COMBINATORIAL COMMUTATIVE ALGEBRA. Fatemeh Mohammadi (University of Bristol)

Size: px
Start display at page:

Download "COMBINATORIAL COMMUTATIVE ALGEBRA. Fatemeh Mohammadi (University of Bristol)"

Transcription

1 COMBINATORIAL COMMUTATIVE ALGEBRA Fatemeh Mohammadi (University of Bristol) Abstract. In this lecture we focus on the ideals associated to graphs. We see many interesting examples in which the Betti numbers of the ideals are given in terms of combinatorics of some graphs. We give a purely combinatorial interpretation of ideals with 2-linear linear resolution (Fröberg Theorem). We see some classic results in literature like Reisner s criterion and Eagon-Reiner s Theorem. 1. Graph ideals As we have seen in the previous lectures, an important topic in commutative algebra is the study of graded Betti numbers of an ideal. We are in particular interested to give a combinatorial description of the Betti numbers of Stanley-Reisner ideals. The next natural step after studying the Koszul complex which gives a nice combinatorial formula for the Betti numbers of the maximal ideal (x 1,..., x n ) is to study the monomial ideals generated in degree 2. We recall that by polarization it is enough to study the squarefree monomial ideals generated in degree 2. Such an ideal corresponds to a graph Edge ideal. Let G be any finite simple graph. We denote the vertex set of G with V(G) and its edges with E(G). Let K be a field and consider the variable x i corresponding to the vertex i in G for every i V(G). Let R = K[x 1,..., x n ] be the polynomial ring on the variables corresponding to the vertices of G. The edge ideal I(G) associated with G is generated by all degree 2 square-free monomials uv for which (u, v) E(G). Note that every ideal in a polynomial ring generated by degree 2 square-free monomials is indeed an edge ideal of some graph G. Date: March 6,

2 As we have seen in the first lecture, there is a simplicial complex denoted by (G) whose Stanley-Reisner ideal is I G. More precisely, (G) is the simplicial complex on V(G) whose faces consist of a subset of vertices, no two joined by an edge. The simplicial compelx (G) is also known as the independence complex of G. It can be also defined as a simplicial complex on [n] whose faces are (G) = {W [n] : W is an independent set of G}. Definition 1.1. A simplicial complex is called flag if all its minimal non-faces are of size 2. Exercise 1.2. A simplicial complex is flag if and only if it can be written as (G) for some finite graph G A minimal edge ideal with characteristic-dependent Betti numbers. Example 1.3 (Katzman). Let be the following simplicial complex which is a 12 point triangulation of the real projective plane. There exists a graph G whose corresponding simplicial complex is. The Betti numbers of I(G) depend on the characteristic of the field K. Let G be the graph on the vertex set [12] with the following edge set E(G): E(G) = {x 1 x 2, x 1 x 3, x 1 x 7, x 1 x 8, x 1 x 10, x 2 x 3, x 2 x 8, x 2 x 9, x 2 x 12, x 3 x 7, x 3 x 9, x 3 x 11, x 4 x 5, x 4 x 6, x 4 x 8, x 4 x 11, x 5 x 6, x 5 x 7, x 5 x 12, x 6 x 9, x 6 x 10, x 7 x 10, x 7 x 11, x 7 x 12, x 8 x 10, x 8 x 11, x 8 x 12, x 9 x 10, x 9 x 11, x 9 x 12, x 10 x 11, x 10 x 12, x 11 x 12 } The Betti numbers of (G) when K has characteristic 0 are total: : : :

3 and when K has characteristic 2 are total: : : : : Here the 9th Betti number depends on the characteristic of K. There is a subgraph H of G on 11 vertices such that the Betti numbers of I H depend on the characteristic of the field. However this is the smallest example. Theorem 1.4. For any graph with at most 10 vertices, the Betti numbers of I(G) do not depend on the characteristic of K Complete graphs. The Complete Graph K n is the graph on n vertices with 2 n edges. The edge ideal of K n is I = I(K n ) = x i x j 1 i < j n. The Stanley-Reisner simplicial complex of I G is (K n ) = {{1},..., {n}}. β i,j (R/I(K n )) = W [n] dim K H W i 1 ( W ; K). As (K n ) is just n isolated W =j vertices, for any nonempty subset W [n] the simplicial subcomplex W is just W isolated vertices. This implies that the only possibly non-zero 3

4 reduced homology groups for such complexes are those in the 0th position: dim K H0 ( W ; k) = the number of connected components of W minus 1 = W 1 So the only contribution of W to β i,j (R/I(K n )) is whenever W = j = i + 1. There are ( ) ( n j = n i+1) subsets of cardinality j. Hence, ( ) n β i,i+1 (R/I(K n )) = i. i + 1 β i,j (R/I(K n )) = 0 if j i + 1. Theorem 1.5. The minimal free resolution of I(K n ) is linear. 2. Monomial ideals with 2-linear resolutions Question 2.1. Give a combinatorial characterization of monomial ideals generated in degree 2 whose minimal free resolution is linear. Question 2.2. Which edge ideals have linear resolutions? The complete answer is given by Fröberg. To state Fröberg s Theorem we need to first have the following definition: Definition 2.3. A graph G is chordal if every cycle of four or more vertices of G has a chord. A chord is an edge that is not part of the cycle but connects two vertices of the cycle Figure 1. A chordal graph and a non-chordal graph Theorem 2.4 (Fröberg s Theorem). Let G be a graph. resolution if and only if G c is a chordal graph. Then I(G) has a linear Theorem 2.5. Let G be a connected simple graph. Then the following are equivalent: 4

