Real Time Ray Tracing

Size: px
Start display at page:

Download "Real Time Ray Tracing"

Transcription

1 Real Time Ray Tracing Programação 3D para Simulação de Jogos Vasco Costa

2 Ray tracing? Why? How? P3DSJ Real Time Ray Tracing Vasco Costa 2

3 Real time ray tracing : example Source: NVIDIA P3DSJ Real Time Ray Tracing Vasco Costa 3

4 Exploiting vector parallelism exploit ray coherence for ray triangle intersections P3DSJ Real Time Ray Tracing Vasco Costa 4

5 Ray packets / Triangle packets (summary) exploit ray coherence for ray triangle intersections Pros common subexpressions for intersections with same ray origin are eliminated. better cache coherence. Cons mostly useful for primary rays (ray packets). useful only if there are enough triangles in the scene (triangle packets). Due to fine granularity usually employed in combination with vector parallelism. P3DSJ Real Time Ray Tracing Vasco Costa 5

6 Exploiting thread parallelism Task to be divided should have large enough granularity. Ray scene intersection is usually divided among threads: a 1024x1024 display needs tracing of over 1 million rays How to divide the ray workload? P3DSJ Real Time Ray Tracing Vasco Costa 6

7 Ray generation & distribution Thread workload division matters. Simple chequerboard distribution (left) scales well in pratice. Other ray generation schemes (e.g. Z order) are sometimes used. P3DSJ Real Time Ray Tracing Vasco Costa 7

8 Z order ray generation Idea is that neighbouring display areas have similar complexity. Better cache coherence during tracing. Source: Wikipedia P3DSJ Real Time Ray Tracing Vasco Costa 8

9 Adaptive supersampling Instead of tracing rays for every pixel, the display is coarsely sampled first. More rays are traced in areas where there is more variability and detail. May introduce rendering errors, worsen cache coherency, imbalance thread distribution. P3DSJ Real Time Ray Tracing Vasco Costa 9

10 Spatial subdivision (1) Ray tracing algorithm is easy to paralelize. However number of ray triangle intersections is still huge so some sort of spatial subdivision is required to accelerate rayscene queries for scenes with many triangles. There is no optimum spatial subdivision scheme for all scenes: is geometry static? locally static? or dynamic? is scene triangle density regular? or irregular? Commonly used spatial subdivision schemes include: bounding volume hierarchies (BVH), KD trees, grids. P3DSJ Real Time Ray Tracing Vasco Costa 10

11 Spatial subdivision (2) BVH fast updates (for rigid bodies), medium memory consumption, expensive traversal, ok to parallelize (recursive, variable branching factor). KD tree slow updates, low memory consumption, cheap traversal, hard to paralellize (recursive, low branching factor). Grid fast updates (for dynamic geometry), high memory consumption, hard to predict rendering performance, easy to parallelize (non recursive). P3DSJ Real Time Ray Tracing Vasco Costa 11

12 Spatial subdivision (3) Implementation details can cause a high performance impact: Grids and BVHs compress better than KD trees. In the case of grids using compression for empty cells can reduce memory consumption so that it is lower than uncompressed KD trees. Some KD tree implementations have faster updates for rigid bodies. BVHs and KD trees have better performance than grids for static scenes with non regular geometry. This is due to the use of Surface Area Heuristics (SAH) for calculating the split boxes/planes. How to compute the splits for spatial subdivision? P3DSJ Real Time Ray Tracing Vasco Costa 12

13 Grid heuristics The goal of traditional grid heuristics is to reduce memory consumption. Hence an heuristic that strives to have linear memory consumption versus the number of primitives is commonly employed. Example: dim[ x, y, z] = density 3 numtriangles where density is some fixed value. P3DSJ Real Time Ray Tracing Vasco Costa 13

14 KD tree / BVH heuristics A top down split method is usually employed. Examples: split axis : splitting along the middle of the largest extent. split location : splitting by the median of the triangle geometry. surface area heuristic (SAH) : greedy search which tries to minimize a cost function. Heuristic selection can markedly impact performance. Surface Area Heuristics are state of the art and can improve render time performance over 100% at the cost of construction time. Surface Area Heuristic (SAH) example: Cost(cell) = = Ctrav + ProbHit(L) x Cost(L) + ProbHit(R) x Cost(R) = Ctrav + SA(L) x NumTriangles(L) + SA(R) x NumTriangles(R) P3DSJ Real Time Ray Tracing Vasco Costa 14

15 KD tree heuristics : test scene Source: Ray Tracing Performance, Gordon Stoll, SIGGRAPH 2006 P3DSJ Real Time Ray Tracing Vasco Costa 15

16 KD tree heuristics : split axis Source: Ray Tracing Performance, Gordon Stoll, SIGGRAPH 2006 P3DSJ Real Time Ray Tracing Vasco Costa 16

17 KD tree heuristics : split location Source: Ray Tracing Performance, Gordon Stoll, SIGGRAPH 2006 P3DSJ Real Time Ray Tracing Vasco Costa 17

18 KD tree heuristics : SAH Source: Ray Tracing Performance, Gordon Stoll, SIGGRAPH 2006 P3DSJ Real Time Ray Tracing Vasco Costa 18

