MATH 209, Lab 5. Richard M. Slevinsky

Size: px
Start display at page:

Download "MATH 209, Lab 5. Richard M. Slevinsky"

Transcription

1 MATH 209, Lab 5 Richard M. Slevinsky Problems 1. Say the temperature T at any point (x, y, z) in space is given by T = 4 x y z 2. Find the hottest point on the sphere F = x 2 + y 2 + z = 0; We equate gradients: T = λ F, 4 y z 2, x z 2, 2 x y z = λ 2 x, 2 y, 2 z, giving us three equations for four unknowns. Adding the constraint F = 0, we have four equations for four unknowns: 4 y z 2 = 2 λ x, 4 x z 2 = 2 λ y, 8 x y z = 2 λ z, x 2 + y 2 + z 2 = 100. Simplifying by substituting the constraint equation, we find: Again for λ: And: Or: Contact: rms8@ualberta.ca 4 y(100 x 2 y 2 ) = 2 λ x, 4 x(100 x 2 y 2 ) = 2 λ y, 8 x y = 2 λ. 4 y(100 x 2 y 2 ) = 8 x 2 y, 4 x(100 x 2 y 2 ) = 8 x y x 2 y 2 = 2 x 2, 100 x 2 y 2 = 2 y x 2 y 2 = 0, 100 x 2 3 y 2 = 0. 1

2 Therefore, the values of x and y must solve the above system. By subtraction, we find x = ±5 and y = ±5. At these values, z 2 = 100, or z 2 = 50, and z = ±5 2. The hottest point occurs when T at the highest value of T (±5, ±5, ±5 2). This occurs when the signs of the x and y values are the same. Therefore, the hottest points are located at (x, y, z) = (5, 5, ±5 2) and ( 5, 5, ±5 2). 2. Show that the product of the angles of a triangle is largest when the triangle is equilateral; We seek to: Equating gradients, we find: The four equations we have are: maximize P = θ 1 θ 2 θ 3 subject to S = θ 1 + θ 2 + θ = 0, The top three equations can be rearranged as: P = λ S, θ 2 θ 3, θ 1 θ 3, θ 1 θ 2 = λ 1, 1, 1. θ 2 θ 3 = λ, θ 1 θ 3 = λ, θ 1 θ 2 = λ, θ 1 + θ 2 + θ 3 = 180. θ 3 (θ 2 θ 1 ) = 0, θ 1 (θ 3 θ 2 ) = 0, θ 2 (θ 3 θ 1 ) = 0, θ i > 0, i = 1, 2, 3. implying θ 1 = θ 2 = θ 3 = 60 from the angular constraint. This is the equilateral triangle. 3. Let C denote the line of intersection of the planes 3 x + 2 y + z = 6 and x 4 y + 2 z = 8. Find the point on C that is closest to the origin; The point that is closest to the origin minimizes the distance, and also the distance squared, which is simpler to work with. Equating gradients: d 2 (x, y, z) = λp 1 + µp 2, 2 x, y, z = λ 3, 2, 1 + µ 1, 4, 2, These three equations with the two planes give: 2 x 3λ µ = 0, 2 y 2λ + 4µ = 0, 2 z λ 2µ = 0, 3 x + 2 y + z = 6, x 4 y + 2 z = 8. This system of five equations and five unknowns has the solution (check) x = , y = 44 57, z = 82 λ = 20 19, µ = The closest point is therefore: (x, y, z) = 57 (116, 44, 82). 57, 2

3 4. A container is constructed in the shape of a cylinder with a top and a bottom (e.g. a beer can). If the surface area of the container has a fixed value S, find the radius and height of the container that will maximize the enclosed volume. The volume of a cylinder is V = πr 2 h, while the surface area is S = 2πrh + 2πr 2. Therefore, we wish to: maximize V = πr 2 h subject to S = 2πrh + 2πr 2. Exercises Equating gradients, we find: These two equations are: V = λ S, π 2 r h, r 2 = 2πλ h + 2 r, r. 2π r h = 2πλ(h + 2 r), π r 2 = 2πλ r. The second equation gives r = 0 or λ = r 2. Since r = 0 won t maximize anything, inserting the second possibility into the first equation above: 2π r h = 2π r (h + 2 r), 2 2 h = h + 2 r, h = 2 r. Therefore, the height is twice the size of the radius. 1. Find the maximum value of f(x, y, z) = x + y + z on the sphere x 2 + y 2 + z 2 = 25; Equating gradients: f = λ F, 1, 1, 1 = λ 2 x, 2 y, 2 z, giving us three equations for four unknowns. Adding the constraint F = 0, we have four equations for four unknowns: 1 = 2 λ x, 1 = 2 λ y, 1 = 2 λ z, x 2 + y 2 + z 2 = 25. Simplifying by substituting into the constraint equation, we find: ( ) 1 2 ( ) 1 2 ( ) = 25, 2 λ 2 λ 2 λ 3 4 = 25λ2, 3