5 Figure 2. The complement of the above chordal graph (1) G c is chordal. (2) The simplex complex whose facets are the complete subgraphs of G c is contractible. (3) The edge ideal has a linear resolution. Theorem 2.6 (Herzog, Hibi, Zheng). If G c is chordal, then all the powers of the ideal I(G) has linear resolutions. This is not true in general. Example 2.7. The monomial ideal I = (def, cef, cdf, cde, bef, bcd, acf, ade) K[a, b, c, d, e, f] has a linear resolution. However, I 2 does not have a linear resolution. Example 2.8 (Conca). Let K be a field of characteristic 0. The ideal I = (a 2, ab, ac, ad, b 2, ae + bd, d 2 ) K[a, b, c, d, e] has a linear resolution, but the ideal I 2 does not have a linear resolution Monomial ideals with d-linear resolutions. Question 2.9. Which ideals have linear resolutions? Question Give a combinatorial characterization of monomial ideals generated in degree d whose minimal free resolution is linear. 5

6 3. Vertex cover ideal of G We define the ideal I G = I(G) to be the Alexander dual of the graph ideal I(G). Definition 3.1. Let G be a graph on the vertex set [n]. A vertex cover of a graph G on [n] is a subset C [n] such that every edge {u, v} of G has at least one vertex in C. A vertex cover C is called minimal if no proper subset of C is a vertex cover of G. An independent set of G is a set S [n] such that no edge is a subset of S. Note that we have: S is an independent set of G if and only if [n]\s is a vertex cover of G. The maximal independent sets of G correspond to its minimal vertex covers. Exercise 3.2. Let G be a graph on [n]. Then I G is minimally generated by the monomials x C = i C x i corresponding to the minimal vertex covers of G. Moreover, I G is the Stanley-Reisner ideal of the simplicial complex (G) = (Ḡ). ring. 4. Cohen-Macaulay simplicial complexes A simplicial complex is called Cohen-Macaulay if R/I is a Cohen-Macaulay The characterization of when a simplicial complex is Cohen-Macaulay is known as Reisner s criterion. First we recall the definition of the link of a face. Given a face F of a simplicial complex, we define the simplicial complex link (F ) as a subcomplex of whose faces are link (F ) = {G : F G, F G = }. Theorem 4.1 (Reisner s criterion). A simplicial complex is Cohen-Macaulay over K if and only if for any face F of we have dim K ( H i (link (F ); K)) = 0 for i < dim(link (F )). Reisner s criterion implies that is Cohen-Macaulay over K if and only if the homology of each face s link vanishes below its top dimension. The following theorem connects Cohen-Macaulayness and minimal free resolutions. 6

7 Theorem 4.2 (Eagon-Reiner). A simplicial complex is Cohen-Macaulay over K if and only if the ideal I has a linear resolution over R = K[x 1,,..., x n ]. The characterization of CohenMacaulay graphs have been studied a lot and a complete characterization is given for the following families of graphs: Chordal graphs Bipartite graphs Cactus graphs. We recall that G is called a cactus graph if every two cycles in G have at most one vertex in common. Figure 3. A cactus graph We only mention the characterization of Cohen-Macaulay bipartite graphs here: Theorem 4.3 (Herzog-Hibi). Let G be a bipartite graph with vertex partition V V. Then the following conditions are equivalent: (1) G is a CohenMacaulay graph. (2) V = V and the vertices V = {x 1,..., x n } and V = {y 1,..., y n } can be labelled such that: {x i, y i } are edges for i = 1,..., n. if {x i, y j } is an edge, then i j. if {x i, y j } and {x j, y k } are edges, then {x i, y k } is an edge. Example 4.4. It is easy to check the combinatorial conditions on the following bipartite graphs to see if they are Cohen-Macaulay or not. An immediate corollary of Eagon-Reiner s Theorem is that: 7

8 x 1 x 2 x 3 x 4 x 1 x 2 x 3 x 4 y 1 y 2 y 3 y 4 y 1 y 2 y 3 y 4 Figure 4. (left) A C.M. and (right) a non-c.m. bipartite graph Corollary 4.5. Let G be a Cohen-Macaulay graph. Then the vertex cover ideal I G of G has a linear resolution. As we have seen before, there are ideals with a linear resolution whose second power does not have the same property. However applying the combinatorial characterization of Cohen-Macaulay graphs in special families of graphs one obtains that all powers of the vertex cover ideal of a Cohen-Macaulay graph have this property. Theorem 4.6 (Herzog-Hibi). Let G be a Cohen-Macaulay chordal graph. Then all powers of I G have a linear resolution. Theorem 4.7 (Mohammadi). All powers of the vertex cover ideal of a Cohen-Macaulay cactus graph have linear resolutions. Here is another example which is not a cactus graph, but Cohen-Macaulay and all the powers of I G have linear resolutions. Figure 5. A Cohen-Macaulay non-cactus graph such that all powers of I G have linear resolutions. Question 4.8. Do all powers of the vertex cover ideal of a Cohen-Macaulay graph have linear resolutions? 8

SEQUENTIALLY COHEN-MACAULAY GRAPHS OF FORM θ n1,...,n k. Communicated by Siamak Yassemi. 1. Introduction

SEQUENTIALLY COHEN-MACAULAY GRAPHS OF FORM θ n1,...,n k. Communicated by Siamak Yassemi. 1. Introduction Bulletin of the Iranian Mathematical Society Vol. 36 No. 2 (2010), pp 109-118. SEQUENTIALLY COHEN-MACAULAY GRAPHS OF FORM θ n1,...,n k F. MOHAMMADI* AND D. KIANI Communicated by Siamak Yassemi Abstract.

