Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik. Combinatorial Optimization (MA 4502)

Size: px
Start display at page:

Download "Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik. Combinatorial Optimization (MA 4502)"

Transcription

1 Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik Combinatorial Optimization (MA 4502) Dr. Michael Ritter Problem Sheet 4 Homework Problems Problem 4.1 (An Example of Lifting) Consider the polytope { } P := conv x {0, 1} 7 : 11x 1 + 6x 2 + 6x 3 + 5x 4 + 5x 5 + 4x 6 + x a) Show that the inequality x 3 + x 4 + x 5 + x 6 3 is valid for P. b) Compute liftings for the above inequality by sequentially lifting the seventh, second and first coordinate in that order. Is the result different from what was obtained in the lecture? Answer to Problem 4.1 a) Suppose the inequality is not valid for P, then there is some integral point x P that violates the inequality. The only 0-1-solutions that can violate the inequality need to satisfy x 3 = x 4 = x 5 = x 6 = 1, thus 11x 1 + 6x 2 + 6x 3 + 5x 4 + 5x 5 + 4x 6 + x = 20, clearly a contradiction to x P. (Of course, we already knew this from the lecture. Also, one could just use the argument that this inequality is a knapsack cover inequality.) b) We start by lifting the seventh coordinate, i. e., we determine the maximum α 7 0 such that x 3 + x 4 + x 5 + x 6 + α 7 x 7 3 is still valid for P. For x 7 = 0 the value of α 7 can be chosen arbitrarily, hence we only need to consider vectors in P where x 7 = 1. We then get α 7 3 (x 3 + x 4 + x 5 + x 6 ) for all x P { x R 7 : x 7 = 1 }. Thus we have to solve the following optimization problem to determine α 7 : max x 3 + x 4 + x 5 + x 6 11x 1 + 6x 2 + 6x 3 + 5x 4 + 5x 5 + 4x = 18 x {0, 1} 7 It is easy to see that the optimal objective value for that problem is 3, as any three of the items {3, 4, 5, 6} may be chosen, but not alle four. (We do not even need to come up with a solution, the objective value suffices.) Thus, α 7 = 3 3 = 0 and the inequality remains unchanged: x 3 + x 4 + x 5 + x 6 3. Page 1 of 6

2 Next, we lift the second coordinate into the inequality x 3 + x 4 + x 5 + x 6 3, i. e., we determine a maximum α 2 such that α 2 x 2 + x 3 + x 4 + x 5 + x 6 3 is valid for P. With the same arguments as above, this leads to the following optimization problem: max x 3 + x 4 + x 5 + x 6 11x 1 + 6x 3 + 5x 4 + 5x 5 + 4x 6 + x = 13 x {0, 1} 7 The optimal objective value is 2, hence α 2 = 3 2 = 1 and the lifted inequality becomes x 2 + x 3 + x 4 + x 5 + x 6 3. That leaves us with the first coordinate to lift into the inequality, thus we determine α 1 such that α 1 x 1 + x 2 + x 3 + x 4 + x 5 + x 6 3 is valid for P. This yields the optimization problem max x 2 + x 3 + x 4 + x 5 + x 6 6x 2 + 6x 3 + 5x 4 + 5x 5 + 4x 6 + x = 8 x {0, 1} 7, which has an optimal objective value of 1. Therefore α 7 = 3 1 = 2 and the lifted inequality becomes 2x 1 + x 2 + x 3 + x 4 + x 5 + x 6 3 Tutorial Problems Problem 4.2 (Inapproximability of TSP) Show that there does not exist a k-approximation algorithm for TSP for any constant factor k 1, unless P = N P. Answer to Problem 4.2 As in the lecture, we consider an instance G = (V, E) of the Hamilton Circuit Problem, i. e. we have to decide whether G is Hamiltonian or not. Assume there is a k-approximation algorithm for TSP for some fixed constant k 1. We define an instance of TSP in the complete graph K n (with V = [n]) by assigning the following weights to the edges of K n : c(e) := { 1, if e E; kn + 1, otherwise. Applying the k-approximation algorithm to this instance yields a solution with objective value z approx such that z approx k z (where z is the optimal objective value). If G is Hamiltonian, there is a tour with objective value n in our instance (and this is optimal, because no edge has weight less than 1), so our approximation algorithm would return a tour of at most length kn. This would certainly imply that the tour cannot use any edge of weight kn + 1, thus all edges it uses are present in G already. Page 2 of 6