4 or λ = ± 3/10. Choosing only the positive branch for the position (otherwise we actually find the minimum value of f), we find x = y = z = 5/ 3. Therefore, the maximum value of f on the sphere is f(5/ 3, 5/ 3, 5/ 3) = Let C be the curve of intersection of the surface y 2 z 2 = 1 and the plane x y = 1. Find the minimum value of f(x, y, z) = x 2 + y 2 + z 2 on C; Letting g 1 (x, y, z) = y 2 z 2 1 = 0 and g 2 (x, y, z) = x y 1 = 0, we equate gradients: f = λ g 1 + µ g 2, 2 x, 2 y, 2 z = λ 0, 2 y, 2 z + µ 1, 1, 0. These three equations with the two surfaces gives five equations for five unknowns: 2 x µ = 0, 2 y λ2 y + µ = 0, 2 z + λ2 z = 0, y 2 z 2 = 1, x y = 1. From the last and first equations x = 1 + y and therefore µ = 2(1 + y). Inserting this into the second equation and simplifying: 4 y λ2 y = 2, z + λz = 0, y 2 z 2 = 1. Therefore, from this middle equation, either z = 0 or λ = 1. If z = 0, then y = ±1 from the bottom equation and x = 1 ± 1 = 2, 0 from above. Therefore, f(x, y, z) = (±1) 2 + (1 ± 1) 2 = 3 ± 2. If λ = 1, then y = 1/3. However, if 1 < y < 1, then from the bottom equation z C and therefore the point is not on both curves. The minimum value is f(0, 1, 0) = What is the volume of the largest rectangular box (with edges parallel to the axes) which can be inscribed in the ellipsoid x y2 9 + z2 16 = 1? Since x, y, and z are the coordinate lengths, the volumes of the rectangular boxes with edges parallel to the axes is V = 2 x2 y2 z = 8 x y z. Therefore, equating gradients: With the ellipsoidal constraint: V = λ E, x 8 y z, x z, x y = λ 18, 2 y 9, z. 8 8 y z λx 18 = 0, 8 x z 2λy 9 = 0, 8 x y λz 8 = 0, x y2 9 + z2 16 = 1. 4

5 From the first equation λ = 144 y z x. Therefore: Simplifying the top two equations: 8 x z 288 y2 z = 0, 9 x 144 y z2 8 x y = 0, 8 x x y2 9 + z2 16 = 1. x 2 4 y 2 = 0, 4 x 2 9 z 2 = 0, x y2 9 + z2 16 = 1. Solving the top two equations for y 2 and z 2 and inserting in the ellipsoidal equation, we have: y 2 = x2 4, z 2 = 4 x2 9, x x x2 36 = 1. Therefore, x 2 = 12, or x = ±2 3, y = ± 3, and z = ±4/ 3. Taking only the positive points, the largest box has the volume V (2 3, 3, 4/ 3) = Find the point on the plane z = 4 x + 9 y which is closest to the point (1, 1, 2). We seek to minimize the distance (squared) from the point to the plane: minimize d 2 P = (x 1) 2 + (y 1) 2 + (z 2) 2 subject to S = 4 x + 9 y z = 0. Equating gradients, we find: With the planar constraint: d 2 P = λ S, 2 x 1, y 1, z 2 = λ 4, 9, 1. 2(x 1) 4λ = 0, 2(y 1) 9λ = 0, 2(z 1) + λ = 0, 4 x + 9 y z = 0. This system of four equations and four unknowns has the solution (check) x = 50 49, y = 5 49, z = 55 and λ = , 5