More information

A combinatorial proof of a formula for Betti numbers of a stacked polytope

A combinatorial proof of a formula for Betti numbers of a stacked polytope A combinatorial proof of a formula for Betti numbers of a staced polytope Suyoung Choi Department of Mathematical Sciences KAIST, Republic of Korea choisy@aistacr (Current Department of Mathematics Osaa

More information

Boolean graphs are Cohen-Macaulay

Boolean graphs are Cohen-Macaulay Boolean graphs are Cohen-Macaulay A-Ming Liu and Tongsuo Wu Department of Mathematics, Shanghai Jiaotong University Abstract. For each Boolean graph B n, it is proved that both B n and its complement B

More information

SIMPLICIAL COMPLEXES SATISFYING SERRE S CONDITION: A SURVEY WITH SOME NEW RESULTS

SIMPLICIAL COMPLEXES SATISFYING SERRE S CONDITION: A SURVEY WITH SOME NEW RESULTS SIMPLICIAL COMPLEXES SATISFYING SERRE S CONDITION: A SURVEY WITH SOME NEW RESULTS M. R. POURNAKI, S. A. SEYED FAKHARI, N. TERAI, AND S. YASSEMI Dedicated with gratitude to our friend Richard P. Stanley

More information

Algebraic properties of edge ideals via combinatorial topology

Algebraic properties of edge ideals via combinatorial topology Algebraic properties of edge ideals via combinatorial topology Anton Dochtermann TU Berlin, MA 6-2 Straße des 17. Juni 136 10623 Berlin Germany dochterm@math.tu-berlin.de Alexander Engström KTH Matematik

More information

A non-partitionable CM simplicial complex

A non-partitionable CM simplicial complex A non-partitionable Cohen-Macaulay simplicial complex Art M. Duval (University of Texas, El Paso) Bennet Goeckner (University of Kansas) Caroline J. Klivans (Brown University) Jeremy L. Martin (University

More information

Simplicial and Cellular Spanning Trees, I: General Theory

Simplicial and Cellular Spanning Trees, I: General Theory Simplicial and Cellular Spanning Trees, I: General Theory Art Duval (University of Texas at El Paso) Caroline Klivans (Brown University) Jeremy Martin (University of Kansas) University of California, Davis

More information

FURTHER APPLICATIONS OF CLUTTER DOMINATION PARAMETERS TO PROJECTIVE DIMENSION

FURTHER APPLICATIONS OF CLUTTER DOMINATION PARAMETERS TO PROJECTIVE DIMENSION FURTHER APPLICATIONS OF CLUTTER DOMINATION PARAMETERS TO PROJECTIVE DIMENSION HAILONG DAO AND JAY SCHWEIG Abstract. We study the relationship between the projective dimension of a squarefree monomial ideal

More information

Independence complexes of well-covered circulant graphs

Independence complexes of well-covered circulant graphs Independence complexes of well-covered circulant graphs Jonathan Earl (Redeemer - NSERC USRA 2014) Kevin Vander Meulen (Redeemer) Adam Van Tuyl (Lakehead) Catriona Watt (Redeemer - NSERC USRA 2012) October

More information

Chordal Graphs and Minimal Free Resolutions

Chordal Graphs and Minimal Free Resolutions Chordal Graphs and Minimal Free Resolutions David J. Marchette David A. Johannsen Abstract The problem of computing the minimal free resolution of the edge ideal of a graph has attracted quite a bit of

More information

COMBINATORIC AND ALGEBRAIC ASPECTS OF A CLASS OF PLANAR GRAPHS

COMBINATORIC AND ALGEBRAIC ASPECTS OF A CLASS OF PLANAR GRAPHS Communications to SIMAI Congress, ISSN 87-905, Vol. (007 DOI: 0.685/CSC060 COMBINATORIC AND ALGEBRAIC ASPECTS OF A CLASS OF PLANAR GRAPHS M. LA BARBIERA Department of Mathematics, University of Messina,

More information

Simplicial Matrix-Tree Theorems

Simplicial Matrix-Tree Theorems Art Duval (University of Texas at El Paso) Caroline Klivans (University of Chicago) Jeremy Martin (University of Kansas) KUMUNU VIII University of Nebraska, Lincoln September 9, 2007 Graphs and Spanning

More information

MINIMAL FREE RESOLUTIONS OF COMPLETE BIPARTITE GRAPH IDEALS

MINIMAL FREE RESOLUTIONS OF COMPLETE BIPARTITE GRAPH IDEALS MINIMAL FREE RESOLUTIONS OF COMPLETE BIPARTITE GRAPH IDEALS DANIEL VISSCHER Department of Mathematics, St. Olaf College, Northfield, MN 55057, USA visscher@stolaf.edu Abstract. This paper gives an explicit

More information

A non-partitionable Cohen-Macaulay simplicial complex

A non-partitionable Cohen-Macaulay simplicial complex A non-partitionable Cohen-Macaulay simplicial complex Art Duval 1, Bennet Goeckner 2, Caroline Klivans 3, Jeremy Martin 2 1 University of Texas at El Paso, 2 University of Kansas, 3 Brown University Discrete

More information

A SURVEY OF MONOMIAL RESOLUTIONS

A SURVEY OF MONOMIAL RESOLUTIONS A SURVEY OF MONOMIAL RESOLUTIONS by Andrew Hoefel SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE AT DALHOUSIE UNIVERSITY HALIFAX, NOVA SCOTIA DECEMBER 2006 c Copyright

More information

ON CELLULAR RESOLUTION OF MONOMIAL IDEALS

ON CELLULAR RESOLUTION OF MONOMIAL IDEALS ON CELLULAR RESOLUTION OF MONOMIAL IDEALS THE WORKSHOP ON COMPUTATIONAL DIFFERENTIAL ALGEBRA AND RELATED TOPICS SCHOOL OF MATHEMATICS, IPM JUNE 21-25, 2014 TEHRAN, IRAN RAHIM ZAARE-NAHANDI, UNIVERSITY

More information

A non-partitionable Cohen-Macaulay simplicial complex, and implications for Stanley depth

