Measuring Light: Radiometry and Cameras

Size: px
Start display at page:

Download "Measuring Light: Radiometry and Cameras"

Transcription

1 Lecture 11: Measuring Light: Radiometry and Cameras Computer Graphics CMU /15-662, Fall 2015 Slides credit: a majority of these slides were created by Matt Pharr and Pat Hanrahan

2 Simulating a pinhole camera Imprecise statements you ve heard me say so far in this class: What is the color of the surface visible at each sample point? How much light arrives at sensor point through pinhole? 8-pixel pinhole camera y H o, d 1 Pinhole x sensor o = H T d = H T 0.375H T

3 Radiometry System of units and measures for measuring illumination Geometric optics model of light - Photons travel in straight lines, represented by rays - Good approximation when wavelength << size of objects light interacts with - Doesn t model diffraction, interference,

4 Light is electromagnetic radiation that is visible to eye Image credit: Licensed under CC BY-SA 3.0 via Commons

5 Lights: what do they do? Physical process converts input energy into photons - Each photon carries a small amount of energy Over some amount of time, light fixture consumes some amount of energy, Joules - Some input energy is turned into heat, some into photons Energy of photons hitting an object ~ exposure - Film, sensors, sunburn, solar panels, Graphics: generally assume steady state process - Rate of energy consumption = power, Watts Cree 11 W LED light bulb ( 60 Watt incandescent replacement) (Joules/second)

6 Measuring illumination: radiant flux (power) Given a sensor, we can count how many photons reach it Sensor - Over a period of time, gives the power received by the sensor Given a light, consider counting the number of photons emitted by it - Over a period of time, gives the power emitted by the light Energy carried by a photon: Q = hc h

7 Measuring illumination: radiant flux (power) Flux: energy per unit time (Watts) received by the sensor (or emitted by Sensor the light) Q = lim!0 t = dq dt apple J s Time integral of flux is total radiant energy Z t1 Q = (t)dt t 0

8 Spectral power distribution Describes distribution of energy by wavelength Figure credit:

9 Measuring illumination: irradiance Flux: time density of energy Irradiance: area density of flux Given a sensor of with area A, we can consider the average flux over the entire sensor area: A Irradiance (E) is given by taking the limit of area at a single point on the sensor: A E(p) = lim!0 (p) A = d (p) da apple W m 2

10 Beam power in terms of irradiance Consider beam with flux incident on surface with area A E = A A = EA

11 Projected area Consider beam with flux incident on angled surface with area A A A 0 A = A 0 cos A = projected area of surface relative to direction of beam

12 Lambert s Law Irradiance at surface is proportional to cosine of angle between light direction and surface normal. A A 0 A = A 0 cos E = A 0 = cos A

13 Why do we have seasons? Sun Summer (Northern hemisphere) Winter (Northern hemisphere) Earth s axis of rotation: ~23.5 off axis [Image credit: Pearson Prentice Hall]

14 Irradiance falloff with distance Assume light is emitting flux in a uniform angular distribution r 2 Compare irradiance at surface r 1 of two spheres: E 1 = 4 r 2 1! =4 r 2 1E 1 E 2 = 4 r 2 2! =4 r 2 2E 2 E 2 E 1 = r2 1 r 2 2

15 Angles and solid angles Angle: ratio of subtended arc length on circle to radius - = l r - Circle has 2 radians r l Solid angle: ratio of subtended area on sphere to radius squared - = A r 2 - Sphere has 4 steradians r A

16 Solid angles in practice Sun and moon both subtend ~60µ sr as seen from earth Surface area of earth: ~510M km 2 Projected area: 510Mkm 2 60µsr 4 sr = km 2

17 Differential solid angle da =(r d )(r sin d ) =r 2 sin d d d! = da r 2 =sin d d

18 Differential solid angle Z Z = d! S 2 Z Z Z 2 Z = Z 0 Z 0 sin d d =4

19 ! as a direction vector! Will use! to donate a direction vector (unit length)

20 Measuring illumination: radiance Radiance is the solid angle density of irradiance L(p,!) = lim!0 E! (p)! = de!(p) d! apple W m 2 sr where denotes that the differential surface area is E!! oriented to face in the direction da d! In other words, radiance is energy along a ray defined by origin point p and direction!

21 Radiance functions Equivalently, L(p,!) = de(p) d! cos = d2 (p) da d! cos Previous slide described measuring radiance at a surface oriented in ray direction - cos(theta) accounts for different surface orientation d! da

22 Field radiance: the light field Light field = radiance function on rays Radiance is constant along rays * Spherical gantry: captures 4D light field (all light leaving object) L(x, y,, ) (, ) * in a vacuum

23 Surface radiance Need to distinguish between incident radiance and exitant radiance functions at a point on a surface L i (p 1,! 1 ) L o (p 2,! 2 ) (p 1 p 2, In general: L i (p,!) 6= L o (p,!)

