Classification. Instructor: Wei Ding

Size: px
Start display at page:

Download "Classification. Instructor: Wei Ding"

Transcription

1 Classification Part II Instructor: Wei Ding Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 1 Practical Issues of Classification Underfitting and Overfitting Missing Values Costs of Classification Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004

2 Underfitting and Overfitting (Example) 500 circular and 500 triangular data points. Circular points: 0.5 sqrt(x 1 +x ) 1 Triangular points: sqrt(x 1 +x ) > 0.5 or sqrt(x 1 +x ) < 1 Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 3 Underfitting and Overfitting Overfitting Overfitting: once the tree becomes too large, its test error rate begins to increase even through its training error rate continues to decrease. Underfitting: when model is too simple, both training i and test t errors are large Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 4

3 Understand the overfitting phenomenon Training error of a model can be reduced by increasing the model complexity. The leaf nodes of the tree can be expanded unitl it perfectly fits the training data The training error for such a complex tree could be zero, but the test error can be large because the tree may contain nodes that accidently fit some of the noise points in the training data. Some noise nodes can degrade the performance of the tree because they do not generalize well to the test example. Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 5 Overfitting due to Noise Decision boundary is distorted by noise point Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 6

4 Overfitting due to lack of representative samples Problem: a small number of training records lack of representative samples in the training data Learning algorithms continue to refine their models even when few training records are available Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 7 Overfitting due to Insufficient Examples Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels l of that t region - Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 8

5 Notes on Overfitting Overfitting results in decision trees that are more complex than necessary Training error no longer provides a good estimate of how well the tree will perform on previously unseen records Need new ways for estimating errors Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 9 Overfitting and the Multiple Comparison Procedure Model overfitting is related with a methodology known as multiple comparison procedure. Prediction is correct in the next ten trading days at least 8 out of 10 times for one stock analyst: Very low At least one of 50 stock analyst whose prediction is correct in the next ten trading days at least 8 out of 10 times for one stock analyst: Very high Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 10

6 Overfitting and the Multiple Comparison Procedure During decision tree induction, attribute x can be added to the tree if the observed gain, (T 0, T x ), I greater than some predefined threshold α. In practice, more than one test condition is available and the decision tree algorithm must choose the best attribute xmax from a set of candidates,,{x 1, x,, x k k), to partition the data. In this situation, the algorithm is actually using a multiple comparison procedure to decide whether a decision tree should be extended. Unless the gain function or threshold α is modified to account for k, the algorithm may inadvertently add spurious nodes to the model, which leads to model overfitting. Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Estimating Generalization Errors Re-substitution errors: error on training (Σ e(t) ) Generalization errors: error on testing (Σ e (t)) e(t)) Methods for estimating generalization errors: Optimistic approach: e (t) e(t) = e(t) Pessimistic approach: As low as possible For each leaf node: e (t) = (e(t)+0.5) Total errors: e (T) = e(t) + N 0.5 (N: number of leaf nodes) For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances): Training error = 10/1000 = 1% Generalization error = ( )/1000 =.5% Reduced error pruning (REP): uses validation data set to estimate generalization error Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 1

7 Occam s Razor Given two models of similar generalization errors, one should prefer the simpler model over the more complex model For complex pe models, odes, there e is a greater chance ce that it was fitted accidentally by errors in data Therefore, one should include model complexity when evaluating a model Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ How to Address Overfitting Pre-Pruning (Early Stopping Rule) Stop the algorithm before it becomes a fully-grown tree Typical stopping conditions for a node: Stop if all instances belong to the same class Stop if all the attribute values are the same More restrictive ti conditions: Stop if number of instances is less than some user-specified threshold Stop if class distribution of instances are independent of the available features (e.g., using χ test) Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain). Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 14

8 How to Address Overfitting Post-pruning Grow decision tree to its entirety Trim the nodes of the decision tree in a bottom-up fashion If generalization error improves after trimming, replace sub-tree by a leaf node. Class label of leaf node is determined from majority class of instances in the sub-tree Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Example of Post-Pruning Class = Yes 0 Training Error (Before splitting) = 10/30 Pessimistic error = ( )/30 = 10.5/30 Class = No 10 Training Error (After splitting) = 9/30 Error = 10/30 Pessimistic st error (After splitting) = ( )/30 = 11/30 A? PRUNE! A1 A A3 A4 Class = Yes 8 Class = Yes 3 Class = Yes 4 Class = Yes 5 Class = No 4 Class = No 4 Class = No 1 Class = No 1 Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 16

9 Examples of Post-pruning Optimistic error? Case 1: Don t prune for both cases Pessimistic error? C0: 11 C0: C1: 3 C1: 4 Don t prune case 1, prune case Reduced error pruning? Case : Depends on validation set C0: 14 C1: 3 C0: C1: Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Model Evaluation Metrics for Performance Evaluation How to evaluate the performance of a model? Methods for Performance Evaluation How to obtain reliable estimates? Methods for Model Comparison How to compare the relative performance among competing models? Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 18

10 Model Evaluation Metrics for Performance Evaluation How to evaluate the performance of a model? Methods for Performance Evaluation How to obtain reliable estimates? Methods for Model Comparison How to compare the relative performance among competing models? Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Metrics for Performance Evaluation Focus on the predictive capability of a model Rather than how fast it takes to classify or build models, scalability, etc. Confusion Matrix: PREDICTED CLASS Class=Yes Class=No Class=Yes a b a: TP (true positive) b: FN (false negative) ACTUAL c: FP (false positive) d: TN (true negative) CLASS Class=No c d Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 0