3 The converse is also true: If the approximation algorithm returns a tour of length strictly greater than kn, then z > n (otherwise, the approximation would have to yield a solution kz kn) and the original graph G is not Hamiltonian. Hence if there was a k-approximation for TSP, we could use it to construct a polynomial time algorithm for Hamilton Circuit, effectively proving P = N P. Problem 4.3 In the lecture you have proved that the minimum spanning tree heuristic (MST heuristic) is a 2-approximation for metric TSP. Give an example that shows that this bound is asymptotically tight, i. e. construct a family of TSP instances, each with an MST solution, such that the approximation ratio of these solutions converges to 2 for large vertex numbers. Answer to Problem 4.3 Consider a n 2-grid in the euclidean plane R 2 with edge length 1, see Figure 1. An optimal tour (as shown in the figure) has length 2n (a shorter tour that visits all nodes is not possible). On the other hand, consider the spanning tree and corresponding Euler tour depicted in Figure 2. Starting at the upper right vertex and following the Euler tour downwards results in the MST solution depicted in Figure 3. For a 2 n-grid with euclidean distances, this yields a TSP tour of length Thus, the approximation ratio of this solution is 3n (n 2) 2 > 4n 5. 4n 5 2n = for n. 2n Figure 1: A TSP instance where the MST heuristic has approximation ratio 2, together with an optimal tour. Figure 2: A TSP instance with MST and Euler tour. Problem 4.4 (Nearest Neighbour Heuristic) In this exercise we will look at two common heuristics for the construction of a traveling salesman tour, the Nearest-Neighbour (NN) and the Nearest Insert (NI) algorithm. Throughout the exercise, assume we have an instance of Metric TSP given by a complete graph K n = ([n], E) on n N nodes with edge weights c 0. The Nearest Neighbour heuristic constructs a feasible tour as follows: (1) Randomly choose a start node and start with the tour that only consists of that node. Page 3 of 6

4 Figure 3: A TSP instance with an MST heuristic solution, starting at the upper right vertex. (2) Repeat the following step until all nodes are contained in the tour: Among all nodes not yet in the tour, choose one that is closest to the last inserted node and append it to the tour. The Nearest Insert heuristic constructs a feasible tour as follows: (1) Randomly choose a start node, determine the node closest to it and start with the tour that only consists of these two nodes. (2) Repeat the following steps until all nodes are contained in the tour: Among all nodes not yet in the tour, choose one that is closest to the set of nodes already contained in the tour. Find an edge in the tour where the new node may be inserted a minimum cost and insert it. a) Show that Nearest Neighbour does not yield a k-approximation for any k 1. b) Show that Nearest Insert is a 2-approximation for Metric TSP. Hint: The algorithm chooses the new nodes in the same order that Prim s algorithm would use. Try to bound the cost of insertion in comparison to the cost of adding a new edge to the spanning tree construction in Prim s algorithm. Answer to Problem 4.4 a) Let p N and consider the complete graph G p = (V p, E p ) with V P = 2 (8 2 p 3) nodes arranged on a subgrid of Z 2 in the following way (see also Figure 4): V p = {(x, 0) : x = 1,..., 8 2 p 3} {(x, 1) : x = 1,..., 8 2 p 3} m 0 l 0 Figure 4: The graph G 0 and a partial nearest neighbour tour. Page 4 of 6

5 We denote the lower left node by l k and the upper middle vertex by m k. We will now inductively construct a series of graphs G 0, G 1,... with a partial nearest neighbour tour similar to the one shown in G 0, starting in the lower left node l p and ending in the upper middle node m p. The length of such a tour will be exactly 2 p (12 + 4p) 3, while the optimal tour will have length V p = 2 (8 2 p 3). This means, the approximation ratio of nearest neighbour is not better than 2 p (12 + 4p) 3 2 (8 2 p 3) = (12 + 4p) 3 2 p p p, thus for every assumed approximation factor k there is a sufficiently large p that contradicts the assumption. (Note that the partial nearest neighbour tour that we exhibited here is of course not uniquely determined. However, we may make it unique by adjusting the edge lengths a little.) We will prove the claim on the tour length by induction. For p = 0, the tour depicted above has length 9, which is exactly 1 (12 + 0) 3, thus the claim is true for p = 0. Consider some p 1, then the graph G p consists of two copies of G p 1 (denoted by G p 1 and G p 1 ) and 6 extra nodes arranged in the way that is indicated in Figure 5. The length of the partial nearest neighbour tour depicted there is twice the length of the partial tours in the smaller graph G p 1, plus 5 edges of length 1 each plus two longer edges which have a length of 4 2 p 1 1 each. In total, we get a length of 2 (2 p 1 (12 + 4(p 1)) 3) (4 2 p 1) =2 p (12 + 4p 4) p 2 =2 p (12 + 4p) 3 m p 1 m p m p 1 l p = l p 1 l p 1 Figure 5: The graph G 0 and a partial nearest neighbour tour. Remark: The idea for this construction is due to Stefan Hougardy and Mirko Wilde. More details can be found in their paper On the Nearest Neighbor Rule for the Metric Traveling Salesman Problem available at b) Consider Prim s algorithm for the determination of a minimum spanning tree and let the algorithm start with the same start node that NI is using. Prim would then determine the closest node and add that to the spanning tree, just as NI does, so the first two nodes chosen are equal for both algorithms. In all of the following steps, Prim s algorithm will always determine one node that is closest to the set of nodes already contained in the partial tree, but is not itself contained in the tree so far, so the chosen node is again the same for NI and Prim. We conclude that both algorithms may be assumed to add the nodes in the same order if we use the same start node (and break ties in a consistent way). Now consider the j-th step of the NI algorith and denote the note that is added in that step by v j. Adding this node to the tour incurs an additional cost of tourcost(v j ). Furthermore, let t be the node where the minimum distance of v j to the set of nodes already in the tour is attained, Page 5 of 6

