Lecture 13: May 10, 2002

Size: px
Start display at page:

Download "Lecture 13: May 10, 2002"

Transcription

1 EE96 Pat. Recog. II: Introduction to Graphical Models University of Washington Spring 00 Dept. of Electrical Engineering Lecture : May 0, 00 Lecturer: Jeff Bilmes Scribe: Arindam Mandal, David Palmer(000). Graph Theory (review from last time) (decomposable) (chordal) (every min. α β-separation is complete) (there exists a junction tree of cliques) We want to try to get any graph into this family of equivalences, so that we can then construct a junction tree from the graph. Next time we will relate this to independence and inference. Running Intersection Property (RIP): A sequence (C, C,..., C n )of sets has the RIP if j, S j C i for some i < j, where S j = H j C j (the separator set) H j = C C... C j (the history up to and including j) R j = C j \ H j (the residual or innovation) The sequence of cliques formed by a well-ordering (e.g., breadth-first or depth-first search order) of a junction tree has the RIP. Intuitively, S j = H j C j (by definition). Then using the definition of a junction tree, C pj C j C pj for any p j < j which is a neighbor of node j in the junction tree (according to the search order). However, since p j is a neighbor of j, C pj contains everything in H j. Hence, S j = C pj C j S j C pj. Example: Cpj Cj ( ) Figure.: C j C k C pj ; C j k<j C k C pj -

2 Lecture : May 0, Constructing a Junction Tree Algorithm: constructing a junction tree (see Fig. ) input: C, C,..., C p (the cliques of a chorded graph satisfying RIP) step : associate each node in the graph with each clique step : for j =,..., p add an edge between C i and C j for some i < j such that S j C i (S j = H j C j ) Ci Sj Cj v v v Figure.: S j C i Intuition: Why does it work? For a junction tree, for any node v, cliques containing v must induce a connected tree, and there are two cases: Case : v S j, and we know that S j C i and S j C j, which means that v C i and v C j Case : v S j, which means that v R j = C j \ H j Note: node j is a candidate for some later node that has v. See [SL96] for the formal proof.. More Graph Theory Basics Definition: Perfect DAG - a DAG is perfect if the parents of every node form a complete set. A Perfect DAG NOT a Perfect DAG Figure.: Examples of perfect and non-perfect DAGS Definition: Perfect Numbering -a node numbering (v, v,..., v k ) of an UGM is perfect if all lower numbered neighbors of every node are complete, i.e., ne(v j ) {v, v,..., v j } is complete. Examples are shown in Fig...

3 Lecture : May 0, 00 - B D E A C Figure.: ABCDEF is a perfect numbering but ABCEFD is not. F Figure.: No perfect numbering possible Note: Any ordering of a complete graph is perfect. Perfect DAG moralized graph. Given a well-ordered (e.g., topological order) (v, v,..., v k ) perfect DAG G, its undirected version G is chordal with v, v,..., v k a perfect numbering Proof: G is decomposable: j, (W j, V j, S j ) form a decomposition, where: W j = cl (v j ) V j (note that cl denotes closure w.r.t. the undirected graph) S j = W j V j is a separator V j = {v, v,..., v k } (W j, V j, S j ) = (cl (V j ) {v, v,..., v k }, {v, v,..., v j, }, cl (V j ) {v, v,..., v j }) Additionally, cl (V j ) = V j pa(vj ) since G is a DAG. Also, pa(v j ) are complete because G is a perfect DAG. Hence cl (V j ) A is complete where A V. Thus,in (W j, V j, S j ) The first term cl (V j ) {v, v,..., v k } is complete and therefore decomposable. The second term {v, v,..., v j } is decomposable by induction. The third term cl (V j ) {v, v,..., v j } is complete. Suppose we are given a perfect numbering (v, v,..., v k ) of an UGM. We can produce a perfect DAG by pointing lower numbered vertices to higher numbered vertices. This implies that the UGM is chordal. 6 6 Figure.6: Producing a perfect DAG from an UGM. (from [SL96].7) An UGM is chordal iff it admits a perfect numbering.

4 Lecture : May 0, 00 - Summary of equivalent conditions on graphs: decomposable chordal every minimal (α, β)-separator is complete. there is a junction tree of cliques the graph admits a perfect numbering But how do we tell if a graph is chordal? Two important definitions: Definition: simplicial - α is simplicial if bd(α) is complete (all neighbors are joined in UGM) α α Not simplicial Simplicial Figure.7: Examples of simplicial and non-simplicial nodes. Definition: eliminatable - a graph G is said to be eliminatable if all nodes can be successfully removed by the elimination algorithm without adding any edges Remember elimination algorithm (from first lectures):. choose an ordering. pick nodes in order, join all neighbors. remove node, repeat Note: Running elimination on a perfect numbering produces a chordal graph. Any eliminatable graph is chordal. Proof: By induction Base case: node is obvious Assume true for N, show N+ Given an eliminatable graph with N+ nodes, we know that it has at least one simplicial node A G \ {A} is triangulated by induction (i.e. since G \ {A} is eliminatable also) but A doesn t produce any chordless cycles because it is simplicial G is chordal Note: It ll be proved later that any chordal is also eliminatable. But how do we know if a graph is eliminatable? We run the elimination algorithm many times for all possible orderings to realize an elimination ordering for which no edges are added which would imply a chordal graph. However, this would be prohibitively expensive. Alternatively, we could start by finding a simplicial node and try to eliminate it. If we can eliminate the node, it implies that we have found an elimination order that produces a perfect numbering of