11 Metrics for Performance Evaluation PREDICTED CLASS Class=Yes Class=No ACTUAL CLASS Class=Yes a (TP) c (FP) b (FN) d (TN) Class=No c d Most widely-used metric: Accuracy = a + d TP + TN = a + b + c + d TP + TN + FP + FN Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 1 Limitation of Accuracy Consider a -class problem Number of Class 0 examples = 9990 Number of Class 1 examples = 10 If model predicts everything er to be class 0, accuracy is 9990/10000 = 99.9 % Accuracy is misleading because model does not detect any class 1 example Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004

12 Cost Matrix ACTUAL PREDICTED CLASS C(i j) Class=Yes Class=No Class=Yes C(Yes Yes) C(No Yes) CLASS Class=No C(Yes No) C(No No) C(i j): Cost of misclassifying class j example as class i Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 3 Computing Cost of Classification Cost Matrix ACTUAL CLASS PREDICTED CLASS C(i j) Model PREDICTED CLASS Model PREDICTED CLASS M 1 M ACTUAL CLASS ACTUAL CLASS Accuracy = 80% Accuracy = 90% Cost = 3910 Cost = 455 Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 4

13 Cost vs Accuracy Count PREDICTED CLASS Class=Yes Class=No Accuracy is proportional to cost if 1. C(Yes No)=C(No Yes) ( ) = q. C(Yes Yes)=C(No No) = p Class=Yes a b ACTUAL CLASS Class=No c d N = a + b + c + d Cost ACTUAL CLASS PREDICTED CLASS Class=Yes Class=No Class=Yes p q Class=No q p Accuracy = (a + d)/n Cost=p(a+d)+q(b+c) + (b + = p (a + d) + q (N a d) = qn (q p)(a + d) = N [q (q-p) Accuracy] Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 5 Cost-Sensitive Measures a Precision (p) = a + c a Recall (r) = a + b rp a F - measure (F) = = r + p a + b + c Precision is biased towards C(Yes Yes) & C(Yes No) Recall is biased towards C(Yes Yes) & C(No Yes) F-measure is biased towards all except C(No No) Weighted Accuracy = w a + w d 1 4 a + w b + w c + w d w1 3 4 Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 6

14 Interpretation of Precision and Recall PREDICTED CLASS ACTUAL CLASS Class=Yes Class=No Class=Yes a (TP) b (FN) Class=No c (FP) d (TN) Precision determines the fraction of records that actually turns out to be positive in the group the classifier has declared as a positive class. The higher h the precision i is, the lower the number of false positive errors committed by the classifier. Recall measures the fraction of positive examples correctly predicted by the classifier. Classifiers with large recall have very few positive examples misclassified as the negative class. Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 7 Model Evaluation Metrics for Performance Evaluation How to evaluate the performance of a model? Methods for Performance Evaluation How to obtain reliable estimates? Methods for Model Comparison How to compare the relative performance among competing models? Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 8

15 Methods for Performance Evaluation How to obtain a reliable estimate of performance? Performance of a model may depend on other factors besides the learning algorithm: Class distribution Cost of misclassification Size of training and test sets Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 9 Learning Curve Learning curve shows how accuracy changes with varying sample size Requires a sampling schedule for creating learning curve: Arithmetic sampling (Langley, et al) Geometric sampling (Provost et al) Effect of small sample size: - Bias in the estimate - Variance of estimate Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 30

16 Methods of Estimation Holdout Reserve e /3 for training and 1/3 for testing Random subsampling Repeated holdout Cross validation Partition data into k disjoint subsets k-fold: train on k-1 partitions, test on the remaining one Leave-one-out: k=n Stratified sampling oversampling vs undersampling Bootstrap Sampling with replacement Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Model Evaluation Metrics for Performance Evaluation How to evaluate the performance of a model? Methods for Performance Evaluation How to obtain reliable estimates? Methods for Model Comparison How to compare the relative performance among competing models? Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 3

17 ROC (Receiver Operating Characteristic) Developed in 1950s for signal detection theory to analyze noisy signals Characterize the trade-off between positive hits and false alarms ROC curve plots TP rate (on the y-axis) against FP rate (on the x-axis) Performance of each classifier represented as a point on the ROC curve changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ ROC Curve - 1-dimensional data set containing classes (positive and negative) - any points located at x > t is classified as positive At threshold t: TP=0.5, FN=0.5, FP=0.1, TN=0.88 Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 34

18 ROC Curve (TP-Rate, FP-Rate): (0,0): declare everything to be negative class (1,1): 1) declare everything to be positive class (1,0): ideal Diagonal line: Random guessing Below diagonal line: prediction is opposite of thetrueclass true Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Using ROC for Model Comparison No model consistently outperform the other M 1 is better for small FPR M is better for large FPR Area Under the ROC curve Ideal: Area = 1 Random guess: Area = 0.5 Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 36

19 How to Construct an ROC curve Instance P(+ A) True Class Use classifier that produces posterior probability for each test instance P(+ A) Sort the instances according to P(+ A) in decreasing order Apply threshold h at each unique value of P(+ A) Count the number of TP, FP, TN, FN at each threshold TP rate, TPR = TP/(TP+FN) FP rate, FPR = FP/(FP + TN) Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ How to construct an ROC curve Threshold >= Class TP FP TN FN TPR FPR ROC Curve: Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 38

20 Test of Significance Given two models: Model M1: accuracy = 85%, tested on 30 instances Model M: accuracy = 75%, tested on 5000 instances Can we say M1 is better than M? How much confidence can we place on accuracy of M1 and M? g Can the difference in performance measure be explained as a result of random fluctuations in the test set? Test the statistical significance of the observed deviation Estimate the confidence interval of a given model accuracy Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Confidence Interval for Accuracy Prediction can be regarded as a Bernoulli trial A Bernoulli trial has possible outcomes Possible outcomes for prediction: correct or wrong Collection of Bernoulli trials has a Binomial distribution: x Bin(N, p) x: number of correct predictions e.g: Toss a fair coin 50 times, how many heads would turn up? Expected number of heads = N p = = 5 Given x (# of correct predictions) or equivalently, acc=x/n, and N (# of test instances), Can we predict p (true accuracy of model)? Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 40