6 thus {t, v j } is the edge that is added to the partial spanning tree by Prim s algorithm in step j. Finally, let u, w denote the two nodes already in the tour before step j such that node v j will be added to the tour between u and w. The cost of adding v j is then tourcost(v j ) = c(u, v j ) + c(v j, w) c(u, w). As the node t is already contained in the partial tour in step j, there is some node t that is a neighbour of t in the partial tour. As v j was not inserted between t and t, we know that tourcost(v j ) c(t, v j ) + c(v j, t ) c(t, t ). Employing the triangle inequality c(v j, t ) c(t, t ) + c(t, v j ), we conclude tourcost(v j ) c(t, v j ) + c(v j, t ) c(t, t ) c(t, v j ) + c(t, v j ) = 2 c(t, v j ), thus the cost of inserting v j into the partial tour is bounded by twice the cost of adding the new edge {t, v j } to the partial spanning tree in each step. This amounts to c(τ) 2 c(t ), where τ is the NI tour constructed by the algorithm and T is a minimal spanning tree. As the optimal tour contains a spanning tree, the cost of T is less or equal than that of an optimal solution τ OPT, hence c(τ) 2 c(t ) 2 c(τ OPT ), proving the desired approximation ratio of 2. Page 6 of 6

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

val(y, I) α (9.0.2) α (9.0.3)

val(y, I) α (9.0.2) α (9.0.3) CS787: Advanced Algorithms Lecture 9: Approximation Algorithms In this lecture we will discuss some NP-complete optimization problems and give algorithms for solving them that produce a nearly optimal,

More information

Lecture 8: The Traveling Salesman Problem

Lecture 8: The Traveling Salesman Problem Lecture 8: The Traveling Salesman Problem Let G = (V, E) be an undirected graph. A Hamiltonian cycle of G is a cycle that visits every vertex v V exactly once. Instead of Hamiltonian cycle, we sometimes

More information

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R

More information

Introduction to Approximation Algorithms

Introduction to Approximation Algorithms Introduction to Approximation Algorithms Dr. Gautam K. Das Departmet of Mathematics Indian Institute of Technology Guwahati, India gkd@iitg.ernet.in February 19, 2016 Outline of the lecture Background

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu P, NP-Problems Class

More information

CMSC 451: Lecture 22 Approximation Algorithms: Vertex Cover and TSP Tuesday, Dec 5, 2017

CMSC 451: Lecture 22 Approximation Algorithms: Vertex Cover and TSP Tuesday, Dec 5, 2017 CMSC 451: Lecture 22 Approximation Algorithms: Vertex Cover and TSP Tuesday, Dec 5, 2017 Reading: Section 9.2 of DPV. Section 11.3 of KT presents a different approximation algorithm for Vertex Cover. Coping

More information

COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section (CLRS)

COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section (CLRS) COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section 35.1-35.2(CLRS) 1 Coping with NP-Completeness Brute-force search: This is usually only a viable option for small

More information

CS261: A Second Course in Algorithms Lecture #16: The Traveling Salesman Problem

CS261: A Second Course in Algorithms Lecture #16: The Traveling Salesman Problem CS61: A Second Course in Algorithms Lecture #16: The Traveling Salesman Problem Tim Roughgarden February 5, 016 1 The Traveling Salesman Problem (TSP) In this lecture we study a famous computational problem,

More information

2. Optimization problems 6

2. Optimization problems 6 6 2.1 Examples... 7... 8 2.3 Convex sets and functions... 9 2.4 Convex optimization problems... 10 2.1 Examples 7-1 An (NP-) optimization problem P 0 is defined as follows Each instance I P 0 has a feasibility

More information

Module 6 P, NP, NP-Complete Problems and Approximation Algorithms

Module 6 P, NP, NP-Complete Problems and Approximation Algorithms Module 6 P, NP, NP-Complete Problems and Approximation Algorithms Dr. Natarajan Meghanathan Associate Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 397 E-mail: natarajan.meghanathan@jsums.edu Optimization vs. Decision

More information

Greedy algorithms Or Do the right thing

Greedy algorithms Or Do the right thing Greedy algorithms Or Do the right thing March 1, 2005 1 Greedy Algorithm Basic idea: When solving a problem do locally the right thing. Problem: Usually does not work. VertexCover (Optimization Version)

More information

V1.0: Seth Gilbert, V1.1: Steven Halim August 30, Abstract. d(e), and we assume that the distance function is non-negative (i.e., d(x, y) 0).