5 Lecture : May 0, 00 - nodes. If we cannot eliminate the simplicial node, it implies the graph is not chordal. This alternate procedure is also computationally expensive. Thus an efficient procedure is needed for testing the chordality of a graph.. Maximum Cardinality Search Maximum Cardinality Search (MCS) is an algorithm that tests an UGM for chordality in O( V + E ) time. First published by Tarjan and Yannakakis [TY8], it is a very important algorithm for Bayesian Networks. Algorithm: Maximum Cardinality Search Input: undirected graph G Outputs: ) whether G is chordal or not ) a perfect numbering for G, if it is chordal set output = chordal set i = set L = set c(v) = 0 v V while (L V ) end U = V \ L v = argmax v U v i = v ;; i is a counter ;; L is the set of previously labeled vertices c(v) ;; array counting number of previously labeled neighbors of each node v ;; current set of unlabeled vertices ;;find, from the unlabeled nodes, one with the greatest number of previously labeled neighbors, breaking ties arbitrarily. Note that the name of the algorithm is derived from the fact that the next node we choose to be label is the one with the maximum cardiality of the set of previously labeled neighbors. ;; rename so v gets the name v i if ne(v i ) L is not complete ;; output = not chordal π vi. = ne(vi ) L ;; set of prev. labeled neighbors of v i c(w) = c(w) +, w (ne(v i ) U) L = L {v i } i = i + if set of previously labeled neighbors is not complete, not chordal. ;; increment counts of all unlabeled neighbors of this newly labeled node. Later we pick one with many neighbors. The idea is that we maximize the cardinality of the set of previously labeled neighbors, i.e., ne(v i ) L. The cardinality is increased by increasing c(w), so next node we choose will have many labeled neighbors. We can prove that if ever such a set is not complete, then it is not chordal. Thus, in a nutshell, the algorithm chooses and labels a node that has the greatest number of previously labeled neighbors. Table. lists the values of the variables i, c, L and U used in the MCS algorithm for the graph shown in Fig. 8.

6 Lecture : May 0, 00-6 Table.: MCS algorithm for graph of Fig. 8 i c 6 L U : :6 0 : :6 0 : :6 0 :,,6 6 0 :,:6 x 6 x x6 x x x Figure.8: Node ordering produced by MCS algorithm: (,,,6,,). Note: The first node in the ordering is chosen arbitrarily, since c(v) = 0 for all nodes during the first iteration. The resulting labels (v, v,..., v k ) constitute a vertex ordering. This ordering will be perfect (if the graph is chordal) since for any node v, π v will be complete.. Finding Cliques Satisfying RIP Key idea: given the ordering produced by MCS, we can find a clique ordering satisfying RIP. Algorithm: Find cliques in RIP order / Ladder-based clique construction start with (v, v,..., v k ) in RIP order (from MCS) π. = π vi ;; cardinality of sets of previously labeled neighbors define i as ladder node if π i π i+ ORi = k. = j th ladder node λ j c j. = {λj } π λi ;;λ j and set of previously run nodes from MCS c j are the cliques of G and clique ordering (c, c,...) satisfies the RIP. ;; cardinality is decreasing or staying the same as i increases.

7 Lecture : May 0, 00-7 Proof: see [CDLS99]. Table. shows the result of running the ladder-based clique construction algorithm on the node ordering produced by the MCS algorithm. Table.: Ladder-based Clique Construction. Labeling 6 π vi {} {,} {,} {,} {} π i 0 Ladder? N N Y Y Y Y The clique ordering produced by this algorithm is: {,,}, {,,}, {6,,}, {,}. Note: We can use these cliques to construct a junction tree using the procedure outlined in section.. References [TY8] R.E. TARJAN, M. YANNAKAKIS, Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs, SIAM Journal on Computing, Volume, Number, August 98, pp [SL96] S. L. LAURITZEN, Graphical Models, Oxford Science Publications, 996. [CDLS99] R. G. COWELL, A. P. DAWID, S. L. LAURITZEN, and D. J. SPIEGELHALTER, Probabilistic Networks and Expert Systems, Springer, 999.

Lecture 11: May 1, 2000

Lecture 11: May 1, 2000 / EE596 Pat. Recog. II: Introduction to Graphical Models Spring 2000 Lecturer: Jeff Bilmes Lecture 11: May 1, 2000 University of Washington Dept. of Electrical Engineering Scribe: David Palmer 11.1 Graph

More information

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models.

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models. Undirected Graphical Models: Chordal Graphs, Decomposable Graphs, Junction Trees, and Factorizations Peter Bartlett. October 2003. These notes present some properties of chordal graphs, a set of undirected

More information

Junction Trees and Chordal Graphs

Junction Trees and Chordal Graphs Graphical Models, Lecture 6, Michaelmas Term 2011 October 24, 2011 Decomposability Factorization of Markov distributions Explicit formula for MLE Consider an undirected graph G = (V, E). A partitioning

More information

Decomposition of log-linear models

Decomposition of log-linear models Graphical Models, Lecture 5, Michaelmas Term 2009 October 27, 2009 Generating class Dependence graph of log-linear model Conformal graphical models Factor graphs A density f factorizes w.r.t. A if there

More information

EE512 Graphical Models Fall 2009

EE512 Graphical Models Fall 2009 EE512 Graphical Models Fall 2009 Prof. Jeff Bilmes University of Washington, Seattle Department of Electrical Engineering Fall Quarter, 2009 http://ssli.ee.washington.edu/~bilmes/ee512fa09 Lecture 11 -

More information

Junction Trees and Chordal Graphs

Junction Trees and Chordal Graphs Graphical Models, Lecture 6, Michaelmas Term 2009 October 30, 2009 Decomposability Factorization of Markov distributions Explicit formula for MLE Consider an undirected graph G = (V, E). A partitioning

More information

Graph Theory. Probabilistic Graphical Models. L. Enrique Sucar, INAOE. Definitions. Types of Graphs. Trajectories and Circuits.