24 Properties of radiance Radiance is a fundamental field quantity that characterizes the distribution of light in an environment - Radiance is the quantity associated with a ray - Rendering is all about computing radiance Radiance is invariant along a ray in a vacuum A pinhole camera measures radiance

25 Irradiance from the environment Computing flux per unit area on surface, due to incoming light from all directions. de(p,!) =L i (p,!) cos d! Z Contribution to irradiance from light arriving from direction! E(p,!) = H 2 L i (p,!) cos d! d! Light meter da

26 Simple case: irradiance from uniform hemispherical source E(p) = Z = L H 2 L d! Z 2 0 Z 2 0 cos sin d d = L d! da

27 Irradiance from a uniform area source (source emits radiance L) Z E(p) = L(p,!) cos d! HZ 2 O =L =L? cos d! Projected solid angle:? - Cosine-weighted solid angle - Area of object O projected onto unit d!? = cos d! sphere, then projected onto plane

28 Uniform disk source (oriented perpendicular to plane) Geometric Derivation Algebraic Derivation (using projected solid angle) Z 2 Z? = 0 0 =2 sin2 2 cos sin d d 0 = sin 2 sin? = sin 2

29 Measuring illumination: radiant intensity Power per solid angle emanating from a point source apple W I(!) = d d! sr

30 Isotropic point source Z = S 2 I d! =4 I I = 4

31 Goniometric diagrams

32 Rendering with goniometric diagrams

33 Photometry All radiometric quantities have equivalents in photometry Dark adapted eye (scoptic) Daytime adapted eye (photoptic) Photometry: accounts for response of human visual system V ( ) to electromagnetic radiation Luminance (Y) is photometric quantity that corresponds to radiance: integrate radiance over (nm) all wavelengths, weight by eye s luminous efficiacy curve, e.g.: Z 1 Y (p,!) = 0 L(p,!, ) V ( )d

34 Radiometric and photometric terms Physics Radiometry Photometry Energy Radiant Energy Luminous Energy Flux (Power) Radiant Power Luminous Power Flux Density Irradiance (incoming) Radiosity (outgoing) Illuminance (incoming) Luminosity (outgoing) Angular Flux Density Radiance Luminance Intensity Radiant Intensity Luminous Intensity

35 Photometric Units Photometry MKS CGS British Luminous Energy Talbot Talbot Talbot Luminous Power Lumen Lumen Lumen Illuminance Luminosity Lux Phot Footcandle Luminance Nit, Apostlib, Blondel Stilb Lambert Footlambert Luminous Intensity Candela Candela Candela Thus one nit is one lux per steradian is one candela per square meter is one lumen per square meter per steradian. Got it? James Kajiya

36 Modern LED light Input power: 11 W Output: 815 lumens (~ 80 lumens / Watt) Incandescent bulbs: ~15 lumens / Watt)

37 Cameras

38 Pinhole camera Infinitesimally small aperture y Pinhole x sensor

39 Real camera has lens with finite aperture Sensor plane: (X,Y) Image credit: Canon (EOS M)

40 Thin lens model lens F Focal length, F, is the distance behind Lens diameter is d=f/n, where n is the lens f-number the lens where parallel rays focus

41 Gaussian thin lens model sensor plane lens scene plane of focus Z 0 F Z Points at distance z focus at distance z behind the lens given by 1 F = 1 Z + 1 Z 0 Lenses are focused by moving them closer to/farther from the sensor plane Derivation:

42 Defocus blur Image credit: Mike Stobe/Getty Images for the USTA (link:

43 Defocus blur sensor plane Z 0 Z Z f Lens is focused at depth z f ; points at other depths image to an area (not a single point) on the sensor plane: this area is called the circle of confusion

44 How big is the circle of confusion? What is d c, the diameter of the circle of confusion of a scene point at depth z? sensor plane We know z s, the sensor plane position, and the lens diameter d d c d Compute z from F and z: 1 F = 1 Z + 1 Z 0 Z 0 Similar triangles: d c Zs 0 Z 0 = d Z 0 1 Z 0 s 1 d c = d Z 0 s Z 0 F Z

45 Depth of field is inversely proportional to aperture Plane of focus Larger aperture Image credit: Smaller aperture

46 Motion blur Camera records light over finite aperture and finite amount of time Cook et al. 1984

47 Film and sensors Camera sensors (film, CCD,...) effectively count the number of photons that hit them over small areas of the image Want to determine how much energy arrives over regions of the sensor (pixels) over a given period of time (exposure time) - Integrate irradiance over pixel area to get power (flux) - Integrate flux over time to get energy (joules) Q = Z t 1 t 0 Z A E(p 0,t 0 )dp 0 dt 0 How do we compute irradiance at a point on the image plane?

48 The measurement equation Lens aperture Sensor plane p Z E(p,t)= H 2 L i (p,! 0,t) cos d! 0

49 The measurement equation Lens aperture p 0 r 2 0 Sensor plane p E(p,t)= = Z Z A A L(p 0! p,t) L(p 0! p,t) cos cos 0 p 0 p 2 da0 cos 2 Transform integral over solid angle to integral over lens aperture p 0 p 2 da0 Assume aperture and film plane are parallel: = 0

50 The measurement equation Lens aperture p 0 r 2 p 0 p = d cos d Sensor plane E(p,t)= Z A = 1 d 2 Z Q = 1 Z t 1 d 2 t 0 Z L(p 0! p,t) A A lens p 0 cos 2 p 2 da0 L(p 0! p,t) cos 4 da 0 Z A film L(p 0! p,t) cos 4 dp dp 0 dt 0 p

51 Summary Today: - How to describe/measure light (radiant energy) - How light is measured by real sensors Next time: - How to compute all these integrals Next, next time: - Materials: how to describe the interaction of light with surfaces

