] Rigid Body Analysis

[3] Rigid Body Analysis [3] Rigid Body Analysis Page 1 of 53 [3] Rigid Body Analysis [3.1] Equilibrium of a Rigid Body [3.2] Equations of Equilibrium [3.3] Equilibrium in 3-D [3.4] Simple Trusses [3.5] The Method of Joints [3.6]

More information

PTC Newsletter January 14th, 2002

PTC  Newsletter January 14th, 2002 PTC Email Newsletter January 14th, 2002 PTC Product Focus: Pro/MECHANICA (Structure) Tip of the Week: Creating and using Rigid Connections Upcoming Events and Training Class Schedules PTC Product Focus:

More information

Engineering Optimization

Engineering Optimization Engineering Optimization Most engineering design involves using optimization software which minimizes or maximizes a merit or objective function while satisfying functional constraints (such as stress

More information

Simulation of RF HEat Test

Simulation of RF HEat Test Simulation of RF HEat Test Date: Tuesday, December 22, 2015 Designer: Solidworks Study name: Stress One Third Emissivity Analysis type: Nonlinear - Dynamic Description No Data Table of Contents Description...

More information

Simulation of Connector Assembly AA

Simulation of Connector Assembly AA Simulation of Connector Assembly AA Date: Tuesday, March 1, 2016 Designer: Solidworks Study name: Horizontal Stress in AA inner tab fold Analysis type: Static Table of Contents Model Information... 2 Study

More information

Scientific Manual FEM-Design 17.0

Scientific Manual FEM-Design 17.0 Scientific Manual FEM-Design 17. 1.4.6 Calculations considering diaphragms All of the available calculation in FEM-Design can be performed with diaphragms or without diaphragms if the diaphragms were defined

More information

ANSYS Element. elearning. Peter Barrett October CAE Associates Inc. and ANSYS Inc. All rights reserved.

ANSYS Element. elearning. Peter Barrett October CAE Associates Inc. and ANSYS Inc. All rights reserved. ANSYS Element Selection elearning Peter Barrett October 2012 2012 CAE Associates Inc. and ANSYS Inc. All rights reserved. ANSYS Element Selection What is the best element type(s) for my analysis? Best

More information

Problem description C L. Tank walls. Water in tank

Problem description C L. Tank walls. Water in tank Problem description A cylindrical water tank is subjected to gravity loading and ground accelerations, as shown in the figures below: Tank walls Water in tank Wall thickness 0.05 C L 5 g=9.81 m/s 2 Water:

More information

E and. L q. AE q L AE L. q L

E and. L q. AE q L AE L. q L STRUTURL NLYSIS [SK 43] EXERISES Q. (a) Using basic concepts, members towrds local axes is, E and q L, prove that the equilibrium equation for truss f f E L E L E L q E q L With f and q are both force

More information

Analysis of Machine Elements Using SolidWorks Simulation 2013

Analysis of Machine Elements Using SolidWorks Simulation 2013 Analysis of Machine Elements Using SolidWorks Simulation 2013 John R. Steffen, Ph.D., P.E. SDC P U B L I C AT I O N S Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com

More information

Module 1.5: Moment Loading of a 2D Cantilever Beam

Module 1.5: Moment Loading of a 2D Cantilever Beam Module 1.5: Moment Loading of a D Cantilever Beam Table of Contents Page Number Problem Description Theory Geometry 4 Preprocessor 7 Element Type 7 Real Constants and Material Properties 8 Meshing 9 Loads

More information

Exercise 1: 3-Pt Bending using ANSYS Workbench

Exercise 1: 3-Pt Bending using ANSYS Workbench Exercise 1: 3-Pt Bending using ANSYS Workbench Contents Starting and Configuring ANSYS Workbench... 2 1. Starting Windows on the MAC... 2 2. Login into Windows... 2 3. Start ANSYS Workbench... 2 4. Configuring

More information

Embedded Reinforcements

Embedded Reinforcements Embedded Reinforcements Gerd-Jan Schreppers, January 2015 Abstract: This paper explains the concept and application of embedded reinforcements in DIANA. Basic assumptions and definitions, the pre-processing

More information

Crashbox Tutorial. In this tutorial the focus is on modeling a Formula Student Racecar Crashbox with HyperCrash 12.0

Crashbox Tutorial. In this tutorial the focus is on modeling a Formula Student Racecar Crashbox with HyperCrash 12.0 Crashbox Tutorial In this tutorial the focus is on modeling a Formula Student Racecar Crashbox with HyperCrash 12.0 (Written by Moritz Guenther, student at Altair Engineering GmbH) 1 HyperMesh* 1. Start