21 Confidence Interval for Accuracy For large test sets (N > 30), acc has a normal distribution with mean p and variance p(1-p)/np)/n Area = 1 - α acc ( < p P Z < Z ) α / 1 α (1 ) / / p p N =11 α Z α/ Z 1- α / Confidence interval for acc Z α/ = Z 1- α / Confidence Interval for p: N acc + Z ± Z + 4 N acc 4 N acc α / α / p = ( N + Z α / ) Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Confidence Interval for Accuracy Consider a model that produces an accuracy of 80% when evaluated on 100 test instances: N=100, acc = 0.8 Let 1-α = 0.95 (95% confidence) From probability table, Z α/=1.96 N p(lower) p(upper) α Z Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 4

22 Comparing Performance of Models Given two models, say M1 and M, which is better? M1 is tested on D1 (size=n1), found error rate = e 1 M is tested on D (size=n), found error rate = e Assume D1 and D are independent If n1 and n are sufficiently large, then Approximate: e1 ~ N ( μ1, σ1 ) e ~ N ( μ, σ ) ˆ σ = i e (1 e ) i i n n i Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Comparing Performance of Models To test if performance difference is statistically significant: d = e1 e d ~ N(d t,σ t ) where d t is the true difference Since D1 and D are independent, their variance adds up: σ = σ + σ ˆ σ ˆ σ 1 1 e 1(1 e 1) e (1 e ) = + n1 n + t At (1-α) confidence level, d = d ± Z t α / σˆ t Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 44

23 An Illustrative Example Given: M1: n1 = 30, e1 = 0.15 M:n= , e= d = e e1 = 0.1 (-sided test) 0.15(1 0.15) 0.5(1 0.5) ˆ = + = σ d, α/ At 95% confidence level, Z α/ = d t = ± = ± 0.18 => Interval contains 0 => difference may not be statistically significant Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Comparing Performance of Algorithms Each learning algorithm may produce k models: L1 may produce M11, M1,, M1k L may produce M1, M,, Mk If models are generated on the same test sets D1,D,,, Dk (e.g., via cross-validation) For each set: compute d j = e 1j e j d j has mean d t and variance σ t k Estimate: j 1 σ = ˆ d t t ( d j d) = k( k = d ± t 1) 1 α, k 1 Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ ˆ σ t

Metrics for Performance Evaluation How to evaluate the performance of a model? Methods for Performance Evaluation How to obtain reliable estimates?

Metrics for Performance Evaluation How to evaluate the performance of a model? Methods for Performance Evaluation How to obtain reliable estimates? Model Evaluation Metrics for Performance Evaluation How to evaluate the performance of a model? Methods for Performance Evaluation How to obtain reliable estimates? Methods for Model Comparison How to

More information

Data Mining Classification: Bayesian Decision Theory

Data Mining Classification: Bayesian Decision Theory Data Mining Classification: Bayesian Decision Theory Lecture Notes for Chapter 2 R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification, 2nd ed. New York: Wiley, 2001. Lecture Notes for Chapter

More information

10 Classification: Evaluation

10 Classification: Evaluation CSE4334/5334 Data Mining 10 Classification: Evaluation Chengkai Li Department of Computer Science and Engineering University of Texas at Arlington Fall 2018 (Slides courtesy of Pang-Ning Tan, Michael Steinbach

More information

Classification Part 4

Classification Part 4 Classification Part 4 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville Model Evaluation Metrics for Performance Evaluation How to evaluate

More information

DATA MINING LECTURE 9. Classification Decision Trees Evaluation

DATA MINING LECTURE 9. Classification Decision Trees Evaluation DATA MINING LECTURE 9 Classification Decision Trees Evaluation 10 10 Illustrating Classification Task Tid Attrib1 Attrib2 Attrib3 Class 1 Yes Large 125K No 2 No Medium 100K No 3 No Small 70K No 4 Yes Medium

More information

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation. Lecture Notes for Chapter 4. Introduction to Data Mining

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation. Lecture Notes for Chapter 4. Introduction to Data Mining Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data

More information

CS 584 Data Mining. Classification 3

CS 584 Data Mining. Classification 3 CS 584 Data Mining Classification 3 Today Model evaluation & related concepts Additional classifiers Naïve Bayes classifier Support Vector Machine Ensemble methods 2 Model Evaluation Metrics for Performance

More information

CISC 4631 Data Mining

CISC 4631 Data Mining CISC 4631 Data Mining Lecture 05: Overfitting Evaluation: accuracy, precision, recall, ROC Theses slides are based on the slides by Tan, Steinbach and Kumar (textbook authors) Eamonn Koegh (UC Riverside)

More information

Lecture Notes for Chapter 4 Part III. Introduction to Data Mining

Lecture Notes for Chapter 4 Part III. Introduction to Data Mining Data Mining Cassification: Basic Concepts, Decision Trees, and Mode Evauation Lecture Notes for Chapter 4 Part III Introduction to Data Mining by Tan, Steinbach, Kumar Adapted by Qiang Yang (2010) Tan,Steinbach,

More information

Data Mining Classification: Alternative Techniques. Imbalanced Class Problem

Data Mining Classification: Alternative Techniques. Imbalanced Class Problem Data Mining Classification: Alternative Techniques Imbalanced Class Problem Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Class Imbalance Problem Lots of classification problems