19 Quake Wars : Ray Traced (real time ray tracing) Source: Intel P3DSJ Real Time Ray Tracing Vasco Costa 19

20 Aurora (real time ray tracing with primary rays only, interactive with secondary rays) P3DSJ Real Time Ray Tracing Vasco Costa 20

21 NVIDIA Fermi Demo (real time ray tracing & interactive path tracing) Source: NVIDIA P3DSJ Real Time Ray Tracing Vasco Costa 21

22 Mental Images iray (interactive ray tracing & global illumination) Source: CGArchitect.com P3DSJ Real Time Ray Tracing Vasco Costa 22

23 References State of the Art in Ray Tracing Animated Scenes Ingo Wald, William Mark, Johannes Günther, Solomon Boulos, Thiago Ize, Warren Hunt, Steven Parker, and Peter Shirley Eurographics (2007) Real time Ray Tracing through the Eyes of a Game Developer Jacco Bikker IEEE/Eurographics Symposium on Interactive Ray Tracing (2007) Physically Based Rendering: From Theory to Implementation Matt Pharr, Greg Humphreys Morgan Kaufmann (2004) P3DSJ Real Time Ray Tracing Vasco Costa 23

Ray Tracing Performance

Ray Tracing Performance Ray Tracing Performance Zero to Millions in 45 Minutes Gordon Stoll, Intel Ray Tracing Performance Zero to Millions in 45 Minutes?! Gordon Stoll, Intel Goals for this talk Goals point you toward the current

More information

Accelerating Ray-Tracing

Accelerating Ray-Tracing Lecture 9: Accelerating Ray-Tracing Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2016 Course Roadmap Rasterization Pipeline Core Concepts Sampling Antialiasing Transforms Geometric Modeling

More information

Computer Graphics. - Ray-Tracing II - Hendrik Lensch. Computer Graphics WS07/08 Ray Tracing II

Computer Graphics. - Ray-Tracing II - Hendrik Lensch. Computer Graphics WS07/08 Ray Tracing II Computer Graphics - Ray-Tracing II - Hendrik Lensch Overview Last lecture Ray tracing I Basic ray tracing What is possible? Recursive ray tracing algorithm Intersection computations Today Advanced acceleration

More information

Acceleration Data Structures

Acceleration Data Structures CT4510: Computer Graphics Acceleration Data Structures BOCHANG MOON Ray Tracing Procedure for Ray Tracing: For each pixel Generate a primary ray (with depth 0) While (depth < d) { Find the closest intersection

More information

Acceleration Structure for Animated Scenes. Copyright 2010 by Yong Cao

Acceleration Structure for Animated Scenes. Copyright 2010 by Yong Cao t min X X Y 1 B C Y 1 Y 2 A Y 2 D A B C D t max t min X X Y 1 B C Y 2 Y 1 Y 2 A Y 2 D A B C D t max t min X X Y 1 B C Y 1 Y 2 A Y 2 D A B C D t max t min A large tree structure change. A totally new tree!

More information

Ray Tracing. Computer Graphics CMU /15-662, Fall 2016

Ray Tracing. Computer Graphics CMU /15-662, Fall 2016 Ray Tracing Computer Graphics CMU 15-462/15-662, Fall 2016 Primitive-partitioning vs. space-partitioning acceleration structures Primitive partitioning (bounding volume hierarchy): partitions node s primitives

More information

INFOGR Computer Graphics. J. Bikker - April-July Lecture 11: Acceleration. Welcome!

INFOGR Computer Graphics. J. Bikker - April-July Lecture 11: Acceleration. Welcome! INFOGR Computer Graphics J. Bikker - April-July 2015 - Lecture 11: Acceleration Welcome! Today s Agenda: High-speed Ray Tracing Acceleration Structures The Bounding Volume Hierarchy BVH Construction BVH

More information

Intersection Acceleration

Intersection Acceleration Advanced Computer Graphics Intersection Acceleration Matthias Teschner Computer Science Department University of Freiburg Outline introduction bounding volume hierarchies uniform grids kd-trees octrees

More information

SPATIAL DATA STRUCTURES. Jon McCaffrey CIS 565

SPATIAL DATA STRUCTURES. Jon McCaffrey CIS 565 SPATIAL DATA STRUCTURES Jon McCaffrey CIS 565 Goals Spatial Data Structures (Construction esp.) Why What How Designing Algorithms for the GPU Why Accelerate spatial queries Search problem Target Application

More information

B-KD Trees for Hardware Accelerated Ray Tracing of Dynamic Scenes

B-KD Trees for Hardware Accelerated Ray Tracing of Dynamic Scenes B-KD rees for Hardware Accelerated Ray racing of Dynamic Scenes Sven Woop Gerd Marmitt Philipp Slusallek Saarland University, Germany Outline Previous Work B-KD ree as new Spatial Index Structure DynR

More information

Computer Graphics. - Spatial Index Structures - Philipp Slusallek

Computer Graphics. - Spatial Index Structures - Philipp Slusallek Computer Graphics - Spatial Index Structures - Philipp Slusallek Overview Last lecture Overview of ray tracing Ray-primitive intersections Today Acceleration structures Bounding Volume Hierarchies (BVH)

More information

Fast BVH Construction on GPUs

Fast BVH Construction on GPUs Fast BVH Construction on GPUs Published in EUROGRAGHICS, (2009) C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, D. Manocha University of North Carolina at Chapel Hill NVIDIA University of California