V1.0: Seth Gilbert, V1.1: Steven Halim August 30, Abstract. d(e), and we assume that the distance function is non-negative (i.e., d(x, y) 0). CS4234: Optimisation Algorithms Lecture 4 TRAVELLING-SALESMAN-PROBLEM (4 variants) V1.0: Seth Gilbert, V1.1: Steven Halim August 30, 2016 Abstract The goal of the TRAVELLING-SALESMAN-PROBLEM is to find

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 97 E-mail: natarajan.meghanathan@jsums.edu Optimization vs. Decision

More information

1 Variations of the Traveling Salesman Problem

1 Variations of the Traveling Salesman Problem Stanford University CS26: Optimization Handout 3 Luca Trevisan January, 20 Lecture 3 In which we prove the equivalence of three versions of the Traveling Salesman Problem, we provide a 2-approximate algorithm,

More information

Advanced Methods in Algorithms HW 5

Advanced Methods in Algorithms HW 5 Advanced Methods in Algorithms HW 5 Written by Pille Pullonen 1 Vertex-disjoint cycle cover Let G(V, E) be a finite, strongly-connected, directed graph. Let w : E R + be a positive weight function dened

More information

1 The Traveling Salesperson Problem (TSP)

1 The Traveling Salesperson Problem (TSP) CS 598CSC: Approximation Algorithms Lecture date: January 23, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im In the previous lecture, we had a quick overview of several basic aspects of approximation

More information

2 Approximation Algorithms for Metric TSP

2 Approximation Algorithms for Metric TSP Comp260: Advanced Algorithms Tufts University, Spring 2002 Professor Lenore Cowen Scribe: Stephanie Tauber Lecture 3: The Travelling Salesman Problem (TSP) 1 Introduction A salesman wishes to visit every

More information

Approximation Algorithms

Approximation Algorithms Chapter 8 Approximation Algorithms Algorithm Theory WS 2016/17 Fabian Kuhn Approximation Algorithms Optimization appears everywhere in computer science We have seen many examples, e.g.: scheduling jobs

More information

35 Approximation Algorithms

35 Approximation Algorithms 35 Approximation Algorithms Many problems of practical significance are NP-complete, yet they are too important to abandon merely because we don t know how to find an optimal solution in polynomial time.

More information

Basic Approximation algorithms

Basic Approximation algorithms Approximation slides Basic Approximation algorithms Guy Kortsarz Approximation slides 2 A ρ approximation algorithm for problems that we can not solve exactly Given an NP-hard question finding the optimum

More information

1 The Traveling Salesman Problem

1 The Traveling Salesman Problem Comp 260: Advanced Algorithms Tufts University, Spring 2018 Prof. Lenore Cowen Scribe: Duc Nguyen Lecture 3a: The Traveling Salesman Problem 1 The Traveling Salesman Problem The Traveling Salesman Problem

More information

The Traveling Salesman Problem on Grids with Forbidden Neighborhoods

The Traveling Salesman Problem on Grids with Forbidden Neighborhoods The Traveling Salesman Problem on Grids with Forbidden Neighborhoods Anja Fischer Philipp Hungerländer April 0, 06 We introduce the Traveling Salesman Problem with forbidden neighborhoods (TSPFN). This

More information

Assignment 5: Solutions

Assignment 5: Solutions Algorithm Design Techniques Assignment 5: Solutions () Port Authority. [This problem is more commonly called the Bin Packing Problem.] (a) Suppose K = 3 and (w, w, w 3, w 4 ) = (,,, ). The optimal solution

More information

CS270 Combinatorial Algorithms & Data Structures Spring Lecture 19:

CS270 Combinatorial Algorithms & Data Structures Spring Lecture 19: CS270 Combinatorial Algorithms & Data Structures Spring 2003 Lecture 19: 4.1.03 Lecturer: Satish Rao Scribes: Kevin Lacker and Bill Kramer Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Fall CS598CC: Approximation Algorithms. Chandra Chekuri

Fall CS598CC: Approximation Algorithms. Chandra Chekuri Fall 2006 CS598CC: Approximation Algorithms Chandra Chekuri Administrivia http://www.cs.uiuc.edu/homes/chekuri/teaching/fall2006/approx.htm Grading: 4 home works (60-70%), 1 take home final (30-40%) Mailing

More information

An O(log n/ log log n)-approximation Algorithm for the Asymmetric Traveling Salesman Problem

An O(log n/ log log n)-approximation Algorithm for the Asymmetric Traveling Salesman Problem An O(log n/ log log n)-approximation Algorithm for the Asymmetric Traveling Salesman Problem and more recent developments CATS @ UMD April 22, 2016 The Asymmetric Traveling Salesman Problem (ATSP) Problem

More information

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 9.1 Linear Programming Suppose we are trying to approximate a minimization

More information

(Refer Slide Time: 01:00)

(Refer Slide Time: 01:00) Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture minus 26 Heuristics for TSP In this lecture, we continue our discussion

More information

Travelling Salesman Problem. Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij

Travelling Salesman Problem. Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij Travelling Salesman Problem Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij 1 Contents TSP and its applications Heuristics and approximation algorithms Construction heuristics,

More information

Approximation Algorithms

Approximation Algorithms Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 Approximation Algorithms Tamassia Approximation Algorithms 1 Applications One of

More information

Traveling Salesman Problem. Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij

Traveling Salesman Problem. Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij Traveling Salesman Problem Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij 1 Contents TSP and its applications Heuristics and approximation algorithms Construction heuristics,

More information

Lecture 1. 2 Motivation: Fast. Reliable. Cheap. Choose two.