More information

DATA MINING OVERFITTING AND EVALUATION

DATA MINING OVERFITTING AND EVALUATION DATA MINING OVERFITTING AND EVALUATION 1 Overfitting Will cover mechanisms for preventing overfitting in decision trees But some of the mechanisms and concepts will apply to other algorithms 2 Occam s

More information

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation. Lecture Notes for Chapter 4. Introduction to Data Mining

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation. Lecture Notes for Chapter 4. Introduction to Data Mining Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach, Kumar (modified by Predrag Radivojac, 2017) Classification:

More information

Metrics Overfitting Model Evaluation Research directions. Classification. Practical Issues. Huiping Cao. lassification-issues, Slide 1/57

Metrics Overfitting Model Evaluation Research directions. Classification. Practical Issues. Huiping Cao. lassification-issues, Slide 1/57 lassification-issues, Slide 1/57 Classification Practical Issues Huiping Cao lassification-issues, Slide 2/57 Outline Criteria to evaluate a classifier Underfitting and overfitting Model evaluation lassification-issues,

More information

DATA MINING LECTURE 11. Classification Basic Concepts Decision Trees Evaluation Nearest-Neighbor Classifier

DATA MINING LECTURE 11. Classification Basic Concepts Decision Trees Evaluation Nearest-Neighbor Classifier DATA MINING LECTURE 11 Classification Basic Concepts Decision Trees Evaluation Nearest-Neighbor Classifier What is a hipster? Examples of hipster look A hipster is defined by facial hair Hipster or Hippie?

More information

DATA MINING LECTURE 9. Classification Basic Concepts Decision Trees Evaluation

DATA MINING LECTURE 9. Classification Basic Concepts Decision Trees Evaluation DATA MINING LECTURE 9 Classification Basic Concepts Decision Trees Evaluation What is a hipster? Examples of hipster look A hipster is defined by facial hair Hipster or Hippie? Facial hair alone is not

More information

Lecture Notes for Chapter 4

Lecture Notes for Chapter 4 Classification - Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler Look for accompanying R code on the course web

More information

Part I. Classification & Decision Trees. Classification. Classification. Week 4 Based in part on slides from textbook, slides of Susan Holmes

Part I. Classification & Decision Trees. Classification. Classification. Week 4 Based in part on slides from textbook, slides of Susan Holmes Week 4 Based in part on slides from textbook, slides of Susan Holmes Part I Classification & Decision Trees October 19, 2012 1 / 1 2 / 1 Classification Classification Problem description We are given a

More information

CS4491/CS 7265 BIG DATA ANALYTICS

CS4491/CS 7265 BIG DATA ANALYTICS CS4491/CS 7265 BIG DATA ANALYTICS EVALUATION * Some contents are adapted from Dr. Hung Huang and Dr. Chengkai Li at UT Arlington Dr. Mingon Kang Computer Science, Kennesaw State University Evaluation for

More information

Model s Performance Measures

Model s Performance Measures Model s Performance Measures Evaluating the performance of a classifier Section 4.5 of course book. Taking into account misclassification costs Class imbalance problem Section 5.7 of course book. TNM033:

More information

Lecture outline. Decision-tree classification

Lecture outline. Decision-tree classification Lecture outline Decision-tree classification Decision Trees Decision tree A flow-chart-like tree structure Internal node denotes a test on an attribute Branch represents an outcome of the test Leaf nodes

More information

CSE 5243 INTRO. TO DATA MINING

CSE 5243 INTRO. TO DATA MINING CSE 5243 INTRO. TO DATA MINING Classification (Basic Concepts) Huan Sun, CSE@The Ohio State University 09/12/2017 Slides adapted from UIUC CS412, Fall 2017, by Prof. Jiawei Han Classification: Basic Concepts

More information

Classification Salvatore Orlando

Classification Salvatore Orlando Classification Salvatore Orlando 1 Classification: Definition Given a collection of records (training set ) Each record contains a set of attributes, one of the attributes is the class. The values of the

More information

Evaluating Classifiers

Evaluating Classifiers Evaluating Classifiers Reading for this topic: T. Fawcett, An introduction to ROC analysis, Sections 1-4, 7 (linked from class website) Evaluating Classifiers What we want: Classifier that best predicts

More information

Evaluating Classifiers

Evaluating Classifiers Evaluating Classifiers Reading for this topic: T. Fawcett, An introduction to ROC analysis, Sections 1-4, 7 (linked from class website) Evaluating Classifiers What we want: Classifier that best predicts

More information

CS570: Introduction to Data Mining

CS570: Introduction to Data Mining CS570: Introduction to Data Mining Classification Advanced Reading: Chapter 8.4 & 8.5 Han, Chapters 4.5 & 4.6 Tan Anca Doloc-Mihu, Ph.D. Slides courtesy of Li Xiong, Ph.D., 2011 Han, Kamber & Pei. Data

More information

Data Mining and Knowledge Discovery Practice notes 2

Data Mining and Knowledge Discovery Practice notes 2 Keywords Data Mining and Knowledge Discovery: Practice Notes Petra Kralj Novak Petra.Kralj.Novak@ijs.si Data Attribute, example, attribute-value data, target variable, class, discretization Algorithms

More information

Evaluating Machine Learning Methods: Part 1

Evaluating Machine Learning Methods: Part 1 Evaluating Machine Learning Methods: Part 1 CS 760@UW-Madison Goals for the lecture you should understand the following concepts bias of an estimator learning curves stratified sampling cross validation

More information

Data Mining and Knowledge Discovery: Practice Notes

Data Mining and Knowledge Discovery: Practice Notes Data Mining and Knowledge Discovery: Practice Notes Petra Kralj Novak Petra.Kralj.Novak@ijs.si 8.11.2017 1 Keywords Data Attribute, example, attribute-value data, target variable, class, discretization