Radiometry. Computer Graphics CMU /15-662, Fall 2015

Radiometry. Computer Graphics CMU /15-662, Fall 2015 Radiometry Computer Graphics CMU 15-462/15-662, Fall 2015 Last time we discussed light & color Image credit: Licensed under CC BY-SA 3.0 via Commons https://commons.wikimedia.org/wiki/file:em_spectrum.svg#/media/file:em_spectrum.svg

More information

Measuring Light: Radiometry and Photometry

Measuring Light: Radiometry and Photometry Lecture 10: Measuring Light: Radiometry and Photometry Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2016 Radiometry Measurement system and units for illumination Measure the spatial properties

More information

Measuring Light: Radiometry and Photometry

Measuring Light: Radiometry and Photometry Lecture 14: Measuring Light: Radiometry and Photometry Computer Graphics and Imaging UC Berkeley Radiometry Measurement system and units for illumination Measure the spatial properties of light New terms:

More information

Electromagnetic waves and power spectrum. Rays. Rays. CS348B Lecture 4 Pat Hanrahan, Spring 2002

Electromagnetic waves and power spectrum. Rays. Rays. CS348B Lecture 4 Pat Hanrahan, Spring 2002 Page 1 The Light Field Electromagnetic waves and power spectrum 1 10 10 4 10 6 10 8 10 10 10 1 10 14 10 16 10 18 10 0 10 10 4 10 6 Power Heat Radio Ultra- X-Rays Gamma Cosmic Infra- Red Violet Rays Rays

More information

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Shading Models. Welcome!

INFOGR Computer Graphics. J. Bikker - April-July Lecture 10: Shading Models. Welcome! INFOGR Computer Graphics J. Bikker - April-July 2016 - Lecture 10: Shading Models Welcome! Today s Agenda: Introduction Light Transport Materials Sensors Shading INFOGR Lecture 10 Shading Models 3 Introduction

More information

The Light Field. Last lecture: Radiometry and photometry

The Light Field. Last lecture: Radiometry and photometry The Light Field Last lecture: Radiometry and photometry This lecture: Light field = radiance function on rays Conservation of radiance Measurement equation Throughput and counting rays Irradiance calculations

More information

Understanding Variability

Understanding Variability Understanding Variability Why so different? Light and Optics Pinhole camera model Perspective projection Thin lens model Fundamental equation Distortion: spherical & chromatic aberration, radial distortion

More information

Introduction to Computer Vision. Introduction CMPSCI 591A/691A CMPSCI 570/670. Image Formation

Introduction to Computer Vision. Introduction CMPSCI 591A/691A CMPSCI 570/670. Image Formation Introduction CMPSCI 591A/691A CMPSCI 570/670 Image Formation Lecture Outline Light and Optics Pinhole camera model Perspective projection Thin lens model Fundamental equation Distortion: spherical & chromatic

More information

Light Field = Radiance(Ray)

Light Field = Radiance(Ray) The Light Field Concepts Light field = radiance function on rays Conservation of radiance Throughput and counting rays Measurement equation Irradiance calculations From London and Upton Light Field = Radiance(Ray)

More information

Reflectance & Lighting

Reflectance & Lighting Reflectance & Lighting Computer Vision I CSE5A Lecture 6 Last lecture in a nutshell Need for lenses (blur from pinhole) Thin lens equation Distortion and aberrations Vignetting CS5A, Winter 007 Computer

More information

CS667 Lecture Notes: Radiometry

CS667 Lecture Notes: Radiometry CS667 Lecture Notes: Radiometry Steve Marschner Cornell University 23-28 August 2007 Radiometry is a system for describing the flow of radiant energy through space. It is essentially a geometric topic

More information

Spectral Color and Radiometry

Spectral Color and Radiometry Spectral Color and Radiometry Louis Feng April 13, 2004 April 13, 2004 Realistic Image Synthesis (Spring 2004) 1 Topics Spectral Color Light and Color Spectrum Spectral Power Distribution Spectral Color

More information

Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao

Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao Computer Science Department University of California, Irvine CS295, Spring 2017 Shuang Zhao 1 Today s Lecture Radiometry Physics of light BRDFs How materials

More information

Image Formation: Light and Shading. Introduction to Computer Vision CSE 152 Lecture 3

Image Formation: Light and Shading. Introduction to Computer Vision CSE 152 Lecture 3 Image Formation: Light and Shading CSE 152 Lecture 3 Announcements Homework 1 is due Apr 11, 11:59 PM Homework 2 will be assigned on Apr 11 Reading: Chapter 2: Light and Shading Geometric image formation

More information

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ =

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ = Radiometry (From Intro to Optics, Pedrotti -4) Radiometry is measurement of Emag radiation (light) Consider a small spherical source Total energy radiating from the body over some time is Q total Radiant

More information

E (sensor) is given by; Object Size

E (sensor) is given by; Object Size A P P L I C A T I O N N O T E S Practical Radiometry It is often necessary to estimate the response of a camera under given lighting conditions, or perhaps to estimate lighting requirements for a particular

More information

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ =

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ = Radiometry (From Intro to Optics, Pedrotti -4) Radiometry is measurement of Emag radiation (light) Consider a small spherical source Total energy radiating from the body over some time is Q total Radiant

More information

Light Field = Radiance(Ray)