More information

Element Order: Element order refers to the interpolation of an element s nodal results to the interior of the element. This determines how results can

Element Order: Element order refers to the interpolation of an element s nodal results to the interior of the element. This determines how results can TIPS www.ansys.belcan.com 鲁班人 (http://www.lubanren.com/weblog/) Picking an Element Type For Structural Analysis: by Paul Dufour Picking an element type from the large library of elements in ANSYS can be

More information

Aufgabe 1: Dreipunktbiegung mit ANSYS Workbench

Aufgabe 1: Dreipunktbiegung mit ANSYS Workbench Aufgabe 1: Dreipunktbiegung mit ANSYS Workbench Contents Beam under 3-Pt Bending [Balken unter 3-Pkt-Biegung]... 2 Taking advantage of symmetries... 3 Starting and Configuring ANSYS Workbench... 4 A. Pre-Processing:

More information

Finite Element Analysis Using Pro/Engineer

Finite Element Analysis Using Pro/Engineer Appendix A Finite Element Analysis Using Pro/Engineer A.1 INTRODUCTION Pro/ENGINEER is a three-dimensional product design tool that promotes practices in design while ensuring compliance with industry

More information

FEA BENDING, TORSION, TENSION, and SHEAR TUTORIAL in CATIA

FEA BENDING, TORSION, TENSION, and SHEAR TUTORIAL in CATIA 1 FEA BENDING, TORSION, TENSION, and SHEAR TUTORIAL in CATIA This tutorial shows the basics of a solid bending, torsional, tension, and shear FEA (Finite Elemental Analysis) model in CATIA. Torsion - page

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 36 In last class, we have derived element equations for two d elasticity problems

More information

Multi-Step Analysis of a Cantilever Beam

Multi-Step Analysis of a Cantilever Beam LESSON 4 Multi-Step Analysis of a Cantilever Beam LEGEND 75000. 50000. 25000. 0. -25000. -50000. -75000. 0. 3.50 7.00 10.5 14.0 17.5 21.0 Objectives: Demonstrate multi-step analysis set up in MSC/Advanced_FEA.

More information

17. SEISMIC ANALYSIS MODELING TO SATISFY BUILDING CODES

17. SEISMIC ANALYSIS MODELING TO SATISFY BUILDING CODES 17. SEISMIC ANALYSIS MODELING TO SATISFY BUILDING CODES The Current Building Codes Use the Terminology: Principal Direction without a Unique Definition 17.1 INTRODUCTION { XE "Building Codes" }Currently

More information

Sliding Split Tube Telescope

Sliding Split Tube Telescope LESSON 15 Sliding Split Tube Telescope Objectives: Shell-to-shell contact -accounting for shell thickness. Creating boundary conditions and loads by way of rigid surfaces. Simulate large displacements,

More information

Modelling Flat Spring Performance Using FEA

Modelling Flat Spring Performance Using FEA Modelling Flat Spring Performance Using FEA Blessing O Fatola, Patrick Keogh and Ben Hicks Department of Mechanical Engineering, University of Corresponding author bf223@bath.ac.uk Abstract. This paper

More information

CE Advanced Structural Analysis. Lab 4 SAP2000 Plane Elasticity

CE Advanced Structural Analysis. Lab 4 SAP2000 Plane Elasticity Department of Civil & Geological Engineering COLLEGE OF ENGINEERING CE 463.3 Advanced Structural Analysis Lab 4 SAP2000 Plane Elasticity February 27 th, 2013 T.A: Ouafi Saha Professor: M. Boulfiza 1. Rectangular

More information

Analysis of Machine Elements using SolidWorks Simulation 2010

Analysis of Machine Elements using SolidWorks Simulation 2010 Analysis of Machine Elements using SolidWorks Simulation 2010 John R. Steffen, Ph.D., P.E. SDC PUBLICATIONS www.sdcpublications.com Schroff Development Corporation CHAPTER #2 CURVED BEAM ANALYSIS This

More information

The Essence of Result Post- Processing

The Essence of Result Post- Processing APPENDIX E The Essence of Result Post- Processing Objectives: Manually create the geometry for the tension coupon using the given dimensions then apply finite elements. Manually define material and element

More information

Simulation of fiber reinforced composites using NX 8.5 under the example of a 3- point-bending beam

Simulation of fiber reinforced composites using NX 8.5 under the example of a 3- point-bending beam R Simulation of fiber reinforced composites using NX 8.5 under the example of a 3- point-bending beam Ralph Kussmaul Zurich, 08-October-2015 IMES-ST/2015-10-08 Simulation of fiber reinforced composites

More information

Static Stress Analysis

Static Stress Analysis Static Stress Analysis Determine stresses and displacements in a connecting rod assembly. Lesson: Static Stress Analysis of a Connecting Rod Assembly In this tutorial we determine the effects of a 2,000-pound

More information

Visit the following websites to learn more about this book:

Visit the following websites to learn more about this book: Visit the following websites to learn more about this book: 6 Introduction to Finite Element Simulation Historically, finite element modeling tools were only capable of solving the simplest engineering

More information

A pipe bend is subjected to a concentrated force as shown: y All dimensions in inches. Material is stainless steel.