More information

Evaluating Machine-Learning Methods. Goals for the lecture

Evaluating Machine-Learning Methods. Goals for the lecture Evaluating Machine-Learning Methods Mark Craven and David Page Computer Sciences 760 Spring 2018 www.biostat.wisc.edu/~craven/cs760/ Some of the slides in these lectures have been adapted/borrowed from

More information

Machine Learning Techniques for Data Mining

Machine Learning Techniques for Data Mining Machine Learning Techniques for Data Mining Eibe Frank University of Waikato New Zealand 10/25/2000 1 PART V Credibility: Evaluating what s been learned 10/25/2000 2 Evaluation: the key to success How

More information

CS Machine Learning

CS Machine Learning CS 60050 Machine Learning Decision Tree Classifier Slides taken from course materials of Tan, Steinbach, Kumar 10 10 Illustrating Classification Task Tid Attrib1 Attrib2 Attrib3 Class 1 Yes Large 125K

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 08: Classification Evaluation and Practical Issues Instructor: Yizhou Sun yzsun@cs.ucla.edu October 24, 2017 Learnt Prediction and Classification Methods Vector Data

More information

Data Mining D E C I S I O N T R E E. Matteo Golfarelli

Data Mining D E C I S I O N T R E E. Matteo Golfarelli Data Mining D E C I S I O N T R E E Matteo Golfarelli Decision Tree It is one of the most widely used classification techniques that allows you to represent a set of classification rules with a tree. Tree:

More information

Evaluation Measures. Sebastian Pölsterl. April 28, Computer Aided Medical Procedures Technische Universität München

Evaluation Measures. Sebastian Pölsterl. April 28, Computer Aided Medical Procedures Technische Universität München Evaluation Measures Sebastian Pölsterl Computer Aided Medical Procedures Technische Universität München April 28, 2015 Outline 1 Classification 1. Confusion Matrix 2. Receiver operating characteristics

More information

Data Mining. Practical Machine Learning Tools and Techniques. Slides for Chapter 5 of Data Mining by I. H. Witten, E. Frank and M. A.

Data Mining. Practical Machine Learning Tools and Techniques. Slides for Chapter 5 of Data Mining by I. H. Witten, E. Frank and M. A. Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 5 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Credibility: Evaluating what s been learned Issues: training, testing,

More information

Machine Learning and Bioinformatics 機器學習與生物資訊學

Machine Learning and Bioinformatics 機器學習與生物資訊學 Molecular Biomedical Informatics 分子生醫資訊實驗室 機器學習與生物資訊學 Machine Learning & Bioinformatics 1 Evaluation The key to success 2 Three datasets of which the answers must be known 3 Note on parameter tuning It

More information

Information Management course

Information Management course Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 20: 10/12/2015 Data Mining: Concepts and Techniques (3 rd ed.) Chapter

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Classification Evaluation and Practical Issues Instructor: Yizhou Sun yzsun@cs.ucla.edu April 24, 2017 Homework 2 out Announcements Due May 3 rd (11:59pm) Course project proposal

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Sources Hastie, Tibshirani, Friedman: The Elements of Statistical Learning James, Witten, Hastie, Tibshirani: An Introduction to Statistical Learning Andrew Ng:

More information

Machine Learning. Decision Trees. Le Song /15-781, Spring Lecture 6, September 6, 2012 Based on slides from Eric Xing, CMU

Machine Learning. Decision Trees. Le Song /15-781, Spring Lecture 6, September 6, 2012 Based on slides from Eric Xing, CMU Machine Learning 10-701/15-781, Spring 2008 Decision Trees Le Song Lecture 6, September 6, 2012 Based on slides from Eric Xing, CMU Reading: Chap. 1.6, CB & Chap 3, TM Learning non-linear functions f:

More information

Statistics 202: Statistical Aspects of Data Mining

Statistics 202: Statistical Aspects of Data Mining Statistics 202: Statistical Aspects of Data Mining Professor Rajan Patel Lecture 9 = More of Chapter 5 Agenda: 1) Lecture over more of Chapter 5 1 Introduction to Data Mining by Tan, Steinbach, Kumar Chapter

More information

INTRODUCTION TO MACHINE LEARNING. Measuring model performance or error

INTRODUCTION TO MACHINE LEARNING. Measuring model performance or error INTRODUCTION TO MACHINE LEARNING Measuring model performance or error Is our model any good? Context of task Accuracy Computation time Interpretability 3 types of tasks Classification Regression Clustering

More information

List of Exercises: Data Mining 1 December 12th, 2015

List of Exercises: Data Mining 1 December 12th, 2015 List of Exercises: Data Mining 1 December 12th, 2015 1. We trained a model on a two-class balanced dataset using five-fold cross validation. One person calculated the performance of the classifier by measuring

More information

ECLT 5810 Evaluation of Classification Quality

ECLT 5810 Evaluation of Classification Quality ECLT 5810 Evaluation of Classification Quality Reference: Data Mining Practical Machine Learning Tools and Techniques, by I. Witten, E. Frank, and M. Hall, Morgan Kaufmann Testing and Error Error rate:

More information

Data Mining Concepts & Techniques

Data Mining Concepts & Techniques Data Mining Concepts & Techniques Lecture No. 03 Data Processing, Data Mining Naeem Ahmed Email: naeemmahoto@gmail.com Department of Software Engineering Mehran Univeristy of Engineering and Technology

More information

Data Mining and Knowledge Discovery: Practice Notes

Data Mining and Knowledge Discovery: Practice Notes Data Mining and Knowledge Discovery: Practice Notes Petra Kralj Novak Petra.Kralj.Novak@ijs.si 2016/11/16 1 Keywords Data Attribute, example, attribute-value data, target variable, class, discretization