A non-partitionable Cohen-Macaulay simplicial complex, and implications for Stanley depth A non-partitionable Cohen-Macaulay simplicial complex, and implications for Stanley depth Art Duval 1, Bennet Goeckner 2, Caroline Klivans 3, Jeremy Martin 2 1 University of Texas at El Paso, 2 University

More information

arxiv: v1 [math.ac] 19 Jan 2016

arxiv: v1 [math.ac] 19 Jan 2016 COHEN-MACAULAYNESS OF TRIANGULAR GRAPHS arxiv:1601.05016v1 [math.ac] 19 Jan 2016 HERNAN DE ALBA, WALTER CARBALLOSA, DANIEL DUARTE, LUIS MANUEL RIVERA Abstract. We study the Cohen-Macaulay property of triangular

More information

ON THE COMBINATORICS OF RESOLUTIONS OF MONOMIAL IDEALS

ON THE COMBINATORICS OF RESOLUTIONS OF MONOMIAL IDEALS ON THE COMBINATORICS OF RESOLUTIONS OF MONOMIAL IDEALS by Nursel Erey Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia

More information

Gwyneth R. Whieldon. Cornell University Department of Mathematics

Gwyneth R. Whieldon. Cornell University Department of Mathematics Gwyneth R. Whieldon Cornell University Department of Mathematics Research Statement My research is at the crossroads of commutative algebra, combinatorics and algebraic geometry, focused on the study of

More information

A non-partitionable Cohen-Macaulay simplicial complex

A non-partitionable Cohen-Macaulay simplicial complex A non-partitionable Cohen-Macaulay simplicial complex Art Duval 1, Bennet Goeckner 2, Caroline Klivans 3, Jeremy Martin 2 1 University of Texas at El Paso, 2 University of Kansas, 3 Brown University Department

More information

arxiv: v1 [math.at] 8 Jan 2015

arxiv: v1 [math.at] 8 Jan 2015 HOMOLOGY GROUPS OF SIMPLICIAL COMPLEMENTS: A NEW PROOF OF HOCHSTER THEOREM arxiv:1501.01787v1 [math.at] 8 Jan 2015 JUN MA, FEIFEI FAN AND XIANGJUN WANG Abstract. In this paper, we consider homology groups

More information

Toric Cohomological Rigidity of Simple Convex Polytopes

Toric Cohomological Rigidity of Simple Convex Polytopes Toric Cohomological Rigidity of Simple Convex Polytopes Dong Youp Suh (KAIST) The Second East Asian Conference on Algebraic Topology National University of Singapore December 15-19, 2008 1/ 28 This talk

More information

arxiv: v1 [math.co] 22 Dec 2016

arxiv: v1 [math.co] 22 Dec 2016 THE LERAY DIMENSION OF A CONVEX CODE CARINA CURTO AND RAMÓN VERA arxiv:607797v [mathco] Dec 06 ABSTRACT Convex codes were recently introduced as models for neural codes in the brain Any convex code C has

More information

Noncrossing sets and a Graßmann associahedron

Noncrossing sets and a Graßmann associahedron Noncrossing sets and a Graßmann associahedron Francisco Santos, Christian Stump, Volkmar Welker (in partial rediscovering work of T. K. Petersen, P. Pylyavskyy, and D. E. Speyer, 2008) (in partial rediscovering

More information

STANLEY S SIMPLICIAL POSET CONJECTURE, AFTER M. MASUDA

STANLEY S SIMPLICIAL POSET CONJECTURE, AFTER M. MASUDA Communications in Algebra, 34: 1049 1053, 2006 Copyright Taylor & Francis Group, LLC ISSN: 0092-7872 print/1532-4125 online DOI: 10.1080/00927870500442005 STANLEY S SIMPLICIAL POSET CONJECTURE, AFTER M.

More information

ERDŐS-KO-RADO THEOREMS FOR SIMPLICIAL COMPLEXES arxiv: v3 [math.co] 29 Nov 2010

ERDŐS-KO-RADO THEOREMS FOR SIMPLICIAL COMPLEXES arxiv: v3 [math.co] 29 Nov 2010 ERDŐS-KO-RADO THEOREMS FOR SIMPLICIAL COMPLEXES arxiv:1001.0313v3 [math.co] 29 Nov 2010 RUSS WOODROOFE Abstract. A recent framework for generalizing the Erdős-Ko- Rado Theorem, due to Holroyd, Spencer,

More information

arxiv: v1 [math.ac] 25 May 2016

arxiv: v1 [math.ac] 25 May 2016 LATTICE COMPLEMENTS AND THE SUBADDITIVITY OF SYZYGIES OF SIMPLICIAL FORESTS arxiv:1605.07727v1 [math.ac] 25 May 2016 Sara Faridi Abstract We prove the subadditivity property for the maximal degrees of

More information

via combinatorial topology

via combinatorial topology Algebraic properties of edge ideals arxiv:0810.4120v1 [math.co] 22 Oct 2008 via combinatorial topology Anton Dochtermann and Alexander Engström Dedicated to Anders Björner on the occasion of his 60th birthday.

More information

Simplicial cycles and the computation of simplicial trees

Simplicial cycles and the computation of simplicial trees Simplicial cycles and the computation of simplicial trees Massimo Caboara Sara aridi Peter Selinger Abstract We generalize the concept of a cycle from graphs to simplicial complexes. We show that a simplicial

More information

Simplicial cycles and the computation of simplicial trees

Simplicial cycles and the computation of simplicial trees Simplicial cycles and the computation of simplicial trees Massimo Caboara Sara aridi Peter Selinger Abstract We generalize the concept of a cycle from graphs to simplicial complexes. We show that a simplicial

More information

arxiv: v1 [math.co] 9 Dec 2015

arxiv: v1 [math.co] 9 Dec 2015 ALGEBRAIC DISCRETE MORSE THEORY FOR THE HULL RESOLUTION arxiv:1512.03045v1 [math.co] 9 Dec 2015 PATRIK NORÉN Abstract. We study how powerful algebraic discrete Morse theory is when applied to hull resolutions.