A pipe bend is subjected to a concentrated force as shown: y All dimensions in inches. Material is stainless steel. Problem description A pipe bend is subjected to a concentrated force as shown: y 15 12 P 9 Displacement gauge Cross-section: 0.432 18 x 6.625 All dimensions in inches. Material is stainless steel. E =

More information

Advanced Professional Training

Advanced Professional Training Advanced Professional Training Non Linea rand Stability All information in this document is subject to modification without prior notice. No part of this manual may be reproduced, stored in a database

More information

ME 475 FEA of a Composite Panel

ME 475 FEA of a Composite Panel ME 475 FEA of a Composite Panel Objectives: To determine the deflection and stress state of a composite panel subjected to asymmetric loading. Introduction: Composite laminates are composed of thin layers

More information

Engineering. Statics Labs SDC. with SOLIDWORKS Motion Includes. Huei-Huang Lee. Better Textbooks. Lower Prices.

Engineering. Statics Labs SDC. with SOLIDWORKS Motion Includes. Huei-Huang Lee. Better Textbooks. Lower Prices. Engineering Includes Video demonstrations of the exercises in the book Statics Labs with SOLIDWORKS Motion 2015 Huei-Huang Lee Multimedia Disc SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com

More information

Introduction to the Finite Element Method (3)

Introduction to the Finite Element Method (3) Introduction to the Finite Element Method (3) Petr Kabele Czech Technical University in Prague Faculty of Civil Engineering Czech Republic petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele 1 Outline

More information

Auto Injector Syringe. A Fluent Dynamic Mesh 1DOF Tutorial

Auto Injector Syringe. A Fluent Dynamic Mesh 1DOF Tutorial Auto Injector Syringe A Fluent Dynamic Mesh 1DOF Tutorial 1 2015 ANSYS, Inc. June 26, 2015 Prerequisites This tutorial is written with the assumption that You have attended the Introduction to ANSYS Fluent

More information

ME 442. Marc/Mentat-2011 Tutorial-1

ME 442. Marc/Mentat-2011 Tutorial-1 ME 442 Overview Marc/Mentat-2011 Tutorial-1 The purpose of this tutorial is to introduce the new user to the MSC/MARC/MENTAT finite element program. It should take about one hour to complete. The MARC/MENTAT

More information

Frame Analysis Using Visual Analysis

Frame Analysis Using Visual Analysis Frame Analysis Using Visual Analysis 1. The software is available at the Open Access Labs (OAL) and the Virtual OAL at http://voal.tamu.edu in Programs under the Windows Start menu. The software can also

More information

Analysis of Composite Aerospace Structures Finite Elements Professor Kelly

Analysis of Composite Aerospace Structures Finite Elements Professor Kelly Analysis of Composite Aerospace Structures Finite Elements Professor Kelly John Middendorf #3049731 Assignment #3 I hereby certify that this is my own and original work. Signed, John Middendorf Analysis

More information

FEMAP Tutorial 2. Figure 1: Bar with defined dimensions

FEMAP Tutorial 2. Figure 1: Bar with defined dimensions FEMAP Tutorial 2 Consider a cantilevered beam with a vertical force applied to the right end. We will utilize the same geometry as the previous tutorial that considered an axial loading. Thus, this tutorial

More information

Linear Elastic Fracture Mechanics (LEFM) Analysis of Flaws within Residual Stress Fields

Linear Elastic Fracture Mechanics (LEFM) Analysis of Flaws within Residual Stress Fields Linear Elastic Fracture Mechanics (LEFM) Analysis of Flaws within Residual Stress Fields David Woyak 1, Brian Baillargeon, Ramesh Marrey, and Randy Grishaber 2 1 Dassault Systemés SIMULIA Corporation &

More information

SETTLEMENT OF A CIRCULAR FOOTING ON SAND

SETTLEMENT OF A CIRCULAR FOOTING ON SAND 1 SETTLEMENT OF A CIRCULAR FOOTING ON SAND In this chapter a first application is considered, namely the settlement of a circular foundation footing on sand. This is the first step in becoming familiar