More information

MULTI-LEVEL GRID STRATEGIES FOR RAY TRACING Improving Render Time Performance for Row Displacement Compressed Grids

MULTI-LEVEL GRID STRATEGIES FOR RAY TRACING Improving Render Time Performance for Row Displacement Compressed Grids MULTI-LEVEL GRID STRATEGIES FOR RAY TRACING Improving Render Time Performance for Row Displacement Compressed Grids Vasco Costa, João Madeiras Pereira INESC-ID / IST, Rua Alves Redol 9, Apartado 1369,

More information

CS580: Ray Tracing. Sung-Eui Yoon ( 윤성의 ) Course URL:

CS580: Ray Tracing. Sung-Eui Yoon ( 윤성의 ) Course URL: CS580: Ray Tracing Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/gcg/ Recursive Ray Casting Gained popularity in when Turner Whitted (1980) recognized that recursive ray casting could

More information

RACBVHs: Random Accessible Compressed Bounding Volume Hierarchies

RACBVHs: Random Accessible Compressed Bounding Volume Hierarchies RACBVHs: Random Accessible Compressed Bounding Volume Hierarchies Published at IEEE Transactions on Visualization and Computer Graphics, 2010, Vol. 16, Num. 2, pp. 273 286 Tae Joon Kim joint work with

More information

Spatial Data Structures

Spatial Data Structures CSCI 420 Computer Graphics Lecture 17 Spatial Data Structures Jernej Barbic University of Southern California Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees [Angel Ch. 8] 1 Ray Tracing Acceleration

More information

Specialized Acceleration Structures for Ray-Tracing. Warren Hunt

Specialized Acceleration Structures for Ray-Tracing. Warren Hunt Specialized Acceleration Structures for Ray-Tracing Warren Hunt Bill Mark Forward: Flavor of Research Build is cheap (especially with scan, lazy and build from hierarchy) Grid build and BVH refit are really

More information

Spatial Data Structures

Spatial Data Structures CSCI 480 Computer Graphics Lecture 7 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids BSP Trees [Ch. 0.] March 8, 0 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s/

More information

Ray Tracing III. Wen-Chieh (Steve) Lin National Chiao-Tung University

Ray Tracing III. Wen-Chieh (Steve) Lin National Chiao-Tung University Ray Tracing III Wen-Chieh (Steve) Lin National Chiao-Tung University Shirley, Fundamentals of Computer Graphics, Chap 10 Doug James CG slides, I-Chen Lin s CG slides Ray-tracing Review For each pixel,

More information

Lecture 2 - Acceleration Structures

Lecture 2 - Acceleration Structures INFOMAGR Advanced Graphics Jacco Bikker - November 2017 - February 2018 Lecture 2 - Acceleration Structures Welcome! I x, x = g(x, x ) ε x, x + න S ρ x, x, x I x, x dx Today s Agenda: Problem Analysis

More information

Accelerated Raytracing

Accelerated Raytracing Accelerated Raytracing Why is Acceleration Important? Vanilla ray tracing is really slow! mxm pixels, kxk supersampling, n primitives, average ray path length of d, l lights, 2 recursive ray casts per

More information

Parallel Physically Based Path-tracing and Shading Part 3 of 2. CIS565 Fall 2012 University of Pennsylvania by Yining Karl Li

Parallel Physically Based Path-tracing and Shading Part 3 of 2. CIS565 Fall 2012 University of Pennsylvania by Yining Karl Li Parallel Physically Based Path-tracing and Shading Part 3 of 2 CIS565 Fall 202 University of Pennsylvania by Yining Karl Li Jim Scott 2009 Spatial cceleration Structures: KD-Trees *Some portions of these

More information

INFOMAGR Advanced Graphics. Jacco Bikker - February April Welcome!

INFOMAGR Advanced Graphics. Jacco Bikker - February April Welcome! INFOMAGR Advanced Graphics Jacco Bikker - February April 2016 Welcome! I x, x = g(x, x ) ε x, x + S ρ x, x, x I x, x dx Today s Agenda: Introduction Ray Distributions The Top-level BVH Real-time Ray Tracing

More information

COMP 4801 Final Year Project. Ray Tracing for Computer Graphics. Final Project Report FYP Runjing Liu. Advised by. Dr. L.Y.

COMP 4801 Final Year Project. Ray Tracing for Computer Graphics. Final Project Report FYP Runjing Liu. Advised by. Dr. L.Y. COMP 4801 Final Year Project Ray Tracing for Computer Graphics Final Project Report FYP 15014 by Runjing Liu Advised by Dr. L.Y. Wei 1 Abstract The goal of this project was to use ray tracing in a rendering

More information

Lecture 4 - Real-time Ray Tracing

Lecture 4 - Real-time Ray Tracing INFOMAGR Advanced Graphics Jacco Bikker - November 2017 - February 2018 Lecture 4 - Real-time Ray Tracing Welcome! I x, x = g(x, x ) ε x, x + න S ρ x, x, x I x, x dx Today s Agenda: Introduction Ray Distributions