Light Field = Radiance(Ray) Page 1 The Light Field Light field = radiance function on rays Surface and field radiance Conservation of radiance Measurement Irradiance from area sources Measuring rays Form factors and throughput Conservation

More information

Capturing light. Source: A. Efros

Capturing light. Source: A. Efros Capturing light Source: A. Efros Review Pinhole projection models What are vanishing points and vanishing lines? What is orthographic projection? How can we approximate orthographic projection? Lenses

More information

CMSC427 Shading Intro. Credit: slides from Dr. Zwicker

CMSC427 Shading Intro. Credit: slides from Dr. Zwicker CMSC427 Shading Intro Credit: slides from Dr. Zwicker 2 Today Shading Introduction Radiometry & BRDFs Local shading models Light sources Shading strategies Shading Compute interaction of light with surfaces

More information

Overview. Radiometry and Photometry. Foundations of Computer Graphics (Spring 2012)

Overview. Radiometry and Photometry. Foundations of Computer Graphics (Spring 2012) Foundations of Computer Graphics (Spring 2012) CS 184, Lecture 21: Radiometry http://inst.eecs.berkeley.edu/~cs184 Overview Lighting and shading key in computer graphics HW 2 etc. ad-hoc shading models,

More information

CS667 Lecture Notes: Radiometry

CS667 Lecture Notes: Radiometry CS667 Lecture Notes: Radiometry Steve Marschner Cornell University 3 6 September 2009 Radiometry is a system for describing the flow of radiant energy through space. It is essentially a geometric topic

More information

Announcements. Image Formation: Light and Shading. Photometric image formation. Geometric image formation

Announcements. Image Formation: Light and Shading. Photometric image formation. Geometric image formation Announcements Image Formation: Light and Shading Homework 0 is due Oct 5, 11:59 PM Homework 1 will be assigned on Oct 5 Reading: Chapters 2: Light and Shading CSE 252A Lecture 3 Geometric image formation

More information

Rays and Throughput. The Light Field. Page 1

Rays and Throughput. The Light Field. Page 1 Page 1 The Light Field Rays and throughput Form factors Light field representations Hemispherical illumination Illumination from uniform area light sources Shadows: Blockers, umbras and penumbras Radiosity

More information

Radiometry and reflectance

Radiometry and reflectance Radiometry and reflectance http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 16 Course announcements Homework 4 is still ongoing - Any questions?

More information

Cameras and Radiometry. Last lecture in a nutshell. Conversion Euclidean -> Homogenous -> Euclidean. Affine Camera Model. Simplified Camera Models

Cameras and Radiometry. Last lecture in a nutshell. Conversion Euclidean -> Homogenous -> Euclidean. Affine Camera Model. Simplified Camera Models Cameras and Radiometry Last lecture in a nutshell CSE 252A Lecture 5 Conversion Euclidean -> Homogenous -> Euclidean In 2-D Euclidean -> Homogenous: (x, y) -> k (x,y,1) Homogenous -> Euclidean: (x, y,

More information

CS-184: Computer Graphics. Today. Lecture 22: Radiometry! James O Brien University of California, Berkeley! V2014-S

CS-184: Computer Graphics. Today. Lecture 22: Radiometry! James O Brien University of California, Berkeley! V2014-S CS-184: Computer Graphics Lecture 22: Radiometry James O Brien University of California, Berkeley V2014-S-15-1.0 Today Radiometry: measuring light Local Illumination and Raytracing were discussed in an

More information

Photometric Stereo.

Photometric Stereo. Photometric Stereo Photometric Stereo v.s.. Structure from Shading [1] Photometric stereo is a technique in computer vision for estimating the surface normals of objects by observing that object under

More information

CS201 Computer Vision Lect 4 - Image Formation

CS201 Computer Vision Lect 4 - Image Formation CS201 Computer Vision Lect 4 - Image Formation John Magee 9 September, 2014 Slides courtesy of Diane H. Theriault Question of the Day: Why is Computer Vision hard? Something to think about from our view

More information

CS184 LECTURE RADIOMETRY. Kevin Wu November 10, Material HEAVILY adapted from James O'Brien, Brandon Wang, Fu-Chung Huang, and Aayush Dawra

CS184 LECTURE RADIOMETRY. Kevin Wu November 10, Material HEAVILY adapted from James O'Brien, Brandon Wang, Fu-Chung Huang, and Aayush Dawra CS184 LECTURE RADIOMETRY Kevin Wu November 10, 2014 Material HEAVILY adapted from James O'Brien, Brandon Wang, Fu-Chung Huang, and Aayush Dawra ADMINISTRATIVE STUFF Project! TODAY Radiometry (Abridged):

More information

Radiometry (From Intro to Optics, Pedrotti 1-4) Radiometry is measurement of Emag radiation (light) Consider a small spherical source Assume a black

Radiometry (From Intro to Optics, Pedrotti 1-4) Radiometry is measurement of Emag radiation (light) Consider a small spherical source Assume a black Radiometry (From Intro to Optics, Pedrotti -4) Radiometry is measurement of Emag radiation (light) Consider a small spherical source Assume a black body type emitter: uniform emission Total energy radiating

More information

Announcements. Radiometry and Sources, Shadows, and Shading

Announcements. Radiometry and Sources, Shadows, and Shading Announcements Radiometry and Sources, Shadows, and Shading CSE 252A Lecture 6 Instructor office hours This week only: Thursday, 3:45 PM-4:45 PM Tuesdays 6:30 PM-7:30 PM Library (for now) Homework 1 is

More information

Optics Part 1. Vern Lindberg. March 5, 2013

Optics Part 1. Vern Lindberg. March 5, 2013 Optics Part 1 Vern Lindberg March 5, 2013 This section of the course deals with geometrical optics refraction, reflection, mirrors, lenses, and aberrations. Physical optics, interference, diffraction,

More information

Monte Carlo Integration

Monte Carlo Integration Lecture 11: Monte Carlo Integration Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2016 Reminder: Quadrature-Based Numerical Integration f(x) Z b a f(x)dx x 0 = a x 1 x 2 x 3 x 4 = b E.g.