6 This week, we will find the global minimum of the function: f (x, y) = esin(50 x) + sin(60 ey ) + sin(70 sin(x)) + sin(sin(80 y)) sin(10(x + y)) + x2 + y 2. 4 This is problem 4 in The SIAM 100-Digit Challenge [1]. For x and y large, f (x, y) is dominated by the 2 2 paraboloid x +y 4, since the values of the other terms lie in the intervals [1/e, e], [ 1, 1], [ 1, 1], [ sin 1, sin 1], and [ 1, 1], respectively. Therefore, we know the minimum will be reasonably near the origin. However, what is reasonable? We can break the problem down into three steps: 1. Find a bounded region that contains the minimum; 2. Identify the rough location of the lowest point in that region; 3. Zoom in closer to pinpoint the minimum to high precision. Part I We evaluate the function on the 2601 values of x and y from 0.25 to 0.25 in steps of The function can be as small as Outside the circle of radius 1, the function is at least e sin > Therefore, the minimum must be inside the circle of radius 1. Part II Many animals and insects interact with eachother, whether this may be for the purposes of protection from predators, or for cooperation in hunting, finding shelter, or otherwise [2]. Bees, ants, birds, and fish have been studied in particular because they are all relatively easy to study. For example, bee hives host around 5,000-10,000 bees, which is few enough to be individually counted and monitored. Insects can communicate with one another by releasing pheromones into the environment. These pheromones can indicate the source and quality of food, or a threat. PSO seeks to use simple algorithmic rules from the insect interactions, apply them to agents with random motion, and hope to derive meaningful global information of the problem the agents are trying to solve. For bees and ants that are harvesting food, they may look like [2]: 1. Wander to find food; 6

7 2. When I find food, harvest it and lay a trail of pheromones back to hive/hill; 3. If I find a trail, follow it, harvest food, and reinforce the shortest trail with pheromones to hive/hill. Bees and ants have become the prototype species for PSO and Ant-Colony Optimization (ACO). While they are similar, the ACO is very similar to the simple rules above, while the PSO takes advantage of the ability of bees to fly. This results in the Particle Swarm Optimization algorithm [3]: 1. Initialization of agents i = 1,..., N, with random positions x i and speeds v i ; Loop over all agents 2. Evaluate the function f( x i ); 3. Compare the value of the function f( x i ) with the best value of the agent. Let this be the vector p. If the current value is the best, replace it; 4. Identify the agent with the best value p. Let this be the vector g representing the entire swarm s best value; 5. Update the agents positions and velocities as: v i ω v i + φ p U(0, 1) ( p i x i ) + φ g U(0, 1) ( p g x i ), x i x i + v i. (1) 6. Terminate when the optimal value (to an error tolerance) is obtained. End loop In (1), 0 < ω < 1 is an inertial term, 2 < φ p < 2, 2 < φ g < 2, denotes component-wise multiplication, and U(0, 1) denotes a uniformly distributed random variable on the interval [0, 1]. Part III To get really high precision result, we need something that converges very quickly. Remember the Newton- Raphson method? Suppose we want to find the solution to: Using the linear approximation to f (x i ), we have: Setting the linear approximation to 0, we solve: min f(x) = f (x) = 0. (2) L(x) = f (x i ) + (x x i )f (x i ). (3) 0 = f (x i ) + (x i+1 x i )f (x i ), (4) for x i+1 as: Suppose, now we have two variables: x i+1 = x i f (x i ) f (x i ). (5) min f(x, y) = f(x, y) = 0. (6) 7

8 But setting the gradient to 0 is actually a system of two equations: f x (x, y) = 0, (7) f y (x, y) = 0, (8) with two unknowns x and y. Fortunately, we can form the tangent plane approximation (the generalization of the linear approximation) to both equations: T fx (x, y) = f x (x i, y i ) + (x x i )f xx (x i, y i ) + (y y i )f xy (x i, y i ), (9) T fy (x, y) = f y (x i, y i ) + (x x i )f xy (x i, y i ) + (y y i )f yy (x i, y i ), (10) Setting both equations simultaneously to 0 at the new iterate (x i+1, y i+1 ), we have: [ ] [ ] [ ] f xx (x i, y i ) f xy (x i, y i ) x i+1 x i f x (x i, y i ) =. (11) f xy (x i, y i ) f yy (x i, y i ) y i+1 y i f y (x i, y i ) This is a familiar system of two equations for two unknowns. We can solve this! [ x i+1 y i+1 ] = [ x i y i ] [ f xx (x i, y i ) f xy (x i, y i ) f xy (x i, y i ) f yy (x i, y i ) ] 1 [ f x (x i, y i ) f y (x i, y i ) ]. (12) References [1] F. Bornemann et al. Think Globally, Act Locally in The SIAM 100-Digit Challenge, SIAM, 4:77 100, [2] M. Beekman et al. Biological Foundations of Swarm Intelligence in Swarm Intelligence, Springer-Verlag, 1:3 41, [3] J. Kennedy and R.C. Eberhart Particle swarm optimization, Proceedings of the IEEE international conference on neural networks IV, ,