Lecture 1. 2 Motivation: Fast. Reliable. Cheap. Choose two. Approximation Algorithms and Hardness of Approximation February 19, 2013 Lecture 1 Lecturer: Ola Svensson Scribes: Alantha Newman 1 Class Information 4 credits Lecturers: Ola Svensson (ola.svensson@epfl.ch)

More information

CSE 548: Analysis of Algorithms. Lecture 13 ( Approximation Algorithms )

CSE 548: Analysis of Algorithms. Lecture 13 ( Approximation Algorithms ) CSE 548: Analysis of Algorithms Lecture 13 ( Approximation Algorithms ) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Fall 2017 Approximation Ratio Consider an optimization problem

More information

Slides on Approximation algorithms, part 2: Basic approximation algorithms

Slides on Approximation algorithms, part 2: Basic approximation algorithms Approximation slides Slides on Approximation algorithms, part : Basic approximation algorithms Guy Kortsarz Approximation slides Finding a lower bound; the TSP example The optimum TSP cycle P is an edge

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A 4 credit unit course Part of Theoretical Computer Science courses at the Laboratory of Mathematics There will be 4 hours

More information

Notes for Recitation 9

Notes for Recitation 9 6.042/18.062J Mathematics for Computer Science October 8, 2010 Tom Leighton and Marten van Dijk Notes for Recitation 9 1 Traveling Salesperson Problem Now we re going to talk about a famous optimization

More information

Outline. CS38 Introduction to Algorithms. Approximation Algorithms. Optimization Problems. Set Cover. Set cover 5/29/2014. coping with intractibility

Outline. CS38 Introduction to Algorithms. Approximation Algorithms. Optimization Problems. Set Cover. Set cover 5/29/2014. coping with intractibility Outline CS38 Introduction to Algorithms Lecture 18 May 29, 2014 coping with intractibility approximation algorithms set cover TSP center selection randomness in algorithms May 29, 2014 CS38 Lecture 18

More information

1 The Traveling Salesman Problem

1 The Traveling Salesman Problem Comp 260: Advanced Algorithms Tufts University, Spring 2011 Prof. Lenore Cowen Scribe: Jisoo Park Lecture 3: The Traveling Salesman Problem 1 The Traveling Salesman Problem The Traveling Salesman Problem

More information

Steiner Trees and Forests

Steiner Trees and Forests Massachusetts Institute of Technology Lecturer: Adriana Lopez 18.434: Seminar in Theoretical Computer Science March 7, 2006 Steiner Trees and Forests 1 Steiner Tree Problem Given an undirected graph G

More information

Optimal tour along pubs in the UK

Optimal tour along pubs in the UK 1 From Facebook Optimal tour along 24727 pubs in the UK Road distance (by google maps) see also http://www.math.uwaterloo.ca/tsp/pubs/index.html (part of TSP homepage http://www.math.uwaterloo.ca/tsp/

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE Professor Kindred Math 104, Graph Theory Homework 3 Solutions February 14, 2013 Introduction to Graph Theory, West Section 2.1: 37, 62 Section 2.2: 6, 7, 15 Section 2.3: 7, 10, 14 DO NOT RE-DISTRIBUTE

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Subhash Suri June 5, 2018 1 Figure of Merit: Performance Ratio Suppose we are working on an optimization problem in which each potential solution has a positive cost, and we want

More information

Graphs and Algorithms 2015

Graphs and Algorithms 2015 Graphs and Algorithms 2015 Teachers: Nikhil Bansal and Jorn van der Pol Webpage: www.win.tue.nl/~nikhil/courses/2wo08 (for up to date information, links to reading material) Goal: Have fun with discrete

More information

Partha Sarathi Mandal

Partha Sarathi Mandal MA 515: Introduction to Algorithms & MA353 : Design and Analysis of Algorithms [3-0-0-6] Lecture 39 http://www.iitg.ernet.in/psm/indexing_ma353/y09/index.html Partha Sarathi Mandal psm@iitg.ernet.in Dept.

More information

Topic 10 Part 2 [474 marks]

Topic 10 Part 2 [474 marks] Topic Part 2 [474 marks] The complete graph H has the following cost adjacency matrix Consider the travelling salesman problem for H a By first finding a minimum spanning tree on the subgraph of H formed

More information

CSC Design and Analysis of Algorithms. Lecture 4 Brute Force, Exhaustive Search, Graph Traversal Algorithms. Brute-Force Approach

CSC Design and Analysis of Algorithms. Lecture 4 Brute Force, Exhaustive Search, Graph Traversal Algorithms. Brute-Force Approach CSC 8301- Design and Analysis of Algorithms Lecture 4 Brute Force, Exhaustive Search, Graph Traversal Algorithms Brute-Force Approach Brute force is a straightforward approach to solving a problem, usually

More information

Theory of Computing. Lecture 10 MAS 714 Hartmut Klauck

Theory of Computing. Lecture 10 MAS 714 Hartmut Klauck Theory of Computing Lecture 10 MAS 714 Hartmut Klauck Seven Bridges of Königsberg Can one take a walk that crosses each bridge exactly once? Seven Bridges of Königsberg Model as a graph Is there a path

More information

Chapter Design Techniques for Approximation Algorithms

Chapter Design Techniques for Approximation Algorithms Chapter 2 Design Techniques for Approximation Algorithms I N THE preceding chapter we observed that many relevant optimization problems are NP-hard, and that it is unlikely that we will ever be able to

More information

Graph Applications, Class Notes, CS 3137 1 Traveling Salesperson Problem Web References: http://www.tsp.gatech.edu/index.html http://www-e.uni-magdeburg.de/mertens/tsp/tsp.html TSP applets A Hamiltonian

More information

Modules. 6 Hamilton Graphs (4-8 lectures) Introduction Necessary conditions and sufficient conditions Exercises...