More information

Lecture 7 - Path Tracing

Lecture 7 - Path Tracing INFOMAGR Advanced Graphics Jacco Bikker - November 2016 - February 2017 Lecture 7 - I x, x = g(x, x ) ε x, x + S ρ x, x, x I x, x dx Welcome! Today s Agenda: Introduction Advanced Graphics 3 Introduction

More information

Radiometry. Radiometry. Measuring Angle. Solid Angle. Radiance

Radiometry. Radiometry. Measuring Angle. Solid Angle. Radiance Radiometry Radiometry Computer Vision I CSE5A ecture 5-Part II Read Chapter 4 of Ponce & Forsyth Solid Angle Irradiance Radiance BRDF ambertian/phong BRDF Measuring Angle Solid Angle By analogy with angle

More information

The Rendering Equation. Computer Graphics CMU /15-662

The Rendering Equation. Computer Graphics CMU /15-662 The Rendering Equation Computer Graphics CMU 15-462/15-662 Review: What is radiance? Radiance at point p in direction N is radiant energy ( #hits ) per unit time, per solid angle, per unit area perpendicular

More information

Global Illumination. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

Global Illumination. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller Global Illumination CMPT 361 Introduction to Computer Graphics Torsten Möller Reading Foley, van Dam (better): Chapter 16.7-13 Angel: Chapter 5.11, 11.1-11.5 2 Limitation of local illumination A concrete

More information

Global Illumination The Game of Light Transport. Jian Huang

Global Illumination The Game of Light Transport. Jian Huang Global Illumination The Game of Light Transport Jian Huang Looking Back Ray-tracing and radiosity both computes global illumination Is there a more general methodology? It s a game of light transport.

More information

Monte Carlo Integration

Monte Carlo Integration Lecture 15: Monte Carlo Integration Computer Graphics and Imaging UC Berkeley Reminder: Quadrature-Based Numerical Integration f(x) Z b a f(x)dx x 0 = a x 1 x 2 x 3 x 4 = b E.g. trapezoidal rule - estimate

More information

CENG 477 Introduction to Computer Graphics. Ray Tracing: Shading

CENG 477 Introduction to Computer Graphics. Ray Tracing: Shading CENG 477 Introduction to Computer Graphics Ray Tracing: Shading Last Week Until now we learned: How to create the primary rays from the given camera and image plane parameters How to intersect these rays

More information

Design Verification and Analysis Tools in TracePro. Presented by : Lambda Research Corporation 25 Porter Rd. Littleton, MA

Design Verification and Analysis Tools in TracePro. Presented by : Lambda Research Corporation 25 Porter Rd. Littleton, MA Design Verification and Analysis Tools in TracePro Presented by : Lambda Research Corporation 25 Porter Rd. Littleton, MA 01460 www.lambdares.com Moderator: Andy Knight Technical Sales Manager Lambda Research

More information

Numerical Integration

Numerical Integration Lecture 12: Numerical Integration (with a focus on Monte Carlo integration) Computer Graphics CMU 15-462/15-662, Fall 2015 Review: fundamental theorem of calculus Z b f(x)dx = F (b) F (a) a f(x) = d dx

More information

The Rendering Equation. Computer Graphics CMU /15-662, Fall 2016

The Rendering Equation. Computer Graphics CMU /15-662, Fall 2016 The Rendering Equation Computer Graphics CMU 15-462/15-662, Fall 2016 Review: What is radiance? Radiance at point p in direction N is radiant energy ( #hits ) per unit time, per solid angle, per unit area

More information

Lecture 22: Basic Image Formation CAP 5415

Lecture 22: Basic Image Formation CAP 5415 Lecture 22: Basic Image Formation CAP 5415 Today We've talked about the geometry of scenes and how that affects the image We haven't talked about light yet Today, we will talk about image formation and

More information

Paths, diffuse interreflections, caching and radiometry. D.A. Forsyth

Paths, diffuse interreflections, caching and radiometry. D.A. Forsyth Paths, diffuse interreflections, caching and radiometry D.A. Forsyth How we got here We want to render diffuse interreflections strategy: compute approximation B-hat, then gather B = E +(ρk)e +(ρk)( ˆB

More information

Radiance. Radiance properties. Radiance properties. Computer Graphics (Fall 2008)

Radiance. Radiance properties. Radiance properties. Computer Graphics (Fall 2008) Computer Graphics (Fall 2008) COMS 4160, Lecture 19: Illumination and Shading 2 http://www.cs.columbia.edu/~cs4160 Radiance Power per unit projected area perpendicular to the ray per unit solid angle in