More information

Weka ( )

Weka (  ) Weka ( http://www.cs.waikato.ac.nz/ml/weka/ ) The phases in which classifier s design can be divided are reflected in WEKA s Explorer structure: Data pre-processing (filtering) and representation Supervised

More information

A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection (Kohavi, 1995)

A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection (Kohavi, 1995) A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection (Kohavi, 1995) Department of Information, Operations and Management Sciences Stern School of Business, NYU padamopo@stern.nyu.edu

More information

Classification: Basic Concepts, Decision Trees, and Model Evaluation

Classification: Basic Concepts, Decision Trees, and Model Evaluation Classification: Basic Concepts, Decision Trees, and Model Evaluation Data Warehousing and Mining Lecture 4 by Hossen Asiful Mustafa Classification: Definition Given a collection of records (training set

More information

Probabilistic Classifiers DWML, /27

Probabilistic Classifiers DWML, /27 Probabilistic Classifiers DWML, 2007 1/27 Probabilistic Classifiers Conditional class probabilities Id. Savings Assets Income Credit risk 1 Medium High 75 Good 2 Low Low 50 Bad 3 High Medium 25 Bad 4 Medium

More information

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CHAPTER 4 CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS 4.1 Introduction Optical character recognition is one of

More information

Chapter 3: Supervised Learning

Chapter 3: Supervised Learning Chapter 3: Supervised Learning Road Map Basic concepts Evaluation of classifiers Classification using association rules Naïve Bayesian classification Naïve Bayes for text classification Summary 2 An example

More information

Evaluation Metrics. (Classifiers) CS229 Section Anand Avati

Evaluation Metrics. (Classifiers) CS229 Section Anand Avati Evaluation Metrics (Classifiers) CS Section Anand Avati Topics Why? Binary classifiers Metrics Rank view Thresholding Confusion Matrix Point metrics: Accuracy, Precision, Recall / Sensitivity, Specificity,

More information

Stages of (Batch) Machine Learning

Stages of (Batch) Machine Learning Evalua&on Stages of (Batch) Machine Learning Given: labeled training data X, Y = {hx i,y i i} n i=1 Assumes each x i D(X ) with y i = f target (x i ) Train the model: model ß classifier.train(x, Y ) x

More information

Artificial Intelligence. Programming Styles

Artificial Intelligence. Programming Styles Artificial Intelligence Intro to Machine Learning Programming Styles Standard CS: Explicitly program computer to do something Early AI: Derive a problem description (state) and use general algorithms to

More information

Data Mining: Model Evaluation

Data Mining: Model Evaluation Data Mnng: Model Evaluaton Aprl 16, 2013 1 Issues: Evaluatng Classfcaton Methods Accurac classfer accurac: predctng class label predctor accurac: guessng value of predcted attrbutes Speed tme to construct

More information

Classification. Instructor: Wei Ding

Classification. Instructor: Wei Ding Classification Decision Tree Instructor: Wei Ding Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 Preliminaries Each data record is characterized by a tuple (x, y), where x is the attribute

More information

MEASURING CLASSIFIER PERFORMANCE

MEASURING CLASSIFIER PERFORMANCE MEASURING CLASSIFIER PERFORMANCE ERROR COUNTING Error types in a two-class problem False positives (type I error): True label is -1, predicted label is +1. False negative (type II error): True label is

More information

INTRODUCTION TO DATA MINING. Daniel Rodríguez, University of Alcalá

INTRODUCTION TO DATA MINING. Daniel Rodríguez, University of Alcalá INTRODUCTION TO DATA MINING Daniel Rodríguez, University of Alcalá Outline Knowledge Discovery in Datasets Model Representation Types of models Supervised Unsupervised Evaluation (Acknowledgement: Jesús

More information

7. Decision or classification trees

7. Decision or classification trees 7. Decision or classification trees Next we are going to consider a rather different approach from those presented so far to machine learning that use one of the most common and important data structure,

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

CSE Data Mining Concepts and Techniques STATISTICAL METHODS (REGRESSION) Professor- Anita Wasilewska. Team 13

CSE Data Mining Concepts and Techniques STATISTICAL METHODS (REGRESSION) Professor- Anita Wasilewska. Team 13 CSE 634 - Data Mining Concepts and Techniques STATISTICAL METHODS Professor- Anita Wasilewska (REGRESSION) Team 13 Contents Linear Regression Logistic Regression Bias and Variance in Regression Model Fit

More information

Part II: A broader view

Part II: A broader view Part II: A broader view Understanding ML metrics: isometrics, basic types of linear isometric plots linear metrics and equivalences between them skew-sensitivity non-linear metrics Model manipulation:

More information

Evaluation. Evaluate what? For really large amounts of data... A: Use a validation set.

Evaluation. Evaluate what? For really large amounts of data... A: Use a validation set. Evaluate what? Evaluation Charles Sutton Data Mining and Exploration Spring 2012 Do you want to evaluate a classifier or a learning algorithm? Do you want to predict accuracy or predict which one is better?

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Decision Tree Example Three variables: Attribute 1: Hair = {blond, dark} Attribute 2: Height = {tall, short} Class: Country = {Gromland, Polvia} CS4375 --- Fall 2018 a

More information

Classification Algorithms in Data Mining

Classification Algorithms in Data Mining August 9th, 2016 Suhas Mallesh Yash Thakkar Ashok Choudhary CIS660 Data Mining and Big Data Processing -Dr. Sunnie S. Chung Classification Algorithms in Data Mining Deciding on the classification algorithms

More information

2. On classification and related tasks

2. On classification and related tasks 2. On classification and related tasks In this part of the course we take a concise bird s-eye view of different central tasks and concepts involved in machine learning and classification particularly.