More information

Ray-Box Culling for Tree Structures

Ray-Box Culling for Tree Structures JOURNAL OF INFORMATION SCIENCE AND ENGINEERING XX, XXX-XXX (2012) Ray-Box Culling for Tree Structures JAE-HO NAH 1, WOO-CHAN PARK 2, YOON-SIG KANG 1, AND TACK-DON HAN 1 1 Department of Computer Science

More information

Ray Intersection Acceleration

Ray Intersection Acceleration Ray Intersection Acceleration CMPT 461/761 Image Synthesis Torsten Möller Reading Chapter 2, 3, 4 of Physically Based Rendering by Pharr&Humphreys An Introduction to Ray tracing by Glassner Topics today

More information

Simpler and Faster HLBVH with Work Queues

Simpler and Faster HLBVH with Work Queues Simpler and Faster HLBVH with Work Queues Kirill Garanzha NVIDIA Keldysh Institute of Applied Mathematics Jacopo Pantaleoni NVIDIA Research David McAllister NVIDIA Figure 1: Some of our test scenes, from

More information

Adaptive Assignment for Real-Time Raytracing

Adaptive Assignment for Real-Time Raytracing Adaptive Assignment for Real-Time Raytracing Paul Aluri [paluri] and Jacob Slone [jslone] Carnegie Mellon University 15-418/618 Spring 2015 Summary We implemented a CUDA raytracer accelerated by a non-recursive

More information

REDUCING RENDER TIME IN RAY TRACING

REDUCING RENDER TIME IN RAY TRACING REDUCING RENDER TIME IN RAY TRACING BY PIXEL AVERAGING Ali Asghar Behmanesh 1,Shahin pourbahrami 2, Behrouz Gholizadeh 3 1 Computer Department, Avecina University,Hamedan-Iran aa.behmanesh@gmail.com 2

More information

Spatial Data Structures

Spatial Data Structures Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) [Angel 9.10] Outline Ray tracing review what rays matter? Ray tracing speedup faster

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) April 1, 2003 [Angel 9.10] Frank Pfenning Carnegie

More information

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Anti-aliased and accelerated ray tracing University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Reading Required: Watt, sections 12.5.3 12.5.4, 14.7 Further reading: A. Glassner.

More information

Ray Tracing with Multi-Core/Shared Memory Systems. Abe Stephens

Ray Tracing with Multi-Core/Shared Memory Systems. Abe Stephens Ray Tracing with Multi-Core/Shared Memory Systems Abe Stephens Real-time Interactive Massive Model Visualization Tutorial EuroGraphics 2006. Vienna Austria. Monday September 4, 2006 http://www.sci.utah.edu/~abe/massive06/

More information

Acceleration. Digital Image Synthesis Yung-Yu Chuang 10/11/2007. with slides by Mario Costa Sousa, Gordon Stoll and Pat Hanrahan

Acceleration. Digital Image Synthesis Yung-Yu Chuang 10/11/2007. with slides by Mario Costa Sousa, Gordon Stoll and Pat Hanrahan Acceleration Digital Image Synthesis Yung-Yu Chuang 10/11/2007 with slides by Mario Costa Sousa, Gordon Stoll and Pat Hanrahan Classes Primitive (in core/primitive.*) GeometricPrimitive InstancePrimitive

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) March 28, 2002 [Angel 8.9] Frank Pfenning Carnegie

More information

Interactive Ray Tracing: Higher Memory Coherence

Interactive Ray Tracing: Higher Memory Coherence Interactive Ray Tracing: Higher Memory Coherence http://gamma.cs.unc.edu/rt Dinesh Manocha (UNC Chapel Hill) Sung-Eui Yoon (Lawrence Livermore Labs) Interactive Ray Tracing Ray tracing is naturally sub-linear

More information

Improving Memory Space Efficiency of Kd-tree for Real-time Ray Tracing Byeongjun Choi, Byungjoon Chang, Insung Ihm

Improving Memory Space Efficiency of Kd-tree for Real-time Ray Tracing Byeongjun Choi, Byungjoon Chang, Insung Ihm Improving Memory Space Efficiency of Kd-tree for Real-time Ray Tracing Byeongjun Choi, Byungjoon Chang, Insung Ihm Department of Computer Science and Engineering Sogang University, Korea Improving Memory

More information

HLBVH: Hierarchical LBVH Construction for Real Time Ray Tracing of Dynamic Geometry. Jacopo Pantaleoni and David Luebke NVIDIA Research

HLBVH: Hierarchical LBVH Construction for Real Time Ray Tracing of Dynamic Geometry. Jacopo Pantaleoni and David Luebke NVIDIA Research HLBVH: Hierarchical LBVH Construction for Real Time Ray Tracing of Dynamic Geometry Jacopo Pantaleoni and David Luebke NVIDIA Research Some Background Real Time Ray Tracing is almost there* [Garanzha and

More information

improving raytracing speed

improving raytracing speed ray tracing II computer graphics ray tracing II 2006 fabio pellacini 1 improving raytracing speed computer graphics ray tracing II 2006 fabio pellacini 2 raytracing computational complexity ray-scene intersection

More information

Exploiting Local Orientation Similarity for Efficient Ray Traversal of Hair and Fur