More information

A NOTE ON THE ASSOCIATED PRIMES OF THE THIRD POWER OF THE COVER IDEAL

A NOTE ON THE ASSOCIATED PRIMES OF THE THIRD POWER OF THE COVER IDEAL A NOTE ON THE ASSOCIATED PRIMES OF THE THIRD POWER OF THE COVER IDEAL KIM KESTING, JAMES POZZI, AND JANET STRIULI Abstract. An algebraic approach to graph theory involves the study of the edge ideal and

More information

1. Lecture notes on bipartite matching February 4th,

1. Lecture notes on bipartite matching February 4th, 1. Lecture notes on bipartite matching February 4th, 2015 6 1.1.1 Hall s Theorem Hall s theorem gives a necessary and sufficient condition for a bipartite graph to have a matching which saturates (or matches)

More information

The topology of the independence complex

The topology of the independence complex The topology of the independence complex Richard EHRENBORG and Gábor HETYEI Abstract We introduce a large self-dual class of simplicial complexes about which we show that each complex in it is contractible

More information

Computation of Poincaré-Betti Series for Monomial Rings

Computation of Poincaré-Betti Series for Monomial Rings Rend. Istit. Mat. Univ. Trieste Vol. XXXVII, 85 94 (2005) Computation of Poincaré-Betti Series for Monomial Rings Mikael Johansson ( ) Contribution to School (and Workshop) on Computational Algebra for

More information

CHRISTOS A. ATHANASIADIS

CHRISTOS A. ATHANASIADIS FLAG SUBDIVISIONS AND γ-vectors CHRISTOS A. ATHANASIADIS Abstract. The γ-vector is an important enumerative invariant of a flag simplicial homology sphere. It has been conjectured by Gal that this vector

More information

CUBICAL SUBDIVISIONS AND LOCAL h-vectors

CUBICAL SUBDIVISIONS AND LOCAL h-vectors CUBICAL SUBDIVISIONS AND LOCAL h-vectors CHRISTOS A. ATHANASIADIS Abstract. Face numbers of triangulations of simplicial complexes were studied by Stanley by use of his concept of a local h-vector. It

More information

A VARIETY OF GRAPH COLORING PROBLEMS

A VARIETY OF GRAPH COLORING PROBLEMS A VARIETY OF GRAPH COLORING PROBLEMS DAVID MEHRLE Gröbner Bases and the Ideal Membership Problem Let k be a field and let A = C[x 1,..., x n ]. For the set of common zeros of elements of an ideal I A,

More information

EDGEWISE COHEN MACAULAY CONNECTIVITY OF PARTIALLY ORDERED SETS

EDGEWISE COHEN MACAULAY CONNECTIVITY OF PARTIALLY ORDERED SETS EDGEWISE COHEN MACAULAY CONNECTIVITY OF PARTIALLY ORDERED SETS CHRISTOS A. ATHANASIADIS and MYRTO KALLIPOLITI Abstract The proper parts of face lattices of convex polytopes are shown to satisfy a strong

More information

Nim-Regularity of Graphs

Nim-Regularity of Graphs Nim-Regularity of Graphs Nathan Reading School of Mathematics, University of Minnesota Minneapolis, MN 55455 reading@math.umn.edu Submitted: November 24, 1998; Accepted: January 22, 1999 Abstract. Ehrenborg

More information

h-polynomials of triangulations of flow polytopes (Cornell University)

h-polynomials of triangulations of flow polytopes (Cornell University) h-polynomials of triangulations of flow polytopes Karola Mészáros (Cornell University) h-polynomials of triangulations of flow polytopes (and of reduction trees) Karola Mészáros (Cornell University) Plan

More information

arxiv:math/ v1 [math.ac] 16 Feb 2005

arxiv:math/ v1 [math.ac] 16 Feb 2005 arxiv:math/0502348v1 [math.ac] 16 Feb 2005 COMPUTATION OF POINCARÉ-BETTI SERIES FOR MONOMIAL RINGS MIKAEL JOHANSSON Abstract. The multigraded Poincaré-Betti series PR k (Ü;t) of a monomial ring k[ü]/ M

More information

MONOMIAL RESOLUTIONS. Dave Bayer Irena Peeva Bernd Sturmfels

MONOMIAL RESOLUTIONS. Dave Bayer Irena Peeva Bernd Sturmfels MONOMIAL RESOLUTIONS Dave Bayer Irena Peeva Bernd Sturmfels 1. Introduction. Let M be a monomial ideal in the polynomial ring S = k[x 1,...,x n ] over a field k. We are interested in the problem, first

More information

Lecture 3A: Generalized associahedra

Lecture 3A: Generalized associahedra Lecture 3A: Generalized associahedra Nathan Reading NC State University Cluster Algebras and Cluster Combinatorics MSRI Summer Graduate Workshop, August 2011 Introduction Associahedron and cyclohedron

More information

9 About Intersection Graphs

9 About Intersection Graphs 9 About Intersection Graphs Since this lecture we focus on selected detailed topics in Graph theory that are close to your teacher s heart... The first selected topic is that of intersection graphs, i.e.