More information

Introduction to Computer Vision. Week 8, Fall 2010 Instructor: Prof. Ko Nishino

Introduction to Computer Vision. Week 8, Fall 2010 Instructor: Prof. Ko Nishino Introduction to Computer Vision Week 8, Fall 2010 Instructor: Prof. Ko Nishino Midterm Project 2 without radial distortion correction with radial distortion correction Light Light Light! How do you recover

More information

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models Computergrafik Matthias Zwicker Universität Bern Herbst 2009 Today Introduction Local shading models Light sources strategies Compute interaction of light with surfaces Requires simulation of physics Global

More information

Engineered Diffusers Intensity vs Irradiance

Engineered Diffusers Intensity vs Irradiance Engineered Diffusers Intensity vs Irradiance Engineered Diffusers are specified by their divergence angle and intensity profile. The divergence angle usually is given as the width of the intensity distribution

More information

Monte Carlo Ray Tracing. Computer Graphics CMU /15-662

Monte Carlo Ray Tracing. Computer Graphics CMU /15-662 Monte Carlo Ray Tracing Computer Graphics CMU 15-462/15-662 TODAY: Monte Carlo Ray Tracing How do we render a photorealistic image? Put together many of the ideas we ve studied: - color - materials - radiometry

More information

2.710 Optics Spring 09 Solutions to Problem Set #1 Posted Wednesday, Feb. 18, 2009

2.710 Optics Spring 09 Solutions to Problem Set #1 Posted Wednesday, Feb. 18, 2009 MASSACHUSETTS INSTITUTE OF TECHNOLOGY.70 Optics Spring 09 Solutions to Problem Set # Posted Wednesday, Feb. 8, 009 Problem : Spherical waves and energy conservation In class we mentioned that the radiation

More information

Light, Lenses, Mirrors

Light, Lenses, Mirrors Light, Lenses, Mirrors Optics Light is Dual in nature- has both particle and wave properties. Light = range of frequencies of electromagnetic waves that stimulates the eye s retina Facts About Light It

More information

Announcements. Lighting. Camera s sensor. HW1 has been posted See links on web page for readings on color. Intro Computer Vision.

Announcements. Lighting. Camera s sensor. HW1 has been posted See links on web page for readings on color. Intro Computer Vision. Announcements HW1 has been posted See links on web page for readings on color. Introduction to Computer Vision CSE 152 Lecture 6 Deviations from the lens model Deviations from this ideal are aberrations

More information

The Elements of Colour

The Elements of Colour Color science 1 The Elements of Colour Perceived light of different wavelengths is in approximately equal weights achromatic.

More information

782 Schedule & Notes

782 Schedule & Notes 782 Schedule & Notes Tentative schedule - subject to change at a moment s notice. This is only a guide and not meant to be a strict schedule of how fast the material will be taught. The order of material

More information

Realistic Camera Model

Realistic Camera Model Realistic Camera Model Shan-Yung Yang November 2, 2006 Shan-Yung Yang () Realistic Camera Model November 2, 2006 1 / 25 Outline Introduction Lens system Thick lens approximation Radiometry Sampling Assignment

More information

OPPA European Social Fund Prague & EU: We invest in your future.

OPPA European Social Fund Prague & EU: We invest in your future. OPPA European Social Fund Prague & EU: We invest in your future. Image formation and its physical basis Václav Hlaváč Czech Technical University in Prague Faculty of Electrical Engineering, Department

More information

Fourier transform. Filtering. Examples of FT pairs. Examples of FT pairs. Comb function. Examples of FT pairs FRPE. Decomposes into freq.

Fourier transform. Filtering. Examples of FT pairs. Examples of FT pairs. Comb function. Examples of FT pairs FRPE. Decomposes into freq. Fourier transform Filtering Decomposes into freq. components = )>[@ ƒ [WH ƒläw GW Inverse transform reconstructs the function ) ƒ >;@ = ;ÄH LÄW GÄ ž ƒ Examples of FT pairs Examples of FT pairs FT(delta

More information

4. A bulb has a luminous flux of 2400 lm. What is the luminous intensity of the bulb?

4. A bulb has a luminous flux of 2400 lm. What is the luminous intensity of the bulb? 1. Match the physical quantities (first column) with the units (second column). 4. A bulb has a luminous flux of 2400 lm. What is the luminous intensity of the bulb? (π=3.) Luminous flux A. candela Radiant

More information

Computer Vision. The image formation process

Computer Vision. The image formation process Computer Vision The image formation process Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic year 2016/2017 The image

More information

Philpot & Philipson: Remote Sensing Fundamentals Interactions 3.1 W.D. Philpot, Cornell University, Fall 12

Philpot & Philipson: Remote Sensing Fundamentals Interactions 3.1 W.D. Philpot, Cornell University, Fall 12 Philpot & Philipson: Remote Sensing Fundamentals Interactions 3.1 W.D. Philpot, Cornell University, Fall 1 3. EM INTERACTIONS WITH MATERIALS In order for an object to be sensed, the object must reflect,

More information

AP Physics: Curved Mirrors and Lenses

AP Physics: Curved Mirrors and Lenses The Ray Model of Light Light often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but is very useful for geometric

More information

PH 222-3A Fall Diffraction Lectures Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-3A Fall Diffraction Lectures Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-3A Fall 2012 Diffraction Lectures 28-29 Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 36 Diffraction In Chapter 35, we saw how light beams passing through