Exploiting Local Orientation Similarity for Efficient Ray Traversal of Hair and Fur 1 Exploiting Local Orientation Similarity for Efficient Ray Traversal of Hair and Fur Sven Woop, Carsten Benthin, Ingo Wald, Gregory S. Johnson Intel Corporation Eric Tabellion DreamWorks Animation 2 Legal

More information

Ray Intersection Acceleration

Ray Intersection Acceleration Ray Intersection Acceleration Image Synthesis Torsten Möller Reading Physically Based Rendering by Pharr&Humphreys Chapter 2 - rays and transformations Chapter 3 - shapes Chapter 4 - intersections and

More information

Ray Tracing Acceleration. CS 4620 Lecture 20

Ray Tracing Acceleration. CS 4620 Lecture 20 Ray Tracing Acceleration CS 4620 Lecture 20 2013 Steve Marschner 1 Will this be on the exam? or, Prelim 2 syllabus You can expect emphasis on topics related to the assignment (Shaders 1&2) and homework

More information

CPSC / Sonny Chan - University of Calgary. Collision Detection II

CPSC / Sonny Chan - University of Calgary. Collision Detection II CPSC 599.86 / 601.86 Sonny Chan - University of Calgary Collision Detection II Outline Broad phase collision detection: - Problem definition and motivation - Bounding volume hierarchies - Spatial partitioning

More information

Topics. Ray Tracing II. Intersecting transformed objects. Transforming objects

Topics. Ray Tracing II. Intersecting transformed objects. Transforming objects Topics Ray Tracing II CS 4620 Lecture 16 Transformations in ray tracing Transforming objects Transformation hierarchies Ray tracing acceleration structures Bounding volumes Bounding volume hierarchies

More information

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics Anti-aliased and accelerated ray tracing University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell eading! equired:! Watt, sections 12.5.3 12.5.4, 14.7! Further reading:! A. Glassner.

More information

MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur

MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur : An Efficient Acceleration Data Structure for Ray Traced Motion Blur Leonhard Gru nschloß NVIDIA / Weta Digital (a) Hairball rendered with motion blur. Martin Stich NVIDIA Sehera Nawaz NVIDIA / Weta Digital

More information

MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur

MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur Leonhard Grünschloß Martin Stich Sehera Nawaz Alexander Keller August 6, 2011 Principles of Accelerated Ray Tracing Hierarchical

More information

Comparison of hierarchies for occlusion culling based on occlusion queries

Comparison of hierarchies for occlusion culling based on occlusion queries Comparison of hierarchies for occlusion culling based on occlusion queries V.I. Gonakhchyan pusheax@ispras.ru Ivannikov Institute for System Programming of the RAS, Moscow, Russia Efficient interactive

More information

Topics. Ray Tracing II. Transforming objects. Intersecting transformed objects

Topics. Ray Tracing II. Transforming objects. Intersecting transformed objects Topics Ray Tracing II CS 4620 ations in ray tracing ing objects ation hierarchies Ray tracing acceleration structures Bounding volumes Bounding volume hierarchies Uniform spatial subdivision Adaptive spatial

More information

Towards Interactive Global Illumination Effects via Sequential Monte Carlo Adaptation. Carson Brownlee Peter S. Shirley Steven G.

Towards Interactive Global Illumination Effects via Sequential Monte Carlo Adaptation. Carson Brownlee Peter S. Shirley Steven G. Towards Interactive Global Illumination Effects via Sequential Monte Carlo Adaptation Vincent Pegoraro Carson Brownlee Peter S. Shirley Steven G. Parker Outline Motivation & Applications Monte Carlo Integration

More information

Fast Agglomerative Clustering for Rendering

Fast Agglomerative Clustering for Rendering Fast Agglomerative Clustering for Rendering Bruce Walter, Kavita Bala, Cornell University Milind Kulkarni, Keshav Pingali University of Texas, Austin Clustering Tree Hierarchical data representation Each

More information

Ray Casting Deformable Models on the GPU

Ray Casting Deformable Models on the GPU Ray Casting Deformable Models on the GPU Suryakant Patidar and P. J. Narayanan Center for Visual Information Technology, IIIT Hyderabad. {skp@research., pjn@}iiit.ac.in Abstract The GPUs pack high computation

More information

Ray Tracing: State of the Field Report

Ray Tracing: State of the Field Report Ray Tracing: State of the Field Report Justin Springer Abstract Ray tracing is a rendering technique used to generate images. These images are of a significantly higher quality than images produced through

More information

Ray Tracing Acceleration Data Structures

Ray Tracing Acceleration Data Structures Ray Tracing Acceleration Data Structures Sumair Ahmed October 29, 2009 Ray Tracing is very time-consuming because of the ray-object intersection calculations. With the brute force method, each ray has

More information

Accelerating Geometric Queries. Computer Graphics CMU /15-662, Fall 2016

Accelerating Geometric Queries. Computer Graphics CMU /15-662, Fall 2016 Accelerating Geometric Queries Computer Graphics CMU 15-462/15-662, Fall 2016 Geometric modeling and geometric queries p What point on the mesh is closest to p? What point on the mesh is closest to p?