Graph Theory. Probabilistic Graphical Models. L. Enrique Sucar, INAOE. Definitions. Types of Graphs. Trajectories and Circuits. Theory Probabilistic ical Models L. Enrique Sucar, INAOE and (INAOE) 1 / 32 Outline and 1 2 3 4 5 6 7 8 and 9 (INAOE) 2 / 32 A graph provides a compact way to represent binary relations between a set of

More information

EE512 Graphical Models Fall 2009

EE512 Graphical Models Fall 2009 EE512 Graphical Models Fall 2009 Prof. Jeff Bilmes University of Washington, Seattle Department of Electrical Engineering Fall Quarter, 2009 http://ssli.ee.washington.edu/~bilmes/ee512fa09 Lecture 13 -

More information

Chordal graphs MPRI

Chordal graphs MPRI Chordal graphs MPRI 2017 2018 Michel Habib habib@irif.fr http://www.irif.fr/~habib Sophie Germain, septembre 2017 Schedule Chordal graphs Representation of chordal graphs LBFS and chordal graphs More structural

More information

Junction tree propagation - BNDG 4-4.6

Junction tree propagation - BNDG 4-4.6 Junction tree propagation - BNDG 4-4. Finn V. Jensen and Thomas D. Nielsen Junction tree propagation p. 1/2 Exact Inference Message Passing in Join Trees More sophisticated inference technique; used in

More information

Learning Bounded Treewidth Bayesian Networks

Learning Bounded Treewidth Bayesian Networks Journal of Machine Learning Research 9 (2008) 2287-2319 Submitted 5/08; Published 10/08 Learning Bounded Treewidth Bayesian Networks Gal Elidan Department of Statistics Hebrew University Jerusalem, 91905,

More information

A NEW TEST FOR INTERVAL GRAPHS. Wen-Lian Hsu 1

A NEW TEST FOR INTERVAL GRAPHS. Wen-Lian Hsu 1 A NEW TEST FOR INTERVAL GRAPHS Wen-Lian Hsu 1 Institute of Information Science, Academia Sinica Taipei, Taiwan, Republic of China hsu@iis.sinica.edu.tw Abstract An interval graph is the intersection graph

More information

Ch9: Exact Inference: Variable Elimination. Shimi Salant, Barak Sternberg

Ch9: Exact Inference: Variable Elimination. Shimi Salant, Barak Sternberg Ch9: Exact Inference: Variable Elimination Shimi Salant Barak Sternberg Part 1 Reminder introduction (1/3) We saw two ways to represent (finite discrete) distributions via graphical data structures: Bayesian

More information

Bayesian Networks, Winter Yoav Haimovitch & Ariel Raviv

Bayesian Networks, Winter Yoav Haimovitch & Ariel Raviv Bayesian Networks, Winter 2009-2010 Yoav Haimovitch & Ariel Raviv 1 Chordal Graph Warm up Theorem 7 Perfect Vertex Elimination Scheme Maximal cliques Tree Bibliography M.C.Golumbic Algorithmic Graph Theory

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Suggested Reading: Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Probabilistic Modelling and Reasoning: The Junction

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Raquel Urtasun and Tamir Hazan TTI Chicago April 25, 2011 Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 1 / 17 Clique Trees Today we are going to

More information

Lecture 19 Thursday, March 29. Examples of isomorphic, and non-isomorphic graphs will be given in class.

Lecture 19 Thursday, March 29. Examples of isomorphic, and non-isomorphic graphs will be given in class. CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 19 Thursday, March 29 GRAPH THEORY Graph isomorphism Definition 19.1 Two graphs G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) are isomorphic, write G 1 G

More information

GENERATING JUNCTION TREES OF DECOMPOSABLE GRAPHS WITH THE CHRISTMAS TREE ALGORITHM

GENERATING JUNCTION TREES OF DECOMPOSABLE GRAPHS WITH THE CHRISTMAS TREE ALGORITHM GENERATING JUNCTION TREES OF DECOMPOSABLE GRAPHS WITH THE CHRISTMAS TREE ALGORITHM JIMMY OLSSON, TATJANA PAVLENKO, FELIX L. RIOS Abstract. The junction tree representation provides an attractive structural

More information

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Exact Inference

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Exact Inference STAT 598L Probabilistic Graphical Models Instructor: Sergey Kirshner Exact Inference What To Do With Bayesian/Markov Network? Compact representation of a complex model, but Goal: efficient extraction of

More information

Chordal Graphs: Theory and Algorithms

Chordal Graphs: Theory and Algorithms Chordal Graphs: Theory and Algorithms 1 Chordal graphs Chordal graph : Every cycle of four or more vertices has a chord in it, i.e. there is an edge between two non consecutive vertices of the cycle. Also