Modules. 6 Hamilton Graphs (4-8 lectures) Introduction Necessary conditions and sufficient conditions Exercises... Modules 6 Hamilton Graphs (4-8 lectures) 135 6.1 Introduction................................ 136 6.2 Necessary conditions and sufficient conditions............. 137 Exercises..................................

More information

Math 15 - Spring Homework 2.6 Solutions 1. (2.6 # 20) The following graph has 45 vertices. In Sagemath, we can define it like so:

Math 15 - Spring Homework 2.6 Solutions 1. (2.6 # 20) The following graph has 45 vertices. In Sagemath, we can define it like so: Math 15 - Spring 2017 - Homework 2.6 Solutions 1. (2.6 # 20) The following graph has 45 vertices. In Sagemath, we can define it like so: dm = {0: [1,15], 1: [2,16,31], 2: [3,17,32], 3: [4,18,33], 4: [5,19,34],

More information

Improved approximation ratios for traveling salesperson tours and paths in directed graphs

Improved approximation ratios for traveling salesperson tours and paths in directed graphs Improved approximation ratios for traveling salesperson tours and paths in directed graphs Uriel Feige Mohit Singh August, 2006 Abstract In metric asymmetric traveling salesperson problems the input is

More information

MAT 145: PROBLEM SET 6

MAT 145: PROBLEM SET 6 MAT 145: PROBLEM SET 6 DUE TO FRIDAY MAR 8 Abstract. This problem set corresponds to the eighth week of the Combinatorics Course in the Winter Quarter 2019. It was posted online on Friday Mar 1 and is

More information

CS 4407 Algorithms. Lecture 8: Circumventing Intractability, using Approximation and other Techniques

CS 4407 Algorithms. Lecture 8: Circumventing Intractability, using Approximation and other Techniques CS 4407 Algorithms Lecture 8: Circumventing Intractability, using Approximation and other Techniques Prof. Gregory Provan Department of Computer Science University College Cork CS 4010 1 Lecture Outline

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Question 1. Incidence matrix with gaps Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 2016 www-m10.ma.tum.de/projektivegeometriess16

More information

Coping with the Limitations of Algorithm Power Exact Solution Strategies Backtracking Backtracking : A Scenario

Coping with the Limitations of Algorithm Power Exact Solution Strategies Backtracking Backtracking : A Scenario Coping with the Limitations of Algorithm Power Tackling Difficult Combinatorial Problems There are two principal approaches to tackling difficult combinatorial problems (NP-hard problems): Use a strategy

More information

Restricted Delivery Problems on a Network. December 17, Abstract

Restricted Delivery Problems on a Network. December 17, Abstract Restricted Delivery Problems on a Network Esther M. Arkin y, Refael Hassin z and Limor Klein x December 17, 1996 Abstract We consider a delivery problem on a network one is given a network in which nodes

More information

Precept 4: Traveling Salesman Problem, Hierarchical Clustering. Qian Zhu 2/23/2011

Precept 4: Traveling Salesman Problem, Hierarchical Clustering. Qian Zhu 2/23/2011 Precept 4: Traveling Salesman Problem, Hierarchical Clustering Qian Zhu 2/23/2011 Agenda Assignment: Traveling salesman problem Hierarchical clustering Example Comparisons with K-means TSP TSP: Given the

More information

Notes 4 : Approximating Maximum Parsimony

Notes 4 : Approximating Maximum Parsimony Notes 4 : Approximating Maximum Parsimony MATH 833 - Fall 2012 Lecturer: Sebastien Roch References: [SS03, Chapters 2, 5], [DPV06, Chapters 5, 9] 1 Coping with NP-completeness Local search heuristics.

More information

Prove, where is known to be NP-complete. The following problems are NP-Complete:

Prove, where is known to be NP-complete. The following problems are NP-Complete: CMPSCI 601: Recall From Last Time Lecture 21 To prove is NP-complete: Prove NP. Prove, where is known to be NP-complete. The following problems are NP-Complete: SAT (Cook-Levin Theorem) 3-SAT 3-COLOR CLIQUE

More information

Algorithms and Data Structures: Minimum Spanning Trees (Kruskal) ADS: lecture 16 slide 1

Algorithms and Data Structures: Minimum Spanning Trees (Kruskal) ADS: lecture 16 slide 1 Algorithms and Data Structures: Minimum Spanning Trees (Kruskal) ADS: lecture 16 slide 1 Minimum Spanning Tree Problem Given: Undirected connected weighted graph (G, W ) Output: An MST of G We have already

More information

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W.