More information

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from Lecture 5-3 Interference and Diffraction of EM Waves During our previous lectures we have been talking about electromagnetic (EM) waves. As we know, harmonic waves of any type represent periodic process

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 20: Light, reflectance and photometric stereo Light by Ted Adelson Readings Szeliski, 2.2, 2.3.2 Light by Ted Adelson Readings Szeliski, 2.2, 2.3.2 Properties

More information

Mosaics, Plenoptic Function, and Light Field Rendering. Last Lecture

Mosaics, Plenoptic Function, and Light Field Rendering. Last Lecture Mosaics, Plenoptic Function, and Light Field Rendering Topics in Image-ased Modeling and Rendering CSE291 J00 Lecture 3 Last Lecture Camera Models Pinhole perspective Affine/Orthographic models Homogeneous

More information

Radiometry. Reflectance & Lighting. Solid Angle. Radiance. Radiance Power is energy per unit time

Radiometry. Reflectance & Lighting. Solid Angle. Radiance. Radiance Power is energy per unit time Radiometry Reflectance & Lighting Computer Vision I CSE5A Lecture 6 Read Chapter 4 of Ponce & Forsyth Homework 1 Assigned Outline Solid Angle Irradiance Radiance BRDF Lambertian/Phong BRDF By analogy with

More information

THE goal of rendering algorithms is to synthesize images of virtual scenes. Global illumination

THE goal of rendering algorithms is to synthesize images of virtual scenes. Global illumination 2 Fundamentals of Light Transport He who loves practice without theory is like the sailor who boards ship without a rudder and compass and never knows where he may cast. Leonardo Da Vinci, 1452 1519 THE

More information

2/1/10. Outline. The Radiance Equation. Light: Flux Equilibrium. Light: Radiant Power. Light: Equation. Radiance. Jan Kautz

2/1/10. Outline. The Radiance Equation. Light: Flux Equilibrium. Light: Radiant Power. Light: Equation. Radiance. Jan Kautz Outline Jan Kautz Basic terms in radiometry Radiance Reflectance The operator form of the radiance equation Meaning of the operator form Approximations to the radiance equation 2005 Mel Slater, 2006 Céline

More information

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker Chapter 26 Geometrical Optics Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing

More information

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light.

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light. Chapter 7: Geometrical Optics The branch of physics which studies the properties of light using the ray model of light. Overview Geometrical Optics Spherical Mirror Refraction Thin Lens f u v r and f 2

More information

Light and reflection

Light and reflection Light and reflection CS 178, Spring 2010 Updated 5/19/10 and recap slides added. Marc Levoy Computer Science Department Stanford University Outline! measures of light radiometry versus photometry radiant

More information

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal.

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal. Diffraction Chapter 38 Huygens construction may be used to find the wave observed on the downstream side of an aperture of any shape. Diffraction The interference pattern encodes the shape as a Fourier

More information

CS354 Computer Graphics Ray Tracing. Qixing Huang Januray 24th 2017

CS354 Computer Graphics Ray Tracing. Qixing Huang Januray 24th 2017 CS354 Computer Graphics Ray Tracing Qixing Huang Januray 24th 2017 Graphics Pipeline Elements of rendering Object Light Material Camera Geometric optics Modern theories of light treat it as both a wave

More information

Chapter 12 Notes: Optics

Chapter 12 Notes: Optics Chapter 12 Notes: Optics How can the paths traveled by light rays be rearranged in order to form images? In this chapter we will consider just one form of electromagnetic wave: visible light. We will be

More information

Light & Optical Systems Reflection & Refraction. Notes

Light & Optical Systems Reflection & Refraction. Notes Light & Optical Systems Reflection & Refraction Notes What is light? Light is electromagnetic radiation Ultra-violet + visible + infra-red Behavior of Light Light behaves in 2 ways particles (photons)

More information

GEOG 4110/5100 Advanced Remote Sensing Lecture 2

GEOG 4110/5100 Advanced Remote Sensing Lecture 2 GEOG 4110/5100 Advanced Remote Sensing Lecture 2 Data Quality Radiometric Distortion Radiometric Error Correction Relevant reading: Richards, sections 2.1 2.8; 2.10.1 2.10.3 Data Quality/Resolution Spatial

More information

Nicholas J. Giordano. Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 24 Geometrical Optics Marilyn Akins, PhD Broome Community College Optics The study of light is called optics Some highlights in the history

More information

Optics Test Science What are some devices that you use in everyday life that require optics?

Optics Test Science What are some devices that you use in everyday life that require optics? Optics Test Science 8 Introduction to Optics 1. What are some devices that you use in everyday life that require optics? Light Energy and Its Sources 308-8 identify and describe properties of visible light

More information

Formulas of possible interest

Formulas of possible interest Name: PHYS 3410/6750: Modern Optics Final Exam Thursday 15 December 2011 Prof. Bolton No books, calculators, notes, etc. Formulas of possible interest I = ɛ 0 c E 2 T = 1 2 ɛ 0cE 2 0 E γ = hν γ n = c/v

More information

Physics Midterm I

Physics Midterm I Phys121 - February 6, 2009 1 Physics 121 - Midterm I Last Name First Name Student Number Signature Tutorial T.A. (circle one): Ricky Chu Firuz Demir Maysam Emadi Alireza Jojjati Answer ALL 10 questions.