More information

Some results on Interval probe graphs

Some results on Interval probe graphs Some results on Interval probe graphs In-Jen Lin and C H Wu Department of Computer science Science National Taiwan Ocean University, Keelung, Taiwan ijlin@mail.ntou.edu.tw Abstract Interval Probe Graphs

More information

6 : Factor Graphs, Message Passing and Junction Trees

6 : Factor Graphs, Message Passing and Junction Trees 10-708: Probabilistic Graphical Models 10-708, Spring 2018 6 : Factor Graphs, Message Passing and Junction Trees Lecturer: Kayhan Batmanghelich Scribes: Sarthak Garg 1 Factor Graphs Factor Graphs are graphical

More information

EE512A Advanced Inference in Graphical Models

EE512A Advanced Inference in Graphical Models EE512A Advanced Inference in Graphical Models Fall Quarter, Lecture 6 http://j.ee.washington.edu/~bilmes/classes/ee512a_fall_2014/ Prof. Jeff Bilmes University of Washington, Seattle Department of Electrical

More information

Forensic Statistics and Graphical Models (2) Richard Gill Spring Semester

Forensic Statistics and Graphical Models (2) Richard Gill Spring Semester Forensic Statistics and Graphical Models (2) Richard Gill Spring Semester 2015 http://www.math.leidenuniv.nl/~gill/teaching/graphical Graph Theory An undirected graph consists of a set of vertices and

More information

An O(m + nlog n) On-Line Algorithm for Recognizing Interval Graphs

An O(m + nlog n) On-Line Algorithm for Recognizing Interval Graphs An O(m + nlog n) On-Line Algorithm for Recognizing Interval Graphs Wen-Lian Hsu Institute of Information Science, Academia Sinica, Taipei, Taiwan, R.O.C. Abstract. Since the invention of PQ-trees by Booth

More information

Inference for loglinear models (contd):

Inference for loglinear models (contd): Stat 504, Lecture 25 1 Inference for loglinear models (contd): Loglinear/Logit connection Intro to Graphical Models Stat 504, Lecture 25 2 Loglinear Models no distinction between response and explanatory

More information

A Parallel Algorithm to Test Chordality of Graphs

A Parallel Algorithm to Test Chordality of Graphs Uniwersytet Jagielloński Wydział Matematyki i Informatyki Zespół Katedr i Zakładów Informatyki Matematycznej arxiv:1508.06329v1 [cs.dc] 25 Aug 2015 Agnieszka Łupińska A Parallel Algorithm to Test Chordality

More information

Maximum Cardinality Search for Computing Minimal Triangulations of Graphs 1

Maximum Cardinality Search for Computing Minimal Triangulations of Graphs 1 Algorithmica (2004) 39: 287 298 DOI: 10.1007/s00453-004-1084-3 Algorithmica 2004 Springer-Verlag New York, LLC Maximum Cardinality Search for Computing Minimal Triangulations of Graphs 1 Anne Berry, 2

More information

Applied Mathematics Letters. Graph triangulations and the compatibility of unrooted phylogenetic trees

Applied Mathematics Letters. Graph triangulations and the compatibility of unrooted phylogenetic trees Applied Mathematics Letters 24 (2011) 719 723 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Graph triangulations and the compatibility

More information

Maximal Label Search algorithms to compute perfect and minimal elimination orderings

Maximal Label Search algorithms to compute perfect and minimal elimination orderings Author manuscript, published in "SIAM Journal on Discrete Mathematics 23, 1 (2009) 428-446" Maximal Label Search algorithms to compute perfect and minimal elimination orderings A. Berry R. Krueger G. Simonet

More information

Computing a Clique Tree with the Algorithm Maximal Label Search

Computing a Clique Tree with the Algorithm Maximal Label Search algorithms Article Computing a Clique Tree with the Algorithm Maximal Label Search Anne Berry 1 and eneviève Simonet 2, * 1 LIMOS (Laboratoire d Informatique, d Optimisation et de Modélisation des Systèmes)

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Overview of Part Two Probabilistic Graphical Models Part Two: Inference and Learning Christopher M. Bishop Exact inference and the junction tree MCMC Variational methods and EM Example General variational

More information

Recitation 4: Elimination algorithm, reconstituted graph, triangulation

Recitation 4: Elimination algorithm, reconstituted graph, triangulation Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Recitation 4: Elimination algorithm, reconstituted graph, triangulation

More information

Faster parameterized algorithms for Minimum Fill-In

Faster parameterized algorithms for Minimum Fill-In Faster parameterized algorithms for Minimum Fill-In Hans L. Bodlaender Pinar Heggernes Yngve Villanger Technical Report UU-CS-2008-042 December 2008 Department of Information and Computing Sciences Utrecht

More information

Acyclic Network. Tree Based Clustering. Tree Decomposition Methods

Acyclic Network. Tree Based Clustering. Tree Decomposition Methods Summary s Join Tree Importance of s Solving Topological structure defines key features for a wide class of problems CSP: Inference in acyclic network is extremely efficient (polynomial) Idea: remove cycles

More information

Faster parameterized algorithms for Minimum Fill-In

Faster parameterized algorithms for Minimum Fill-In Faster parameterized algorithms for Minimum Fill-In Hans L. Bodlaender Pinar Heggernes Yngve Villanger Abstract We present two parameterized algorithms for the Minimum Fill-In problem, also known as Chordal