More information

Holger Dammertz August 10, The Edge Volume Heuristic Robust Triangle Subdivision for Improved BVH Performance Holger Dammertz, Alexander Keller

Holger Dammertz August 10, The Edge Volume Heuristic Robust Triangle Subdivision for Improved BVH Performance Holger Dammertz, Alexander Keller Holger Dammertz August 10, 2008 The Edge Volume Heuristic Robust Triangle Subdivision for Improved BVH Performance Holger Dammertz, Alexander Keller Page 2 The Edge Volume Heuristic Robust Triangle Subdivision

More information

Efficient Clustered BVH Update Algorithm for Highly-Dynamic Models. Kirill Garanzha

Efficient Clustered BVH Update Algorithm for Highly-Dynamic Models. Kirill Garanzha Symposium on Interactive Ray Tracing 2008 Los Angeles, California Efficient Clustered BVH Update Algorithm for Highly-Dynamic Models Kirill Garanzha Department of Software for Computers Bauman Moscow State

More information

Announcements. Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday

Announcements. Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday Announcements Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday 1 Spatial Data Structures Hierarchical Bounding Volumes Grids Octrees BSP Trees 11/7/02 Speeding Up Computations

More information

Acceleration Data Structures for Ray Tracing

Acceleration Data Structures for Ray Tracing Acceleration Data Structures for Ray Tracing Travis Fischer and Nong Li (2007) Andries van Dam November 10, 2009 Acceleration Data Structures 1/35 Outline Introduction/Motivation Bounding Volume Hierarchy

More information

Logistics. CS 586/480 Computer Graphics II. Questions from Last Week? Slide Credits

Logistics. CS 586/480 Computer Graphics II. Questions from Last Week? Slide Credits CS 586/480 Computer Graphics II Dr. David Breen Matheson 408 Thursday 6PM Æ 8:50PM Presentation 4 10/28/04 Logistics Read research paper and prepare summary and question P. Hanrahan, "Ray Tracing Algebraic

More information

Embree Ray Tracing Kernels: Overview and New Features

Embree Ray Tracing Kernels: Overview and New Features Embree Ray Tracing Kernels: Overview and New Features Attila Áfra, Ingo Wald, Carsten Benthin, Sven Woop Intel Corporation Intel, the Intel logo, Intel Xeon Phi, Intel Xeon Processor are trademarks of

More information

Ray Tracing. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner)

Ray Tracing. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner) CS4620/5620: Lecture 37 Ray Tracing 1 Announcements Review session Tuesday 7-9, Phillips 101 Posted notes on slerp and perspective-correct texturing Prelim on Thu in B17 at 7:30pm 2 Basic ray tracing Basic

More information

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Chap. 5 Scene Management Overview Scene Management vs Rendering This chapter is about rendering

More information

Sequential Monte Carlo Adaptation in Low-Anisotropy Participating Media. Vincent Pegoraro Ingo Wald Steven G. Parker

Sequential Monte Carlo Adaptation in Low-Anisotropy Participating Media. Vincent Pegoraro Ingo Wald Steven G. Parker Sequential Monte Carlo Adaptation in Low-Anisotropy Participating Media Vincent Pegoraro Ingo Wald Steven G. Parker Outline Introduction Related Work Monte Carlo Integration Radiative Energy Transfer SMC

More information

Fast and Lazy Build of Acceleration Structures from Scene Hierarchies

Fast and Lazy Build of Acceleration Structures from Scene Hierarchies Fast and Lazy Build of Acceleration Structures from Scene Hierarchies Warren Hunt William R. Mark Don Fussell Department of Computer Sciences The University of Texas at Austin ABSTRACT In this paper we

More information

Fast kd-tree Construction with an Adaptive Error-Bounded Heuristic

Fast kd-tree Construction with an Adaptive Error-Bounded Heuristic Fast kd-tree Construction with an Adaptive Error-Bounded Heuristic Warren Hunt University of Texas at Austin Intel Corporation William R. Mark University of Texas at Austin Intel Corporation Gordon Stoll

More information

A Hardware Pipeline for Accelerating Ray Traversal Algorithms on Streaming Processors

A Hardware Pipeline for Accelerating Ray Traversal Algorithms on Streaming Processors A Hardware Pipeline for Accelerating Ray Traversal Algorithms on Streaming Processors Michael Steffen Electrical and Computer Engineering Iowa State University steffma@iastate.edu Joseph Zambreno Electrical

More information

State of the Art in Ray Tracing Animated Scenes

State of the Art in Ray Tracing Animated Scenes DOI: 10.1111/j.1467-8659.2008.01313.x COMPUTER GRAPHICS forum Volume 28 (2009), number 6 pp. 1691 1722 State of the Art in Ray Tracing Animated Scenes Ingo Wald 1,2, William R. Mark 1,3, Johannes Günther

More information

Grid Creation Strategies for Efficient Ray Tracing

Grid Creation Strategies for Efficient Ray Tracing Grid Creation Strategies for Efficient Ray Tracing or How to pick the best grid resolution Thiago Ize Peter Shirley Steven G. Parker Motivation Single level grids mostly solved (Cleary and Wyvill 89) --

More information

Part IV. Review of hardware-trends for real-time ray tracing

Part IV. Review of hardware-trends for real-time ray tracing Part IV Review of hardware-trends for real-time ray tracing Hardware Trends For Real-time Ray Tracing Philipp Slusallek Saarland University, Germany Large Model Visualization at Boeing CATIA Model of Boeing

More information

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments?