More information

1. Lecture notes on bipartite matching

1. Lecture notes on bipartite matching Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans February 5, 2017 1. Lecture notes on bipartite matching Matching problems are among the fundamental problems in

More information

arxiv: v1 [math.gt] 18 Nov 2015

arxiv: v1 [math.gt] 18 Nov 2015 arxiv:1511.05845v1 [math.gt] 18 Nov 2015 A geometric description of the extreme Khovanov cohomology J. González-Meneses, P. M. G. Manchón and M. Silvero November 19, 2015 Abstract We prove that the hypothetical

More information

SIMPLICIAL COMPLEXES OF PLACEMENT GAMES

SIMPLICIAL COMPLEXES OF PLACEMENT GAMES SIMPLICIAL COMPLEXES OF PLACEMENT GAMES by Svenja Huntemann Submitted in partial fulfillment of the requirements for the degree of Master of Science at Dalhousie University Halifax, Nova Scotia August

More information

Topological Invariance under Line Graph Transformations

Topological Invariance under Line Graph Transformations Symmetry 2012, 4, 329-335; doi:103390/sym4020329 Article OPEN ACCESS symmetry ISSN 2073-8994 wwwmdpicom/journal/symmetry Topological Invariance under Line Graph Transformations Allen D Parks Electromagnetic

More information

K 4 C 5. Figure 4.5: Some well known family of graphs

K 4 C 5. Figure 4.5: Some well known family of graphs 08 CHAPTER. TOPICS IN CLASSICAL GRAPH THEORY K, K K K, K K, K K, K C C C C 6 6 P P P P P. Graph Operations Figure.: Some well known family of graphs A graph Y = (V,E ) is said to be a subgraph of a graph

More information

The Borsuk-Ulam theorem- A Combinatorial Proof

The Borsuk-Ulam theorem- A Combinatorial Proof The Borsuk-Ulam theorem- A Combinatorial Proof Shreejit Bandyopadhyay April 14, 2015 1 Introduction The Borsuk-Ulam theorem is perhaps among the results in algebraic topology having the greatest number

More information

The Charney-Davis conjecture for certain subdivisions of spheres

The Charney-Davis conjecture for certain subdivisions of spheres The Charney-Davis conjecture for certain subdivisions of spheres Andrew Frohmader September, 008 Abstract Notions of sesquiconstructible complexes and odd iterated stellar subdivisions are introduced,

More information

Approximation slides 1. An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs

Approximation slides 1. An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs Approximation slides 1 An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs Approximation slides 2 Linear independence A collection of row vectors {v T i } are independent

More information

Polytopes Course Notes

Polytopes Course Notes Polytopes Course Notes Carl W. Lee Department of Mathematics University of Kentucky Lexington, KY 40506 lee@ms.uky.edu Fall 2013 i Contents 1 Polytopes 1 1.1 Convex Combinations and V-Polytopes.....................

More information

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition.

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition. 18.433 Combinatorial Optimization Matching Algorithms September 9,14,16 Lecturer: Santosh Vempala Given a graph G = (V, E), a matching M is a set of edges with the property that no two of the edges have

More information

CREPANT RESOLUTIONS OF GORENSTEIN TORIC SINGULARITIES AND UPPER BOUND THEOREM. Dimitrios I. Dais

CREPANT RESOLUTIONS OF GORENSTEIN TORIC SINGULARITIES AND UPPER BOUND THEOREM. Dimitrios I. Dais Séminaires & Congrès 6, 2002, p. 187 192 CREPANT RESOLUTIONS OF GORENSTEIN TORIC SINGULARITIES AND UPPER BOUND THEOREM by Dimitrios I. Dais Abstract. A necessary condition for the existence of torus-equivariant

More information

Generalized Moment-Angle Complexes

Generalized Moment-Angle Complexes Generalized Moment-Angle Complexes Fred Cohen 1-5 June 2010 joint work with Tony Bahri, Martin Bendersky, and Sam Gitler The setting and the problems: This report addresses joint work with Tony Bahri,

More information

POLYTOPES. Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of convex polytopes.

POLYTOPES. Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of convex polytopes. POLYTOPES MARGARET A. READDY 1. Lecture I: Introduction to Polytopes and Face Enumeration Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of

More information

CS388C: Combinatorics and Graph Theory

CS388C: Combinatorics and Graph Theory CS388C: Combinatorics and Graph Theory David Zuckerman Review Sheet 2003 TA: Ned Dimitrov updated: September 19, 2007 These are some of the concepts we assume in the class. If you have never learned them

More information

On the Partial Sum of the Laplacian Eigenvalues of Abstract Simplicial Complexes

On the Partial Sum of the Laplacian Eigenvalues of Abstract Simplicial Complexes On the Partial Sum of the Laplacian Eigenvalues of Abstract Simplicial Complexes Rediet Abebe and Joshua Pfeffer Abstract We present progress made in showing the generalized Grone-Merris conjecture for

More information

Lecture 4: 3SAT and Latin Squares. 1 Partial Latin Squares Completable in Polynomial Time

Lecture 4: 3SAT and Latin Squares. 1 Partial Latin Squares Completable in Polynomial Time NP and Latin Squares Instructor: Padraic Bartlett Lecture 4: 3SAT and Latin Squares Week 4 Mathcamp 2014 This talk s focus is on the computational complexity of completing partial Latin squares. Our first

More information

Decomposition of log-linear models

Decomposition of log-linear models Graphical Models, Lecture 5, Michaelmas Term 2009 October 27, 2009 Generating class Dependence graph of log-linear model Conformal graphical models Factor graphs A density f factorizes w.r.t. A if there

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

DISCRETE MORSE THEORY FOR MOMENT-ANGLE COMPLEXES OF PAIRS (D n, S n 1 )

DISCRETE MORSE THEORY FOR MOMENT-ANGLE COMPLEXES OF PAIRS (D n, S n 1 ) DISCRETE MORSE THEORY FOR MOMENT-ANGLE COMPLEXES OF PAIRS (D n, S n 1 ) VLADIMIR GRUJIĆ AND VOLKMAR WELKER Abstract. For a finite simplicial complex K and a CW-pair (X, A), there is an associated CW-complex

More information

Lecture 5: Simplicial Complex

Lecture 5: Simplicial Complex Lecture 5: Simplicial Complex 2-Manifolds, Simplex and Simplicial Complex Scribed by: Lei Wang First part of this lecture finishes 2-Manifolds. Rest part of this lecture talks about simplicial complex.