MATH 209 Lab Solutions

MATH 209 Lab Solutions MATH 9 Lab Solutions Richard M. Slevinsky 1 November 1, 13 1 Contact: rms8@ualberta.ca Contents 1 Multivariable Functions and Limits Partial Derivatives 6 3 Directional Derivatives and Gradients 15 4 Maximum

More information

Math 233. Lagrange Multipliers Basics

Math 233. Lagrange Multipliers Basics Math 33. Lagrange Multipliers Basics Optimization problems of the form to optimize a function f(x, y, z) over a constraint g(x, y, z) = k can often be conveniently solved using the method of Lagrange multipliers:

More information

14.5 Directional Derivatives and the Gradient Vector

14.5 Directional Derivatives and the Gradient Vector 14.5 Directional Derivatives and the Gradient Vector 1. Directional Derivatives. Recall z = f (x, y) and the partial derivatives f x and f y are defined as f (x 0 + h, y 0 ) f (x 0, y 0 ) f x (x 0, y 0

More information

Math 233. Lagrange Multipliers Basics

Math 233. Lagrange Multipliers Basics Math 233. Lagrange Multipliers Basics Optimization problems of the form to optimize a function f(x, y, z) over a constraint g(x, y, z) = k can often be conveniently solved using the method of Lagrange

More information

we wish to minimize this function; to make life easier, we may minimize

we wish to minimize this function; to make life easier, we may minimize Optimization and Lagrange Multipliers We studied single variable optimization problems in Calculus 1; given a function f(x), we found the extremes of f relative to some constraint. Our ability to find

More information

(c) 0 (d) (a) 27 (b) (e) x 2 3x2

(c) 0 (d) (a) 27 (b) (e) x 2 3x2 1. Sarah the architect is designing a modern building. The base of the building is the region in the xy-plane bounded by x =, y =, and y = 3 x. The building itself has a height bounded between z = and

More information

Math 113 Exam 1 Practice

Math 113 Exam 1 Practice Math Exam Practice January 6, 00 Exam will cover sections 6.-6.5 and 7.-7.5 This sheet has three sections. The first section will remind you about techniques and formulas that you should know. The second

More information

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane?

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane? Math 4 Practice Problems for Midterm. A unit vector that is perpendicular to both V =, 3, and W = 4,, is (a) V W (b) V W (c) 5 6 V W (d) 3 6 V W (e) 7 6 V W. In three dimensions, the graph of the equation

More information

Lagrange multipliers October 2013

Lagrange multipliers October 2013 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 1 1 3/2 Example: Optimization

More information

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints:

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints: Math 9 (Fall 7) Calculus III Solution #5. Find the minimum and maximum values of the following functions f under the given constraints: (a) f(x, y) 4x + 6y, x + y ; (b) f(x, y) x y, x + y 6. Solution:

More information

Lagrange multipliers 14.8

Lagrange multipliers 14.8 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 Maximum? 1 1 Minimum? 3/2 Idea:

More information

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals)

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals) MA 43 Calculus III Fall 8 Dr. E. Jacobs Assignments Reading assignments are found in James Stewart s Calculus (Early Transcendentals) Assignment. Spheres and Other Surfaces Read. -. and.6 Section./Problems

More information

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008 A small review, Second Midterm, Calculus, Prof. Montero 45:-4, Fall 8 Maxima and minima Let us recall first, that for a function f(x, y), the gradient is the vector ( f)(x, y) = ( ) f f (x, y); (x, y).

More information

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

HOMEWORK ASSIGNMENT #4, MATH 253

HOMEWORK ASSIGNMENT #4, MATH 253 HOMEWORK ASSIGNMENT #4, MATH 253. Prove that the following differential equations are satisfied by the given functions: (a) 2 u 2 + 2 u y 2 + 2 u z 2 =0,whereu =(x2 + y 2 + z 2 ) /2. (b) x w + y w y +

More information

Quiz 6 Practice Problems

Quiz 6 Practice Problems Quiz 6 Practice Problems Practice problems are similar, both in difficulty and in scope, to the type of problems you will see on the quiz. Problems marked with a are for your entertainment and are not

More information

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves Block #1: Vector-Valued Functions Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves 1 The Calculus of Moving Objects Problem.