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments? Homework 1: Questions/Comments? Implicit Surfaces,, & Volumetric Data Structures Loop Subdivision Shirley, Fundamentals of Computer Graphics Loop Subdivision SIGGRAPH 2000 course notes Subdivision for

More information

Ray Tracing Acceleration. CS 4620 Lecture 22

Ray Tracing Acceleration. CS 4620 Lecture 22 Ray Tracing Acceleration CS 4620 Lecture 22 2014 Steve Marschner 1 Topics Transformations in ray tracing Transforming objects Transformation hierarchies Ray tracing acceleration structures Bounding volumes

More information

Asynchronous BVH Construction for Ray Tracing Dynamic Scenes on Parallel Multi-Core Architectures

Asynchronous BVH Construction for Ray Tracing Dynamic Scenes on Parallel Multi-Core Architectures Eurographics Symposium on Parallel Graphics and Visualization (27) Jean M. Favre, Luis Paulo dos Santos, and Dirk Reiners (Editors) Asynchronous BVH Construction for Ray Tracing Dynamic Scenes on Parallel

More information

Ray Tracing with Spatial Hierarchies. Jeff Mahovsky & Brian Wyvill CSC 305

Ray Tracing with Spatial Hierarchies. Jeff Mahovsky & Brian Wyvill CSC 305 Ray Tracing with Spatial Hierarchies Jeff Mahovsky & Brian Wyvill CSC 305 Ray Tracing Flexible, accurate, high-quality rendering Slow Simplest ray tracer: Test every ray against every object in the scene

More information

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo Computer Graphics Bing-Yu Chen National Taiwan University The University of Tokyo Hidden-Surface Removal Back-Face Culling The Depth-Sort Algorithm Binary Space-Partitioning Trees The z-buffer Algorithm

More information

AN EXPERIMENTAL COMPARISON OF ACCELERATION SCHEMES FOR DENSELY OCCLUDED ENVIRONMENTS

AN EXPERIMENTAL COMPARISON OF ACCELERATION SCHEMES FOR DENSELY OCCLUDED ENVIRONMENTS SIGNAL - IMAGE - COMMUNICATIONS FRE CNRS n 2731 AN EXPERIMENTAL COMPARISON OF ACCELERATION SCHEMES FOR DENSELY OCCLUDED ENVIRONMENTS D. FRADIN, D. MENEVEAUX RAPPORT DE RECHERCHE n 26 - Janvier 26 SIC,

More information

Computer Graphics Ray Casting. Matthias Teschner

Computer Graphics Ray Casting. Matthias Teschner Computer Graphics Ray Casting Matthias Teschner Outline Context Implicit surfaces Parametric surfaces Combined objects Triangles Axis-aligned boxes Iso-surfaces in grids Summary University of Freiburg

More information

Fast, Effective BVH Updates for Animated Scenes

Fast, Effective BVH Updates for Animated Scenes Fast, Effective BVH Updates for Animated Scenes Daniel Kopta Thiago Ize Josef Spjut Erik Brunvand Al Davis Andrew Kensler Pixar Abstract Bounding volume hierarchies (BVHs) are a popular acceleration structure

More information

Enhancing Traditional Rasterization Graphics with Ray Tracing. October 2015

Enhancing Traditional Rasterization Graphics with Ray Tracing. October 2015 Enhancing Traditional Rasterization Graphics with Ray Tracing October 2015 James Rumble Developer Technology Engineer, PowerVR Graphics Overview Ray Tracing Fundamentals PowerVR Ray Tracing Pipeline Using

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS380: Computer Graphics Ray Tracing Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/cg/ Class Objectives Understand overall algorithm of recursive ray tracing Ray generations Intersection

More information

Speeding Up Ray Tracing. Optimisations. Ray Tracing Acceleration

Speeding Up Ray Tracing. Optimisations. Ray Tracing Acceleration Speeding Up Ray Tracing nthony Steed 1999, eline Loscos 2005, Jan Kautz 2007-2009 Optimisations Limit the number of rays Make the ray test faster for shadow rays the main drain on resources if there are

More information

Accelerating Shadow Rays Using Volumetric Occluders and Modified kd-tree Traversal

Accelerating Shadow Rays Using Volumetric Occluders and Modified kd-tree Traversal Accelerating Shadow Rays Using Volumetric Occluders and Modified kd-tree Traversal Peter Djeu*, Sean Keely*, and Warren Hunt * University of Texas at Austin Intel Labs Shadow Rays Shadow rays are often

More information

kd-trees for Volume Ray-Casting

kd-trees for Volume Ray-Casting kd-trees for Volume Ray-Casting Anita Schilling Special Seminar for Computer Graphics 15. January 2009 Anita Schilling kd-trees for Volume Ray-Casting 1 / 39 Outline 1 Introduction 2 Ray-Voxel Intersection

More information

Grid-based SAH BVH construction on a GPU

Grid-based SAH BVH construction on a GPU Vis Comput DOI 10.1007/s00371-011-0593-8 ORIGINAL ARTICLE Grid-based SAH BVH construction on a GPU Kirill Garanzha Simon Premože Alexander Bely Vladimir Galaktionov Springer-Verlag 2011 Abstract We present

More information

Lecture 11 - GPU Ray Tracing (1)