More information

The important function we will work with is the omega map ω, which we now describe.

The important function we will work with is the omega map ω, which we now describe. 20 MARGARET A. READDY 3. Lecture III: Hyperplane arrangements & zonotopes; Inequalities: a first look 3.1. Zonotopes. Recall that a zonotope Z can be described as the Minkowski sum of line segments: Z

More information

arxiv: v1 [math.co] 18 Jan 2013

arxiv: v1 [math.co] 18 Jan 2013 arxiv:1301.4459v1 [math.co] 18 Jan 2013 Composition of simplicial complexes, polytopes and multigraded Betti numbers Ayzenberg Anton Abstract. For a simplicial complex K on m vertices and simplicial complexes

More information

arxiv: v1 [cs.ds] 8 Jan 2019

arxiv: v1 [cs.ds] 8 Jan 2019 Subset Feedback Vertex Set in Chordal and Split Graphs Geevarghese Philip 1, Varun Rajan 2, Saket Saurabh 3,4, and Prafullkumar Tale 5 arxiv:1901.02209v1 [cs.ds] 8 Jan 2019 1 Chennai Mathematical Institute,

More information

4. Simplicial Complexes and Simplicial Homology

4. Simplicial Complexes and Simplicial Homology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 4. Simplicial Complexes and Simplicial Homology Geometric simplicial complexes 4.1 Definition. A finite subset { v 0, v 1,..., v r } R n

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

THE BASIC THEORY OF PERSISTENT HOMOLOGY

THE BASIC THEORY OF PERSISTENT HOMOLOGY THE BASIC THEORY OF PERSISTENT HOMOLOGY KAIRUI GLEN WANG Abstract Persistent homology has widespread applications in computer vision and image analysis This paper first motivates the use of persistent

More information

The orientability of small covers and coloring simple polytopes. Nishimura, Yasuzo; Nakayama, Hisashi. Osaka Journal of Mathematics. 42(1) P.243-P.

The orientability of small covers and coloring simple polytopes. Nishimura, Yasuzo; Nakayama, Hisashi. Osaka Journal of Mathematics. 42(1) P.243-P. Title Author(s) The orientability of small covers and coloring simple polytopes Nishimura, Yasuzo; Nakayama, Hisashi Citation Osaka Journal of Mathematics. 42(1) P.243-P.256 Issue Date 2005-03 Text Version

More information

The Active Bijection in Graphs, Hyperplane Arrangements, and Oriented Matroids

The Active Bijection in Graphs, Hyperplane Arrangements, and Oriented Matroids The Active Bijection in Graphs, Hyperplane Arrangements, and Oriented Matroids. The Fully Optimal Basis of a Bounded Region Emeric Gioan Michel Las Vergnas published in European Journal of Combinatorics

More information

11.1. Definitions. 11. Domination in Graphs

11.1. Definitions. 11. Domination in Graphs 11. Domination in Graphs Some definitions Minimal dominating sets Bounds for the domination number. The independent domination number Other domination parameters. 11.1. Definitions A vertex v in a graph

More information

Closed orders and closed graphs

Closed orders and closed graphs DOI: 10.1515/auom-2016-0034 An. Şt. Univ. Ovidius Constanţa Vol. 24(2),2016, 159 167 Closed orders and closed graphs Marilena Crupi Abstract The class of closed graphs by a linear ordering on their sets

More information

h -vectors, Eulerian polynomials and stable polytopes of graphs

h -vectors, Eulerian polynomials and stable polytopes of graphs h -vectors, Eulerian polynomials and stable polytopes of graphs Christos A. Athanasiadis Department of Mathematics University of Crete 71409 Heraklion, Crete, Greece caa@math.uoc.gr Submitted: Jul 5, 2004;

More information

arxiv: v2 [math.co] 5 Oct 2013

arxiv: v2 [math.co] 5 Oct 2013 A CLASSIFICATION OF THE FACE NUMBERS OF BUCHSBAUM SIMPLICIAL POSETS JONATHAN BROWDER AND STEVEN KLEE arxiv:1307.1548v2 [math.co] 5 Oct 2013 Abstract. The family of Buchsbaum simplicial posets generalizes

More information

THE LEAFAGE OF A CHORDAL GRAPH

THE LEAFAGE OF A CHORDAL GRAPH Discussiones Mathematicae Graph Theory 18 (1998 ) 23 48 THE LEAFAGE OF A CHORDAL GRAPH In-Jen Lin National Ocean University, Taipei, Taiwan Terry A. McKee 1 Wright State University, Dayton, OH 45435-0001,

More information

Lecture notes for Topology MMA100

Lecture notes for Topology MMA100 Lecture notes for Topology MMA100 J A S, S-11 1 Simplicial Complexes 1.1 Affine independence A collection of points v 0, v 1,..., v n in some Euclidean space R N are affinely independent if the (affine

More information

Chordal Graphs: Theory and Algorithms

Chordal Graphs: Theory and Algorithms Chordal Graphs: Theory and Algorithms 1 Chordal graphs Chordal graph : Every cycle of four or more vertices has a chord in it, i.e. there is an edge between two non consecutive vertices of the cycle. Also

More information

Characterization of Super Strongly Perfect Graphs in Chordal and Strongly Chordal Graphs

Characterization of Super Strongly Perfect Graphs in Chordal and Strongly Chordal Graphs ISSN 0975-3303 Mapana J Sci, 11, 4(2012), 121-131 https://doi.org/10.12725/mjs.23.10 Characterization of Super Strongly Perfect Graphs in Chordal and Strongly Chordal Graphs R Mary Jeya Jothi * and A Amutha