More information

CCRMA MIR Workshop 2014 Evaluating Information Retrieval Systems. Leigh M. Smith Humtap Inc.

CCRMA MIR Workshop 2014 Evaluating Information Retrieval Systems. Leigh M. Smith Humtap Inc. CCRMA MIR Workshop 2014 Evaluating Information Retrieval Systems Leigh M. Smith Humtap Inc. leigh@humtap.com Basic system overview Segmentation (Frames, Onsets, Beats, Bars, Chord Changes, etc) Feature

More information

Data Mining Classification - Part 1 -

Data Mining Classification - Part 1 - Data Mining Classification - Part 1 - Universität Mannheim Bizer: Data Mining I FSS2019 (Version: 20.2.2018) Slide 1 Outline 1. What is Classification? 2. K-Nearest-Neighbors 3. Decision Trees 4. Model

More information

MIT 801. Machine Learning I. [Presented by Anna Bosman] 16 February 2018

MIT 801. Machine Learning I. [Presented by Anna Bosman] 16 February 2018 MIT 801 [Presented by Anna Bosman] 16 February 2018 Machine Learning What is machine learning? Artificial Intelligence? Yes as we know it. What is intelligence? The ability to acquire and apply knowledge

More information

Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation

Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation Learning 4 Supervised Learning 4 Unsupervised Learning 4

More information

Classification and Regression

Classification and Regression Classification and Regression Announcements Study guide for exam is on the LMS Sample exam will be posted by Monday Reminder that phase 3 oral presentations are being held next week during workshops Plan

More information

Decision Trees Dr. G. Bharadwaja Kumar VIT Chennai

Decision Trees Dr. G. Bharadwaja Kumar VIT Chennai Decision Trees Decision Tree Decision Trees (DTs) are a nonparametric supervised learning method used for classification and regression. The goal is to create a model that predicts the value of a target

More information

Lecture 6 K- Nearest Neighbors(KNN) And Predictive Accuracy

Lecture 6 K- Nearest Neighbors(KNN) And Predictive Accuracy Lecture 6 K- Nearest Neighbors(KNN) And Predictive Accuracy Machine Learning Dr.Ammar Mohammed Nearest Neighbors Set of Stored Cases Atr1... AtrN Class A Store the training samples Use training samples

More information

Nearest neighbor classification DSE 220

Nearest neighbor classification DSE 220 Nearest neighbor classification DSE 220 Decision Trees Target variable Label Dependent variable Output space Person ID Age Gender Income Balance Mortgag e payment 123213 32 F 25000 32000 Y 17824 49 M 12000-3000

More information

Predictive Analysis: Evaluation and Experimentation. Heejun Kim

Predictive Analysis: Evaluation and Experimentation. Heejun Kim Predictive Analysis: Evaluation and Experimentation Heejun Kim June 19, 2018 Evaluation and Experimentation Evaluation Metrics Cross-Validation Significance Tests Evaluation Predictive analysis: training

More information

Pattern recognition (4)

Pattern recognition (4) Pattern recognition (4) 1 Things we have discussed until now Statistical pattern recognition Building simple classifiers Supervised classification Minimum distance classifier Bayesian classifier (1D and

More information

Part I. Instructor: Wei Ding

Part I. Instructor: Wei Ding Classification Part I Instructor: Wei Ding Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 Classification: Definition Given a collection of records (training set ) Each record contains a set

More information

Evaluating Classifiers

Evaluating Classifiers Evaluating Classifiers Charles Elkan elkan@cs.ucsd.edu January 18, 2011 In a real-world application of supervised learning, we have a training set of examples with labels, and a test set of examples with

More information

Sample 1. Dataset Distribution F Sample 2. Real world Distribution F. Sample k

Sample 1. Dataset Distribution F Sample 2. Real world Distribution F. Sample k can not be emphasized enough that no claim whatsoever is It made in this paper that all algorithms are equivalent in being in the real world. In particular, no claim is being made practice, one should

More information

Decision Tree CE-717 : Machine Learning Sharif University of Technology

Decision Tree CE-717 : Machine Learning Sharif University of Technology Decision Tree CE-717 : Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Some slides have been adapted from: Prof. Tom Mitchell Decision tree Approximating functions of usually discrete

More information

MIT Samberg Center Cambridge, MA, USA. May 30 th June 2 nd, by C. Rea, R.S. Granetz MIT Plasma Science and Fusion Center, Cambridge, MA, USA

MIT Samberg Center Cambridge, MA, USA. May 30 th June 2 nd, by C. Rea, R.S. Granetz MIT Plasma Science and Fusion Center, Cambridge, MA, USA Exploratory Machine Learning studies for disruption prediction on DIII-D by C. Rea, R.S. Granetz MIT Plasma Science and Fusion Center, Cambridge, MA, USA Presented at the 2 nd IAEA Technical Meeting on

More information

How do we obtain reliable estimates of performance measures?