More information

Modeling Foundations in RS

Modeling Foundations in RS Modeling Foundations in RS 3 Piled Raft Modeling in RS 3 Deep foundation piles are commonly used to increase foundation stability and to increase the bearing capacity of structural systems. The design

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction GTU Paper Analysis (New Syllabus) Sr. No. Questions 26/10/16 11/05/16 09/05/16 08/12/15 Theory 1. What is graphic standard? Explain different CAD standards. 2. Write Bresenham s

More information

DESIGN AND ANALYSIS OF MEMBRANE STRUCTURES IN FEM-BASED SOFTWARE MASTER THESIS

DESIGN AND ANALYSIS OF MEMBRANE STRUCTURES IN FEM-BASED SOFTWARE MASTER THESIS DESIGN AND ANALYSIS OF MEMBRANE STRUCTURES IN FEM-BASED SOFTWARE MASTER THESIS ARCHINEER INSTITUTES FOR MEMBRANE AND SHELL TECHNOLOGIES, BUILDING AND REAL ESTATE e.v. ANHALT UNIVERSITY OF APPLIED SCIENCES

More information

Optimizing the Utility Scale Solar Megahelion Drive End-Cap (Imperial Units)

Optimizing the Utility Scale Solar Megahelion Drive End-Cap (Imperial Units) Autodesk Inventor Tutorial Exercise Optimizing the Utility Scale Solar Megahelion Drive End-Cap www.autodesk.com/sustainabilityworkshop Contents OPTIMIZING THE USS SOLAR TRACKING END CAP... 3 OBJECTIVE...

More information

Global to Local Model Interface for Deepwater Top Tension Risers

Global to Local Model Interface for Deepwater Top Tension Risers Global to Local Model Interface for Deepwater Top Tension Risers Mateusz Podskarbi Karan Kakar 2H Offshore Inc, Houston, TX Abstract The water depths from which oil and gas are being produced are reaching

More information

SUBMERGED CONSTRUCTION OF AN EXCAVATION

SUBMERGED CONSTRUCTION OF AN EXCAVATION 2 SUBMERGED CONSTRUCTION OF AN EXCAVATION This tutorial illustrates the use of PLAXIS for the analysis of submerged construction of an excavation. Most of the program features that were used in Tutorial

More information

Case Study - Vierendeel Frame Part of Chapter 12 from: MacLeod I A (2005) Modern Structural Analysis, ICE Publishing

Case Study - Vierendeel Frame Part of Chapter 12 from: MacLeod I A (2005) Modern Structural Analysis, ICE Publishing Case Study - Vierendeel Frame Part of Chapter 1 from: MacLeod I A (005) Modern Structural Analysis, ICE Publishing Iain A MacLeod Contents Contents... 1 1.1 Vierendeel frame... 1 1.1.1 General... 1 1.1.

More information

FINITE ELEMENT ANALYSIS OF A COMPOSITE CATAMARAN

FINITE ELEMENT ANALYSIS OF A COMPOSITE CATAMARAN NAFEMS WORLD CONGRESS 2013, SALZBURG, AUSTRIA FINITE ELEMENT ANALYSIS OF A COMPOSITE CATAMARAN Dr. C. Lequesne, Dr. M. Bruyneel (LMS Samtech, Belgium); Ir. R. Van Vlodorp (Aerofleet, Belgium). Dr. C. Lequesne,

More information

EN1740 Computer Aided Visualization and Design Spring /26/2012 Brian C. P. Burke

EN1740 Computer Aided Visualization and Design Spring /26/2012 Brian C. P. Burke EN1740 Computer Aided Visualization and Design Spring 2012 4/26/2012 Brian C. P. Burke Last time: More motion analysis with Pro/E Tonight: Introduction to external analysis products ABAQUS External Analysis

More information

Module 1.6: Distributed Loading of a 2D Cantilever Beam

Module 1.6: Distributed Loading of a 2D Cantilever Beam Module 1.6: Distributed Loading of a 2D Cantilever Beam Table of Contents Page Number Problem Description 2 Theory 2 Geometry 4 Preprocessor 7 Element Type 7 Real Constants and Material Properties 8 Meshing

More information

Machine Elements Simulation 2017

Machine Elements Simulation 2017 Analysis of Machine Elements Using SOLIDWORKS Simulation 2017 Shahin S. Nudehi, Ph.D. John R. Steffen, Ph.D., P.E. SDC P U B L I C AT I O N S Better Textbooks. Lower Prices. www.sdcpublications.com Powered

More information