More information

Simplicial Complexes: Second Lecture

Simplicial Complexes: Second Lecture Simplicial Complexes: Second Lecture 4 Nov, 2010 1 Overview Today we have two main goals: Prove that every continuous map between triangulable spaces can be approximated by a simplicial map. To do this,

More information

Combinatorial Aspects of Convex Polytopes

Combinatorial Aspects of Convex Polytopes Combinatorial Aspects of Convex Polytopes Margaret M. Bayer 1 Department of Mathematics University of Kansas Carl W. Lee 2 Department of Mathematics University of Kentucky August 1, 1991 Chapter for Handbook

More information

MATH 890 HOMEWORK 2 DAVID MEREDITH

MATH 890 HOMEWORK 2 DAVID MEREDITH MATH 890 HOMEWORK 2 DAVID MEREDITH (1) Suppose P and Q are polyhedra. Then P Q is a polyhedron. Moreover if P and Q are polytopes then P Q is a polytope. The facets of P Q are either F Q where F is a facet

More information

Shellings, the Euler-Poincaré Formula for Polytopes, Dehn-Sommerville Equations, the Upper Bound Theorem

Shellings, the Euler-Poincaré Formula for Polytopes, Dehn-Sommerville Equations, the Upper Bound Theorem Chapter 8 Shellings, the Euler-Poincaré Formula for Polytopes, Dehn-Sommerville Equations, the Upper Bound Theorem 8.1 Shellings The notion of shellability is motivated by the desire to give an inductive

More information

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality Planar Graphs In the first half of this book, we consider mostly planar graphs and their geometric representations, mostly in the plane. We start with a survey of basic results on planar graphs. This chapter

More information

arxiv: v1 [math.co] 23 May 2015

arxiv: v1 [math.co] 23 May 2015 Face enumeration on simplicial complexes Steven Klee and Isabella Novik arxiv:1505.06380v1 [math.co] 23 May 2015 1 Introduction Let M be a closed triangulable manifold, and let be a triangulation of M.

More information

Key Graph Theory Theorems

Key Graph Theory Theorems Key Graph Theory Theorems Rajesh Kumar MATH 239 Intro to Combinatorics August 19, 2008 3.3 Binary Trees 3.3.1 Problem (p.82) Determine the number, t n, of binary trees with n edges. The number of binary

More information

Computing the Betti Numbers of Arrangements. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology.

Computing the Betti Numbers of Arrangements. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 1 Computing the Betti Numbers of Arrangements Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 2 Arrangements in Computational Geometry An arrangement in R k is

More information

arxiv: v1 [math.co] 24 Aug 2009

arxiv: v1 [math.co] 24 Aug 2009 SMOOTH FANO POLYTOPES ARISING FROM FINITE PARTIALLY ORDERED SETS arxiv:0908.3404v1 [math.co] 24 Aug 2009 TAKAYUKI HIBI AND AKIHIRO HIGASHITANI Abstract. Gorenstein Fano polytopes arising from finite partially

More information

Chordal graphs and the characteristic polynomial

Chordal graphs and the characteristic polynomial Discrete Mathematics 262 (2003) 211 219 www.elsevier.com/locate/disc Chordal graphs and the characteristic polynomial Elizabeth W. McMahon ;1, Beth A. Shimkus 2, Jessica A. Wolfson 3 Department of Mathematics,

More information

6. Lecture notes on matroid intersection

6. Lecture notes on matroid intersection Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans May 2, 2017 6. Lecture notes on matroid intersection One nice feature about matroids is that a simple greedy algorithm

More information

3. Persistence. CBMS Lecture Series, Macalester College, June Vin de Silva Pomona College

3. Persistence. CBMS Lecture Series, Macalester College, June Vin de Silva Pomona College Vin de Silva Pomona College CBMS Lecture Series, Macalester College, June 2017 o o The homology of a planar region Chain complex We have constructed a diagram of vector spaces and linear maps @ 0 o 1 C

More information

Dirac-type characterizations of graphs without long chordless cycles

Dirac-type characterizations of graphs without long chordless cycles Dirac-type characterizations of graphs without long chordless cycles Vašek Chvátal Department of Computer Science Rutgers University chvatal@cs.rutgers.edu Irena Rusu LIFO Université de Orléans irusu@lifo.univ-orleans.fr

More information

Triangulations of Simplicial Polytopes

Triangulations of Simplicial Polytopes Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Volume 45 (004), No. 1, 37-46. Triangulations of Simplicial Polytopes Peter McMullen University College London Gower Street, London

More information

Cyclotomic Polytopes and Growth Series of Cyclotomic Lattices. Matthias Beck & Serkan Hoşten San Francisco State University

Cyclotomic Polytopes and Growth Series of Cyclotomic Lattices. Matthias Beck & Serkan Hoşten San Francisco State University Cyclotomic Polytopes and Growth Series of Cyclotomic Lattices Matthias Beck & Serkan Hoşten San Francisco State University math.sfsu.edu/beck Math Research Letters Growth Series of Lattices L R d lattice

More information

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models.

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models. Undirected Graphical Models: Chordal Graphs, Decomposable Graphs, Junction Trees, and Factorizations Peter Bartlett. October 2003. These notes present some properties of chordal graphs, a set of undirected

More information

arxiv: v1 [cs.dm] 21 Dec 2015

arxiv: v1 [cs.dm] 21 Dec 2015 The Maximum Cardinality Cut Problem is Polynomial in Proper Interval Graphs Arman Boyacı 1, Tinaz Ekim 1, and Mordechai Shalom 1 Department of Industrial Engineering, Boğaziçi University, Istanbul, Turkey

More information

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element.

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element. The first exam will be on Wednesday, September 22, 2010. The syllabus will be sections 1.1 and 1.2 in Lax, and the number theory handout found on the class web site, plus the handout on the method of successive

More information