How do we obtain reliable estimates of performance measures? How do we obtain reliable estimates of performance measures? 1 Estimating Model Performance How do we estimate performance measures? Error on training data? Also called resubstitution error. Not a good

More information

Classification. Slide sources:

Classification. Slide sources: Classification Slide sources: Gideon Dror, Academic College of TA Yaffo Nathan Ifill, Leicester MA4102 Data Mining and Neural Networks Andrew Moore, CMU : http://www.cs.cmu.edu/~awm/tutorials 1 Outline

More information

Data Mining and Knowledge Discovery Practice notes: Numeric Prediction, Association Rules

Data Mining and Knowledge Discovery Practice notes: Numeric Prediction, Association Rules Keywords Data Mining and Knowledge Discovery: Practice Notes Petra Kralj Novak Petra.Kralj.Novak@ijs.si Data Attribute, example, attribute-value data, target variable, class, discretization Algorithms

More information

Classification with Decision Tree Induction

Classification with Decision Tree Induction Classification with Decision Tree Induction This algorithm makes Classification Decision for a test sample with the help of tree like structure (Similar to Binary Tree OR k-ary tree) Nodes in the tree

More information

Lecture 5: Decision Trees (Part II)

Lecture 5: Decision Trees (Part II) Lecture 5: Decision Trees (Part II) Dealing with noise in the data Overfitting Pruning Dealing with missing attribute values Dealing with attributes with multiple values Integrating costs into node choice

More information

Advanced Video Content Analysis and Video Compression (5LSH0), Module 8B

Advanced Video Content Analysis and Video Compression (5LSH0), Module 8B Advanced Video Content Analysis and Video Compression (5LSH0), Module 8B 1 Supervised learning Catogarized / labeled data Objects in a picture: chair, desk, person, 2 Classification Fons van der Sommen

More information

8. Tree-based approaches

8. Tree-based approaches Foundations of Machine Learning École Centrale Paris Fall 2015 8. Tree-based approaches Chloé-Agathe Azencott Centre for Computational Biology, Mines ParisTech chloe agathe.azencott@mines paristech.fr

More information

โครงการอบรมเช งปฏ บ ต การ น กว ทยาการข อม ลภาคร ฐ (Government Data Scientist)

โครงการอบรมเช งปฏ บ ต การ น กว ทยาการข อม ลภาคร ฐ (Government Data Scientist) โครงการอบรมเช งปฏ บ ต การ น กว ทยาการข อม ลภาคร ฐ (Government Data Scientist) (ว นท 2) สถาบ นพ ฒนาบ คลากรด านด จ ท ลภาคร ฐ สาน กงานพ ฒนาร ฐบาลด จ ท ล (องค การมหาชน) บรรยายโดย ผศ.ดร.โษฑศ ร ตต ธรรมบ ษด อาจารย

More information

Ensemble Learning: An Introduction. Adapted from Slides by Tan, Steinbach, Kumar

Ensemble Learning: An Introduction. Adapted from Slides by Tan, Steinbach, Kumar Ensemble Learning: An Introduction Adapted from Slides by Tan, Steinbach, Kumar 1 General Idea D Original Training data Step 1: Create Multiple Data Sets... D 1 D 2 D t-1 D t Step 2: Build Multiple Classifiers

More information

DATA MINING AND MACHINE LEARNING. Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane

DATA MINING AND MACHINE LEARNING. Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane DATA MINING AND MACHINE LEARNING Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane Academic Year 2016/2017 Table of contents Data preprocessing Feature normalization Missing

More information

Cross- Valida+on & ROC curve. Anna Helena Reali Costa PCS 5024

Cross- Valida+on & ROC curve. Anna Helena Reali Costa PCS 5024 Cross- Valida+on & ROC curve Anna Helena Reali Costa PCS 5024 Resampling Methods Involve repeatedly drawing samples from a training set and refibng a model on each sample. Used in model assessment (evalua+ng

More information

Classification and Regression Trees

Classification and Regression Trees Classification and Regression Trees Matthew S. Shotwell, Ph.D. Department of Biostatistics Vanderbilt University School of Medicine Nashville, TN, USA March 16, 2018 Introduction trees partition feature

More information

CSC411/2515 Tutorial: K-NN and Decision Tree

CSC411/2515 Tutorial: K-NN and Decision Tree CSC411/2515 Tutorial: K-NN and Decision Tree Mengye Ren csc{411,2515}ta@cs.toronto.edu September 25, 2016 Cross-validation K-nearest-neighbours Decision Trees Review: Motivation for Validation Framework:

More information

COMP 465: Data Mining Classification Basics

COMP 465: Data Mining Classification Basics Supervised vs. Unsupervised Learning COMP 465: Data Mining Classification Basics Slides Adapted From : Jiawei Han, Micheline Kamber & Jian Pei Data Mining: Concepts and Techniques, 3 rd ed. Supervised

More information

Naïve Bayes Classification. Material borrowed from Jonathan Huang and I. H. Witten s and E. Frank s Data Mining and Jeremy Wyatt and others

Naïve Bayes Classification. Material borrowed from Jonathan Huang and I. H. Witten s and E. Frank s Data Mining and Jeremy Wyatt and others Naïve Bayes Classification Material borrowed from Jonathan Huang and I. H. Witten s and E. Frank s Data Mining and Jeremy Wyatt and others Things We d Like to Do Spam Classification Given an email, predict

More information

Classification with PAM and Random Forest

Classification with PAM and Random Forest 5/7/2007 Classification with PAM and Random Forest Markus Ruschhaupt Practical Microarray Analysis 2007 - Regensburg Two roads to classification Given: patient profiles already diagnosed by an expert.

More information

Extra readings beyond the lecture slides are important:

Extra readings beyond the lecture slides are important: 1 Notes To preview next lecture: Check the lecture notes, if slides are not available: http://web.cse.ohio-state.edu/~sun.397/courses/au2017/cse5243-new.html Check UIUC course on the same topic. All their

More information

INF 4300 Classification III Anne Solberg The agenda today:

INF 4300 Classification III Anne Solberg The agenda today: INF 4300 Classification III Anne Solberg 28.10.15 The agenda today: More on estimating classifier accuracy Curse of dimensionality and simple feature selection knn-classification K-means clustering 28.10.15

More information