More information

3 : Representation of Undirected GMs

3 : Representation of Undirected GMs 0-708: Probabilistic Graphical Models 0-708, Spring 202 3 : Representation of Undirected GMs Lecturer: Eric P. Xing Scribes: Nicole Rafidi, Kirstin Early Last Time In the last lecture, we discussed directed

More information

NOTE ON MINIMALLY k-connected GRAPHS

NOTE ON MINIMALLY k-connected GRAPHS NOTE ON MINIMALLY k-connected GRAPHS R. Rama a, Suresh Badarla a a Department of Mathematics, Indian Institute of Technology, Chennai, India ABSTRACT A k-tree is either a complete graph on (k+1) vertices

More information

Learning decomposable models with a bounded clique size

Learning decomposable models with a bounded clique size Learning decomposable models with a bounded clique size Achievements 2014-2016 Aritz Pérez Basque Center for Applied Mathematics Bilbao, March, 2016 Outline 1 Motivation and background 2 The problem 3

More information

CSC 373: Algorithm Design and Analysis Lecture 4

CSC 373: Algorithm Design and Analysis Lecture 4 CSC 373: Algorithm Design and Analysis Lecture 4 Allan Borodin January 14, 2013 1 / 16 Lecture 4: Outline (for this lecture and next lecture) Some concluding comments on optimality of EST Greedy Interval

More information

Triangulation Heuristics for BN2O Networks

Triangulation Heuristics for BN2O Networks Triangulation Heuristics for BN2O Networks Petr Savicky 1 and JiříVomlel 2 1 Institute of Computer Science Academy of Sciences of the Czech Republic Pod vodárenskou věží 2, 182 07 Praha 8, Czech Republic

More information

The 3-Steiner Root Problem

The 3-Steiner Root Problem The 3-Steiner Root Problem Maw-Shang Chang 1 and Ming-Tat Ko 2 1 Department of Computer Science and Information Engineering National Chung Cheng University, Chiayi 621, Taiwan, R.O.C. mschang@cs.ccu.edu.tw

More information

Info 2950, Lecture 16

Info 2950, Lecture 16 Info 2950, Lecture 16 28 Mar 2017 Prob Set 5: due Fri night 31 Mar Breadth first search (BFS) and Depth First Search (DFS) Must have an ordering on the vertices of the graph. In most examples here, the

More information

Contracting Chordal Graphs and Bipartite Graphs to Paths and Trees

Contracting Chordal Graphs and Bipartite Graphs to Paths and Trees Contracting Chordal Graphs and Bipartite Graphs to Paths and Trees Pinar Heggernes Pim van t Hof Benjamin Léveque Christophe Paul Abstract We study the following two graph modification problems: given

More information

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models Prof. Daniel Cremers 4. Probabilistic Graphical Models Directed Models The Bayes Filter (Rep.) (Bayes) (Markov) (Tot. prob.) (Markov) (Markov) 2 Graphical Representation (Rep.) We can describe the overall

More information

Reachability in K 3,3 -free and K 5 -free Graphs is in Unambiguous Logspace

Reachability in K 3,3 -free and K 5 -free Graphs is in Unambiguous Logspace CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2014, Article 2, pages 1 29 http://cjtcs.cs.uchicago.edu/ Reachability in K 3,3 -free and K 5 -free Graphs is in Unambiguous Logspace Thomas Thierauf Fabian

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Shortest Path Problem G. Guérard Department of Nouvelles Energies Ecole Supérieur d Ingénieurs Léonard de Vinci Lecture 3 GG A.I. 1/42 Outline 1 The Shortest Path Problem Introduction

More information

Weighted Treewidth: Algorithmic Techniques and Results

Weighted Treewidth: Algorithmic Techniques and Results Weighted Treewidth: Algorithmic Techniques and Results Emgad Bachoore Hans L. Bodlaender Department of Information and Computing Sciences, Utrecht University Technical Report UU-CS-2006-013 www.cs.uu.nl

More information

Lecture 2. 1 Introduction. 2 The Set Cover Problem. COMPSCI 632: Approximation Algorithms August 30, 2017

Lecture 2. 1 Introduction. 2 The Set Cover Problem. COMPSCI 632: Approximation Algorithms August 30, 2017 COMPSCI 632: Approximation Algorithms August 30, 2017 Lecturer: Debmalya Panigrahi Lecture 2 Scribe: Nat Kell 1 Introduction In this lecture, we examine a variety of problems for which we give greedy approximation

More information

Lecture 5: Exact inference. Queries. Complexity of inference. Queries (continued) Bayesian networks can answer questions about the underlying

Lecture 5: Exact inference. Queries. Complexity of inference. Queries (continued) Bayesian networks can answer questions about the underlying given that Maximum a posteriori (MAP query: given evidence 2 which has the highest probability: instantiation of all other variables in the network,, Most probable evidence (MPE: given evidence, find an

More information

A Complete Anytime Algorithm for Treewidth

A Complete Anytime Algorithm for Treewidth A Complete Anytime Algorithm for Treewidth Vibhav Gogate and Rina Dechter School of Information and Computer Science, University of California, Irvine, CA 92967 {vgogate,dechter}@ics.uci.edu Abstract In

More information

CS242: Probabilistic Graphical Models Lecture 2B: Loopy Belief Propagation & Junction Trees

CS242: Probabilistic Graphical Models Lecture 2B: Loopy Belief Propagation & Junction Trees CS242: Probabilistic Graphical Models Lecture 2B: Loopy Belief Propagation & Junction Trees Professor Erik Sudderth Brown University Computer Science September 22, 2016 Some figures and materials courtesy