More information

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Phys 531 Lecture 8 20 September 2005 Ray Optics I Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Today shift gears, start applying

More information

Reflection models and radiometry Advanced Graphics

Reflection models and radiometry Advanced Graphics Reflection models and radiometry Advanced Graphics Rafał Mantiuk Computer Laboratory, University of Cambridge Applications To render realistic looking materials Applications also in computer vision, optical

More information

MODELING LED LIGHTING COLOR EFFECTS IN MODERN OPTICAL ANALYSIS SOFTWARE LED Professional Magazine Webinar 10/27/2015

MODELING LED LIGHTING COLOR EFFECTS IN MODERN OPTICAL ANALYSIS SOFTWARE LED Professional Magazine Webinar 10/27/2015 MODELING LED LIGHTING COLOR EFFECTS IN MODERN OPTICAL ANALYSIS SOFTWARE LED Professional Magazine Webinar 10/27/2015 Presenter Dave Jacobsen Senior Application Engineer at Lambda Research Corporation for

More information

LIGHTING AND SHADING

LIGHTING AND SHADING DH2323 DGI15 INTRODUCTION TO COMPUTER GRAPHICS AND INTERACTION LIGHTING AND SHADING Christopher Peters HPCViz, KTH Royal Institute of Technology, Sweden chpeters@kth.se http://kth.academia.edu/christopheredwardpeters

More information

COSC579: Scene Geometry. Jeremy Bolton, PhD Assistant Teaching Professor

COSC579: Scene Geometry. Jeremy Bolton, PhD Assistant Teaching Professor COSC579: Scene Geometry Jeremy Bolton, PhD Assistant Teaching Professor Overview Linear Algebra Review Homogeneous vs non-homogeneous representations Projections and Transformations Scene Geometry The

More information

DD2423 Image Analysis and Computer Vision IMAGE FORMATION. Computational Vision and Active Perception School of Computer Science and Communication

DD2423 Image Analysis and Computer Vision IMAGE FORMATION. Computational Vision and Active Perception School of Computer Science and Communication DD2423 Image Analysis and Computer Vision IMAGE FORMATION Mårten Björkman Computational Vision and Active Perception School of Computer Science and Communication November 8, 2013 1 Image formation Goal:

More information

Michelson Interferometer

Michelson Interferometer Michelson Interferometer The Michelson interferometer uses the interference of two reflected waves The third, beamsplitting, mirror is partially reflecting ( half silvered, except it s a thin Aluminum

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 4 Jan. 24 th, 2019 Slides from Dr. Shishir K Shah and Frank (Qingzhong) Liu Digital Image Processing COSC 6380/4393 TA - Office: PGH 231 (Update) Shikha

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4)

PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4) 1 PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4) The first three lectures in this unit dealt with what is for called geometric optics. Geometric optics, treats light as a collection of rays that travel in straight

More information

And if that 120MP Camera was cool

And if that 120MP Camera was cool Reflectance, Lights and on to photometric stereo CSE 252A Lecture 7 And if that 120MP Camera was cool Large Synoptic Survey Telescope 3.2Gigapixel camera 189 CCD s, each with 16 megapixels Pixels are 10µm

More information

To determine the wavelength of laser light using single slit diffraction

To determine the wavelength of laser light using single slit diffraction 9 To determine the wavelength of laser light using single slit diffraction pattern 91 Apparatus: Helium-Neon laser or diode laser, a single slit with adjustable aperture width, optical detector and power

More information

Photobiological Measurement Per IEC Solutions Overview. Gooch and Housego (Orlando)

Photobiological Measurement Per IEC Solutions Overview. Gooch and Housego (Orlando) Photobiological Measurement Per IEC 62471 Solutions Overview Gooch and Housego (Orlando) IEC 62471 Photobiological Safety of Lamps and Lamp Systems Objectives include evaluation and control of optical

More information

Experiment 8 Wave Optics

Experiment 8 Wave Optics Physics 263 Experiment 8 Wave Optics In this laboratory, we will perform two experiments on wave optics. 1 Double Slit Interference In two-slit interference, light falls on an opaque screen with two closely

More information

Radiometry Measuring Light

Radiometry Measuring Light 1 Radiometry Measuring Light CS 554 Computer Vision Pinar Duygulu Bilkent University 2 How do we see? [Plato] from our eyes flows a light similar to the light of the sun [Chalcidius, middle ages] Therefore,

More information

Anidolic Daylight Concentrator of Structural Translucent Concrete Envelope

Anidolic Daylight Concentrator of Structural Translucent Concrete Envelope Berkeley Education Alliance for Research in Singapore Singapore-Berkeley Building Efficiency and Sustainability in the Tropics Anidolic Daylight Concentrator of Structural Translucent Concrete Envelope

More information

Geometrical Optics INTRODUCTION. Wave Fronts and Rays

Geometrical Optics INTRODUCTION. Wave Fronts and Rays Geometrical Optics INTRODUCTION In this experiment, the optical characteristics of mirrors, lenses, and prisms will be studied based on using the following physics definitions and relationships plus simple

More information

Homework Set 3 Due Thursday, 07/14

Homework Set 3 Due Thursday, 07/14 Homework Set 3 Due Thursday, 07/14 Problem 1 A room contains two parallel wall mirrors, on opposite walls 5 meters apart. The mirrors are 8 meters long. Suppose that one person stands in a doorway, in

More information