Lecture 11 - GPU Ray Tracing (1) INFOMAGR Advanced Graphics Jacco Bikker - November 2017 - February 2018 Lecture 11 - GPU Ray Tracing (1) Welcome! I x, x = g(x, x ) ε x, x + න S ρ x, x, x I x, x dx Today s Agenda: Exam Questions: Sampler

More information

Advanced Ray Tracing

Advanced Ray Tracing Advanced Ray Tracing Thanks to Fredo Durand and Barb Cutler The Ray Tree Ni surface normal Ri reflected ray Li shadow ray Ti transmitted (refracted) ray 51 MIT EECS 6.837, Cutler and Durand 1 Ray Tree

More information

Interactive Isosurface Ray Tracing of Large Octree Volumes

Interactive Isosurface Ray Tracing of Large Octree Volumes Interactive Isosurface Ray Tracing of Large Octree Volumes Aaron Knoll, Ingo Wald, Steven Parker, and Charles Hansen Scientific Computing and Imaging Institute University of Utah 2006 IEEE Symposium on

More information

Lecture 11: Ray tracing (cont.)

Lecture 11: Ray tracing (cont.) Interactive Computer Graphics Ray tracing - Summary Lecture 11: Ray tracing (cont.) Graphics Lecture 10: Slide 1 Some slides adopted from H. Pfister, Harvard Graphics Lecture 10: Slide 2 Ray tracing -

More information

Spatial Data Structures and Speed-Up Techniques. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology

Spatial Data Structures and Speed-Up Techniques. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Spatial Data Structures and Speed-Up Techniques Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Spatial data structures What is it? Data structure that organizes

More information

Early Split Clipping for Bounding Volume Hierarchies

Early Split Clipping for Bounding Volume Hierarchies Early Split Clipping for Bounding Volume Hierarchies Manfred Ernst Günther Greiner Lehrstuhl für Graphische Datenverarbeitung Universität Erlangen-Nürnberg, Germany ABSTRACT Despite their algorithmic elegance

More information

Acceleration Structures. CS 6965 Fall 2011

Acceleration Structures. CS 6965 Fall 2011 Acceleration Structures Run Program 1 in simhwrt Lab time? Program 2 Also run Program 2 and include that output Inheritance probably doesn t work 2 Boxes Axis aligned boxes Parallelepiped 12 triangles?

More information

EDAN30 Photorealistic Computer Graphics. Seminar 2, Bounding Volume Hierarchy. Magnus Andersson, PhD student

EDAN30 Photorealistic Computer Graphics. Seminar 2, Bounding Volume Hierarchy. Magnus Andersson, PhD student EDAN30 Photorealistic Computer Graphics Seminar 2, 2012 Bounding Volume Hierarchy Magnus Andersson, PhD student (magnusa@cs.lth.se) This seminar We want to go from hundreds of triangles to thousands (or

More information

SAH guided spatial split partitioning for fast BVH construction. Per Ganestam and Michael Doggett Lund University

SAH guided spatial split partitioning for fast BVH construction. Per Ganestam and Michael Doggett Lund University SAH guided spatial split partitioning for fast BVH construction Per Ganestam and Michael Doggett Lund University Opportunistic triangle splitting for higher quality BVHs Bounding Volume Hierarchies (BVH)

More information

COMP 175: Computer Graphics April 11, 2018

COMP 175: Computer Graphics April 11, 2018 Lecture n+1: Recursive Ray Tracer2: Advanced Techniques and Data Structures COMP 175: Computer Graphics April 11, 2018 1/49 Review } Ray Intersect (Assignment 4): questions / comments? } Review of Recursive

More information

Bounding Volume Hierarchy Optimization through Agglomerative Treelet Restructuring

Bounding Volume Hierarchy Optimization through Agglomerative Treelet Restructuring Bounding Volume Hierarchy Optimization through Agglomerative Treelet Restructuring Leonardo R. Domingues Helio Pedrini Eldorado Research Institute Institute of Computing - University of Campinas Brazil

More information

Accelerating Ray Tracing

Accelerating Ray Tracing Accelerating Ray Tracing Ray Tracing Acceleration Techniques Faster Intersections Fewer Rays Generalized Rays Faster Ray-Object Intersections Object bounding volumes Efficient intersection routines Fewer

More information

Questions from Last Week? Extra rays needed for these effects. Shadows Motivation

Questions from Last Week? Extra rays needed for these effects. Shadows Motivation CS 431/636 Advanced Rendering Techniques Dr. David Breen University Crossings 149 Tuesday 6PM 8:50PM Presentation 4 4/22/08 Questions from Last Week? Color models Light models Phong shading model Assignment

More information

Acceleration Data Structures. Michael Doggett Department of Computer Science Lund university

Acceleration Data Structures. Michael Doggett Department of Computer Science Lund university Acceleration Data Structures Michael Doggett Department of Computer Science Lund university Ray tracing So far ray tracing sampling object intersections Today How do we make it faster? Performance = rays

More information

CS 431/636 Advanced Rendering Techniques

CS 431/636 Advanced Rendering Techniques CS 431/636 Advanced Rendering Techniques Dr. David Breen University Crossings 149 Tuesday 6PM 8:50PM Presentation 4 4/22/08 Questions from Last Week? Color models Light models Phong shading model Assignment

More information