More information

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models Prof. Daniel Cremers 4. Probabilistic Graphical Models Directed Models The Bayes Filter (Rep.) (Bayes) (Markov) (Tot. prob.) (Markov) (Markov) 2 Graphical Representation (Rep.) We can describe the overall

More information

1 Connected components in undirected graphs

1 Connected components in undirected graphs Lecture 10 Connected components of undirected and directed graphs Scribe: Luke Johnston (2016) and Mary Wootters (2017) Date: October 25, 2017 Much of the following notes were taken from Tim Roughgarden

More information

Pre-processing for Triangulation of Probabilistic Networks

Pre-processing for Triangulation of Probabilistic Networks Pre-processing for Triangulation of Probabilistic Networks Hans L. Bodlaender, Institute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands hans@cs.uu.nl

More information

Treewidth and graph minors

Treewidth and graph minors Treewidth and graph minors Lectures 9 and 10, December 29, 2011, January 5, 2012 We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory gives a very general condition under

More information

Chordal deletion is fixed-parameter tractable

Chordal deletion is fixed-parameter tractable Chordal deletion is fixed-parameter tractable Dániel Marx Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany. dmarx@informatik.hu-berlin.de Abstract. It

More information

Pre-processing for Triangulation of Probabilistic Networks

Pre-processing for Triangulation of Probabilistic Networks Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany HANS L. BODLAENDER ARIE M.C.A. KOSTER FRANK VAN DEN EIJKHOF LINDA C. VAN DER GAAG Pre-processing for Triangulation

More information

Honour Thy Neighbour Clique Maintenance in Dynamic Graphs

Honour Thy Neighbour Clique Maintenance in Dynamic Graphs Honour Thy Neighbour Clique Maintenance in Dynamic Graphs Thorsten J. Ottosen Department of Computer Science, Aalborg University, Denmark nesotto@cs.aau.dk Jiří Vomlel Institute of Information Theory and

More information

FMA901F: Machine Learning Lecture 6: Graphical Models. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 6: Graphical Models. Cristian Sminchisescu FMA901F: Machine Learning Lecture 6: Graphical Models Cristian Sminchisescu Graphical Models Provide a simple way to visualize the structure of a probabilistic model and can be used to design and motivate

More information

arxiv: v2 [cs.ds] 25 Jan 2017

arxiv: v2 [cs.ds] 25 Jan 2017 d-hop Dominating Set for Directed Graph with in-degree Bounded by One arxiv:1404.6890v2 [cs.ds] 25 Jan 2017 Joydeep Banerjee, Arun Das, and Arunabha Sen School of Computing, Informatics and Decision System

More information

A New Approach For Convert Multiply-Connected Trees in Bayesian networks

A New Approach For Convert Multiply-Connected Trees in Bayesian networks A New Approach For Convert Multiply-Connected Trees in Bayesian networks 1 Hussein Baloochian, Alireza khantimoory, 2 Saeed Balochian 1 Islamic Azad university branch of zanjan 2 Islamic Azad university

More information

LEX M (lexicographic labelling along paths) Lex BFS. MCS (cardinality labelling of neighbors) MCS M (cardinality labelling along paths)

LEX M (lexicographic labelling along paths) Lex BFS. MCS (cardinality labelling of neighbors) MCS M (cardinality labelling along paths) Maximum Cardinality Search for Computing Minimal Triangulations of Graphs Λ Anne Berry y Jean R. S. Blair z Pinar Heggernes x Barry W. Peyton Abstract We present a new algorithm, called MCS-M, for computing

More information

Maximal Prime Subgraph Decomposition of Bayesian Networks

Maximal Prime Subgraph Decomposition of Bayesian Networks From: FLAIRS-01 Proceedings. Copyright 2001, AAAI (www.aaai.org). All rights reserved. Maximal Prime Subgraph Decomposition of Bayesian Networks Kristian G. Olesen Anders L. Madsen Department of Computer

More information

Enumerating the decomposable neighbours of a decomposable graph under a simple perturbation scheme

Enumerating the decomposable neighbours of a decomposable graph under a simple perturbation scheme Enumerating the decomposable neighbours of a decomposable graph under a simple perturbation scheme Alun Thomas Department of Biomedical Informatics University of Utah Peter J Green Department of Mathematics

More information

Coloring edges and vertices of graphs without short or long cycles

Coloring edges and vertices of graphs without short or long cycles Coloring edges and vertices of graphs without short or long cycles Marcin Kamiński and Vadim Lozin Abstract Vertex and edge colorability are two graph problems that are NPhard in general. We show that

More information

Lecture 3: Graphs and flows

Lecture 3: Graphs and flows Chapter 3 Lecture 3: Graphs and flows Graphs: a useful combinatorial structure. Definitions: graph, directed and undirected graph, edge as ordered pair, path, cycle, connected graph, strongly connected

More information

Summary. Acyclic Networks Join Tree Clustering. Tree Decomposition Methods. Acyclic Network. Tree Based Clustering. Tree Decomposition.

Summary. Acyclic Networks Join Tree Clustering. Tree Decomposition Methods. Acyclic Network. Tree Based Clustering. Tree Decomposition. Summary s Join Tree Importance of s Solving Topological structure denes key features for a wide class of problems CSP: Inference in acyclic network is extremely ecient (polynomial) Idea: remove cycles

More information

Lecture 9. Semidefinite programming is linear programming where variables are entries in a positive semidefinite matrix.