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W. : Coping with NP-Completeness Course contents: Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems Reading: Chapter 34 Chapter 35.1, 35.2 Y.-W. Chang 1 Complexity

More information

Combinatorial Optimization - Lecture 14 - TSP EPFL

Combinatorial Optimization - Lecture 14 - TSP EPFL Combinatorial Optimization - Lecture 14 - TSP EPFL 2012 Plan Simple heuristics Alternative approaches Best heuristics: local search Lower bounds from LP Moats Simple Heuristics Nearest Neighbor (NN) Greedy

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I Instructor: Shaddin Dughmi Announcements Posted solutions to HW1 Today: Combinatorial problems

More information

3 Euler Tours, Hamilton Cycles, and Their Applications

3 Euler Tours, Hamilton Cycles, and Their Applications 3 Euler Tours, Hamilton Cycles, and Their Applications 3.1 Euler Tours and Applications 3.1.1 Euler tours Carefully review the definition of (closed) walks, trails, and paths from Section 1... Definition

More information

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch]

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch] NP Completeness Andreas Klappenecker [partially based on slides by Jennifer Welch] Dealing with NP-Complete Problems Dealing with NP-Completeness Suppose the problem you need to solve is NP-complete. What

More information

Traveling Salesperson Problem (TSP)

Traveling Salesperson Problem (TSP) TSP-0 Traveling Salesperson Problem (TSP) Input: Undirected edge weighted complete graph G = (V, E, W ), where W : e R +. Tour: Find a path that starts at vertex 1, visits every vertex exactly once, and

More information

Chapter 14 Section 3 - Slide 1

Chapter 14 Section 3 - Slide 1 AND Chapter 14 Section 3 - Slide 1 Chapter 14 Graph Theory Chapter 14 Section 3 - Slide WHAT YOU WILL LEARN Graphs, paths and circuits The Königsberg bridge problem Euler paths and Euler circuits Hamilton

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, Approximation Algorithms

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, Approximation Algorithms Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 Approximation Algorithms 1 Bike Tour Suppose you decide to ride a bicycle around

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 208 https://www-m0.ma.tum.de/bin/view/lehre/ss8/pgss8/webhome Solutions for

More information

Lecture Notes: Euclidean Traveling Salesman Problem

Lecture Notes: Euclidean Traveling Salesman Problem IOE 691: Approximation Algorithms Date: 2/6/2017, 2/8/2017 ecture Notes: Euclidean Traveling Salesman Problem Instructor: Viswanath Nagarajan Scribe: Miao Yu 1 Introduction In the Euclidean Traveling Salesman

More information

Acyclic Edge Colorings of Graphs

Acyclic Edge Colorings of Graphs Acyclic Edge Colorings of Graphs Noga Alon Ayal Zaks Abstract A proper coloring of the edges of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G,

More information

APPROXIMATION ALGORITHMS FOR GEOMETRIC PROBLEMS

APPROXIMATION ALGORITHMS FOR GEOMETRIC PROBLEMS APPROXIMATION ALGORITHMS FOR GEOMETRIC PROBLEMS Subhas C. Nandy (nandysc@isical.ac.in) Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata 70010, India. Organization Introduction

More information

12.1 Formulation of General Perfect Matching

12.1 Formulation of General Perfect Matching CSC5160: Combinatorial Optimization and Approximation Algorithms Topic: Perfect Matching Polytope Date: 22/02/2008 Lecturer: Lap Chi Lau Scribe: Yuk Hei Chan, Ling Ding and Xiaobing Wu In this lecture,

More information

Decision Problems. Observation: Many polynomial algorithms. Questions: Can we solve all problems in polynomial time? Answer: No, absolutely not.

Decision Problems. Observation: Many polynomial algorithms. Questions: Can we solve all problems in polynomial time? Answer: No, absolutely not. Decision Problems Observation: Many polynomial algorithms. Questions: Can we solve all problems in polynomial time? Answer: No, absolutely not. Definition: The class of problems that can be solved by polynomial-time

More information

SLS Methods: An Overview

SLS Methods: An Overview HEURSTC OPTMZATON SLS Methods: An Overview adapted from slides for SLS:FA, Chapter 2 Outline 1. Constructive Heuristics (Revisited) 2. terative mprovement (Revisited) 3. Simple SLS Methods 4. Hybrid SLS

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Approximation Algorithms CLRS 35.1-35.5 University of Manitoba COMP 3170 - Analysis of Algorithms & Data Structures 1 / 30 Approaching

More information

CS264: Homework #4. Due by midnight on Wednesday, October 22, 2014

CS264: Homework #4. Due by midnight on Wednesday, October 22, 2014 CS264: Homework #4 Due by midnight on Wednesday, October 22, 2014 Instructions: (1) Form a group of 1-3 students. You should turn in only one write-up for your entire group. (2) Turn in your solutions

More information

Basic Combinatorics. Math 40210, Section 01 Fall Homework 4 Solutions

Basic Combinatorics. Math 40210, Section 01 Fall Homework 4 Solutions Basic Combinatorics Math 40210, Section 01 Fall 2012 Homework 4 Solutions 1.4.2 2: One possible implementation: Start with abcgfjiea From edge cd build, using previously unmarked edges: cdhlponminjkghc