Lecture 9. Semidefinite programming is linear programming where variables are entries in a positive semidefinite matrix. CSE525: Randomized Algorithms and Probabilistic Analysis Lecture 9 Lecturer: Anna Karlin Scribe: Sonya Alexandrova and Keith Jia 1 Introduction to semidefinite programming Semidefinite programming is linear

More information

arxiv: v1 [stat.ot] 20 Oct 2011

arxiv: v1 [stat.ot] 20 Oct 2011 Markov Equivalences for Subclasses of Loopless Mixed Graphs KAYVAN SADEGHI Department of Statistics, University of Oxford arxiv:1110.4539v1 [stat.ot] 20 Oct 2011 ABSTRACT: In this paper we discuss four

More information

On Covering a Graph Optimally with Induced Subgraphs

On Covering a Graph Optimally with Induced Subgraphs On Covering a Graph Optimally with Induced Subgraphs Shripad Thite April 1, 006 Abstract We consider the problem of covering a graph with a given number of induced subgraphs so that the maximum number

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Overview of Part One Probabilistic Graphical Models Part One: Graphs and Markov Properties Christopher M. Bishop Graphs and probabilities Directed graphs Markov properties Undirected graphs Examples Microsoft

More information

Acyclic Network. Tree Based Clustering. Tree Decomposition Methods

Acyclic Network. Tree Based Clustering. Tree Decomposition Methods Summary s Cluster Tree Elimination Importance of s Solving Topological structure dene key features for a wide class of problems CSP: Inference in acyclic network is extremely ecient (polynomial) Idea:

More information

A taste of perfect graphs (continued)

A taste of perfect graphs (continued) A taste of perfect graphs (continued) Recall two theorems from last class characterizing perfect graphs (and that we observed that the α ω theorem implied the Perfect Graph Theorem). Perfect Graph Theorem.

More information

COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES

COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES Volume 2, Number 1, Pages 61 66 ISSN 1715-0868 COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES MARCIN KAMIŃSKI AND VADIM LOZIN Abstract. Vertex and edge colorability are two graph problems

More information

Draft: More complex graph computations for undirected graphical models by the CoCo bundle for R

Draft: More complex graph computations for undirected graphical models by the CoCo bundle for R DSC 2003 Working Papers (Draft Versions) http://www.ci.tuwien.ac.at/conferences/dsc-2003/ Draft: More complex graph computations for undirected graphical models by the CoCo bundle for R Jens Henrik Badsberg

More information

val(y, I) α (9.0.2) α (9.0.3)

val(y, I) α (9.0.2) α (9.0.3) CS787: Advanced Algorithms Lecture 9: Approximation Algorithms In this lecture we will discuss some NP-complete optimization problems and give algorithms for solving them that produce a nearly optimal,

More information

Last course. Last course. Michel Habib 28 octobre 2016

Last course. Last course. Michel Habib  28 octobre 2016 Last course Michel Habib habib@irif.fr http://www.irif.fr/~habib 28 octobre 2016 Schedule Introduction More structural insights on chordal graphs Properties of reduced clique graphs Exercises Interval

More information

Computational Intelligence

Computational Intelligence Computational Intelligence A Logical Approach Problems for Chapter 10 Here are some problems to help you understand the material in Computational Intelligence: A Logical Approach. They are designed to

More information

Bipartite Roots of Graphs

Bipartite Roots of Graphs Bipartite Roots of Graphs Lap Chi Lau Department of Computer Science University of Toronto Graph H is a root of graph G if there exists a positive integer k such that x and y are adjacent in G if and only

More information

APPROXIMATION ALGORITHMS FOR TREEWIDTH. Keywords: Treewidth, Triangulation, Tree Decomposition, Network Flow.

APPROXIMATION ALGORITHMS FOR TREEWIDTH. Keywords: Treewidth, Triangulation, Tree Decomposition, Network Flow. APPROXIMATION ALGORITHMS FOR TREEWIDTH EYAL AMIR COMPUTER SCIENCE DEPARTMENT UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN URBANA, IL 61801, USA EYAL@CS.UIUC.EDU Abstract. This paper presents algorithms whose

More information

Small Survey on Perfect Graphs

Small Survey on Perfect Graphs Small Survey on Perfect Graphs Michele Alberti ENS Lyon December 8, 2010 Abstract This is a small survey on the exciting world of Perfect Graphs. We will see when a graph is perfect and which are families

More information

THE LEAFAGE OF A CHORDAL GRAPH

THE LEAFAGE OF A CHORDAL GRAPH Discussiones Mathematicae Graph Theory 18 (1998 ) 23 48 THE LEAFAGE OF A CHORDAL GRAPH In-Jen Lin National Ocean University, Taipei, Taiwan Terry A. McKee 1 Wright State University, Dayton, OH 45435-0001,

More information

Search Algorithms for Solving Queries on Graphical Models & the Importance of Pseudo-trees in their Complexity.

Search Algorithms for Solving Queries on Graphical Models & the Importance of Pseudo-trees in their Complexity. Search Algorithms for Solving Queries on Graphical Models & the Importance of Pseudo-trees in their Complexity. University of California, Irvine CS199: Individual Study with Rina Dechter Héctor Otero Mediero

More information

COL351: Analysis and Design of Algorithms (CSE, IITD, Semester-I ) Name: Entry number:

COL351: Analysis and Design of Algorithms (CSE, IITD, Semester-I ) Name: Entry number: Name: Entry number: There are 6 questions for a total of 75 points. 1. Consider functions f(n) = 10n2 n + 3 n and g(n) = n3 n. Answer the following: (a) ( 1 / 2 point) State true or false: f(n) is O(g(n)).

More information

12.1 Formulation of General Perfect Matching

12.1 Formulation of General Perfect Matching CSC5160: Combinatorial Optimization and Approximation Algorithms Topic: Perfect Matching Polytope Date: 22/02/2008 Lecturer: Lap Chi Lau Scribe: Yuk Hei Chan, Ling Ding and Xiaobing Wu In this lecture,

More information

Lecture 5: Exact inference

Lecture 5: Exact inference Lecture 5: Exact inference Queries Inference in chains Variable elimination Without evidence With evidence Complexity of variable elimination which has the highest probability: instantiation of all other

More information

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 9 Notes. Class URL:

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 9 Notes. Class URL: Notes slides from before lecture CSE 21, Winter 2017, Section A00 Lecture 9 Notes Class URL: http://vlsicad.ucsd.edu/courses/cse21-w17/ Notes slides from before lecture Notes February 8 (1) HW4 is due

More information

Distributed minimum spanning tree problem

Distributed minimum spanning tree problem Distributed minimum spanning tree problem Juho-Kustaa Kangas 24th November 2012 Abstract Given a connected weighted undirected graph, the minimum spanning tree problem asks for a spanning subtree with

More information

Lecture notes on: Maximum matching in bipartite and non-bipartite graphs (Draft)

Lecture notes on: Maximum matching in bipartite and non-bipartite graphs (Draft) Lecture notes on: Maximum matching in bipartite and non-bipartite graphs (Draft) Lecturer: Uri Zwick June 5, 2013 1 The maximum matching problem Let G = (V, E) be an undirected graph. A set M E is a matching

More information

Matchings in Graphs. Definition 1 Let G = (V, E) be a graph. M E is called as a matching of G if v V we have {e M : v is incident on e E} 1.

Matchings in Graphs. Definition 1 Let G = (V, E) be a graph. M E is called as a matching of G if v V we have {e M : v is incident on e E} 1. Lecturer: Scribe: Meena Mahajan Rajesh Chitnis Matchings in Graphs Meeting: 1 6th Jan 010 Most of the material in this lecture is taken from the book Fast Parallel Algorithms for Graph Matching Problems

More information

Research Article Structural Learning about Directed Acyclic Graphs from Multiple Databases

Research Article Structural Learning about Directed Acyclic Graphs from Multiple Databases Abstract and Applied Analysis Volume 2012, Article ID 579543, 9 pages doi:10.1155/2012/579543 Research Article Structural Learning about Directed Acyclic Graphs from Multiple Databases Qiang Zhao School

More information

Markov Equivalence in Bayesian Networks

Markov Equivalence in Bayesian Networks Markov Equivalence in Bayesian Networks Ildikó Flesch and eter Lucas Institute for Computing and Information Sciences University of Nijmegen Email: {ildiko,peterl}@cs.kun.nl Abstract robabilistic graphical

More information

CS242: Probabilistic Graphical Models Lecture 3: Factor Graphs & Variable Elimination

CS242: Probabilistic Graphical Models Lecture 3: Factor Graphs & Variable Elimination CS242: Probabilistic Graphical Models Lecture 3: Factor Graphs & Variable Elimination Instructor: Erik Sudderth Brown University Computer Science September 11, 2014 Some figures and materials courtesy

More information

Lecture 2 - Graph Theory Fundamentals - Reachability and Exploration 1

Lecture 2 - Graph Theory Fundamentals - Reachability and Exploration 1 CME 305: Discrete Mathematics and Algorithms Instructor: Professor Aaron Sidford (sidford@stanford.edu) January 11, 2018 Lecture 2 - Graph Theory Fundamentals - Reachability and Exploration 1 In this lecture

More information

Approximation Basics

Approximation Basics Milestones, Concepts, and Examples Xiaofeng Gao Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China Spring 2015 Spring, 2015 Xiaofeng Gao 1/53 Outline History NP Optimization

More information

Enumeration of Perfect Sequences in Chordal Graphs

Enumeration of Perfect Sequences in Chordal Graphs Enumeration of Perfect Sequences in Chordal Graphs Yasuko Matsui, Ryuhei Uehara, Takeaki Uno Center for Computational Epidemiology and Response Analysis University of North Texas May 4, 20 (CeCERA) GSCM

More information

Directed acyclic graphs with the unique dipath property

Directed acyclic graphs with the unique dipath property Author manuscript, published in "Theoretical Computer Science 504 (2013) 5-11" DOI : 10.1016/j.tcs.2012.06.015 Directed acyclic graphs with the unique dipath property Jean Claude Bermond, Michel Cosnard,

More information

Computing optimal total vertex covers for trees

Computing optimal total vertex covers for trees Computing optimal total vertex covers for trees Pak Ching Li Department of Computer Science University of Manitoba Winnipeg, Manitoba Canada R3T 2N2 Abstract. Let G = (V, E) be a simple, undirected, connected

More information

AS COMPLIMENTARY metal oxide semiconductor

AS COMPLIMENTARY metal oxide semiconductor 1784 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2005 Probability Distribution of Signal Arrival Times Using Bayesian Networks Sarvesh Bhardwaj,

More information