More information

Constructive and destructive algorithms

Constructive and destructive algorithms Constructive and destructive algorithms Heuristic algorithms Giovanni Righini University of Milan Department of Computer Science (Crema) Constructive algorithms In combinatorial optimization problems every

More information

CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh HW#3 Due at the beginning of class Thursday 02/26/15

CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh HW#3 Due at the beginning of class Thursday 02/26/15 CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh (rezab@stanford.edu) HW#3 Due at the beginning of class Thursday 02/26/15 1. Consider a model of a nonbipartite undirected graph in which

More information

14 More Graphs: Euler Tours and Hamilton Cycles

14 More Graphs: Euler Tours and Hamilton Cycles 14 More Graphs: Euler Tours and Hamilton Cycles 14.1 Degrees The degree of a vertex is the number of edges coming out of it. The following is sometimes called the First Theorem of Graph Theory : Lemma

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

Stanford University CS261: Optimization Handout 1 Luca Trevisan January 4, 2011

Stanford University CS261: Optimization Handout 1 Luca Trevisan January 4, 2011 Stanford University CS261: Optimization Handout 1 Luca Trevisan January 4, 2011 Lecture 1 In which we describe what this course is about and give two simple examples of approximation algorithms 1 Overview

More information

Greedy Approximations

Greedy Approximations CS 787: Advanced Algorithms Instructor: Dieter van Melkebeek Greedy Approximations Approximation algorithms give a solution to a problem in polynomial time, at most a given factor away from the correct

More information

Simple Graph. General Graph

Simple Graph. General Graph Graph Theory A graph is a collection of points (also called vertices) and lines (also called edges), with each edge ending at a vertex In general, it is allowed for more than one edge to have the same

More information

MAS 341: GRAPH THEORY 2016 EXAM SOLUTIONS

MAS 341: GRAPH THEORY 2016 EXAM SOLUTIONS MS 41: PH THEOY 2016 EXM SOLUTIONS 1. Question 1 1.1. Explain why any alkane C n H 2n+2 is a tree. How many isomers does C 6 H 14 have? Draw the structure of the carbon atoms in each isomer. marks; marks

More information

Solution for Homework set 3

Solution for Homework set 3 TTIC 300 and CMSC 37000 Algorithms Winter 07 Solution for Homework set 3 Question (0 points) We are given a directed graph G = (V, E), with two special vertices s and t, and non-negative integral capacities

More information

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE Professor Kindred Math 104, Graph Theory Homework 2 Solutions February 7, 2013 Introduction to Graph Theory, West Section 1.2: 26, 38, 42 Section 1.3: 14, 18 Section 2.1: 26, 29, 30 DO NOT RE-DISTRIBUTE

More information

5.5 The Travelling Salesman Problem

5.5 The Travelling Salesman Problem 0 Matchings and Independent Sets 5.5 The Travelling Salesman Problem The Travelling Salesman Problem A travelling salesman, starting in his own town, has to visit each of towns where he should go to precisely

More information

Best known solution time is Ω(V!) Check every permutation of vertices to see if there is a graph edge between adjacent vertices

Best known solution time is Ω(V!) Check every permutation of vertices to see if there is a graph edge between adjacent vertices Hard Problems Euler-Tour Problem Undirected graph G=(V,E) An Euler Tour is a path where every edge appears exactly once. The Euler-Tour Problem: does graph G have an Euler Path? Answerable in O(E) time.

More information

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018 CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved.

More information

arxiv: v1 [cs.ro] 20 Mar 2016

arxiv: v1 [cs.ro] 20 Mar 2016 An Approximation Approach for Solving the Subpath Planning Problem arxiv:1603.0617v1 [cs.ro] 0 Mar 016 Masoud Safilian 1, S. Mehdi Tashakkori Hashemi 1, Sepehr Eghbali, Aliakbar Safilian 3 1 Amirkabir

More information

The Traveling Salesperson Problem with Forbidden Neighborhoods on Regular 3D Grids

The Traveling Salesperson Problem with Forbidden Neighborhoods on Regular 3D Grids The Traveling Salesperson Problem with Forbidden Neighborhoods on Regular 3D Grids Anja Fischer, Philipp Hungerländer 2, and Anna Jellen 2 Tehnische Universität Dortmund, Germany, anja2.fischer@tu-dortmund.de,

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE 101, Winter 2018 Design and Analysis of Algorithms Lecture 9: Minimum Spanning Trees Class URL: http://vlsicad.ucsd.edu/courses/cse101-w18/ Goal: MST cut and cycle properties Prim, Kruskal greedy algorithms

More information

Questions... How does one show the first problem is NP-complete? What goes on in a reduction? How hard are NP-complete problems?

Questions... How does one show the first problem is NP-complete? What goes on in a reduction? How hard are NP-complete problems? Even More NP Questions... How does one show the first problem is NP-complete? What goes on in a reduction? How hard are NP-complete problems? Reduction We say that problem A reduces to problem B, if there

More information