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

We can conclude that if f is differentiable in an interval containing a, then. f(x) L(x) = f(a) + f (a)(x a).

We can conclude that if f is differentiable in an interval containing a, then. f(x) L(x) = f(a) + f (a)(x a). = sin( x) = 8 Lecture :Linear Approximations and Differentials Consider a point on a smooth curve y = f(x), say P = (a, f(a)), If we draw a tangent line to the curve at the point P, we can see from the

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 covers essentially the same material as MAT201, but is more in depth and theoretical. Exam problems are often more sophisticated in scope and difficulty

More information

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V Boise State Math 275 (Ultman) Worksheet 3.4: Triple Integrals in Cylindrical Coordinates From the Toolbox (what you need from previous classes) Know what the volume element dv represents. Be able to find

More information

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z.

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z. Week 1 Worksheet Sections from Thomas 13 th edition: 12.4, 12.5, 12.6, 13.1 1. A plane is a set of points that satisfies an equation of the form c 1 x + c 2 y + c 3 z = c 4. (a) Find any three distinct

More information

Total. Math 2130 Practice Final (Spring 2017) (1) (2) (3) (4) (5) (6) (7) (8)

Total. Math 2130 Practice Final (Spring 2017) (1) (2) (3) (4) (5) (6) (7) (8) Math 130 Practice Final (Spring 017) Before the exam: Do not write anything on this page. Do not open the exam. Turn off your cell phone. Make sure your books, notes, and electronics are not visible during

More information

2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0.

2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0. Midterm 3 Review Short Answer 2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0. 3. Compute the Riemann sum for the double integral where for the given grid

More information

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points.

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. 1. Evaluate the area A of the triangle with the vertices

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III October 26, 2012 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Exam 2 Preparation Math 2080 (Spring 2011) Exam 2: Thursday, May 12.

Exam 2 Preparation Math 2080 (Spring 2011) Exam 2: Thursday, May 12. Multivariable Calculus Exam 2 Preparation Math 28 (Spring 2) Exam 2: Thursday, May 2. Friday May, is a day off! Instructions: () There are points on the exam and an extra credit problem worth an additional

More information

Math 253, Section 102, Fall 2006 Practice Final Solutions

Math 253, Section 102, Fall 2006 Practice Final Solutions Math 253, Section 102, Fall 2006 Practice Final Solutions 1 2 1. Determine whether the two lines L 1 and L 2 described below intersect. If yes, find the point of intersection. If not, say whether they

More information

Math 213 Exam 2. Each question is followed by a space to write your answer. Please write your answer neatly in the space provided.

Math 213 Exam 2. Each question is followed by a space to write your answer. Please write your answer neatly in the space provided. Math 213 Exam 2 Name: Section: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used other than a onepage cheat

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

B.Stat / B.Math. Entrance Examination 2017

B.Stat / B.Math. Entrance Examination 2017 B.Stat / B.Math. Entrance Examination 017 BOOKLET NO. TEST CODE : UGA Forenoon Questions : 0 Time : hours Write your Name, Registration Number, Test Centre, Test Code and the Number of this Booklet in

More information

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0 FROM ROGAWSKI S CALCULUS (2ND ED.) SECTION 5.4 18.) Express the antiderivative F (x) of f(x) satisfying the given initial condition as an integral. f(x) = x + 1 x 2 + 9, F (7) = 28.) Find G (1), where

More information

Math 241, Final Exam. 12/11/12.

Math 241, Final Exam. 12/11/12. Math, Final Exam. //. No notes, calculator, or text. There are points total. Partial credit may be given. ircle or otherwise clearly identify your final answer. Name:. (5 points): Equation of a line. Find

More information

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two:

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two: Final Solutions. Suppose that the equation F (x, y, z) implicitly defines each of the three variables x, y, and z as functions of the other two: z f(x, y), y g(x, z), x h(y, z). If F is differentiable

More information

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers In this section we present Lagrange s method for maximizing or minimizing a general function f(x, y, z) subject to a constraint (or side condition) of the form g(x, y, z) = k. Figure 1 shows this curve

More information

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ Math 0 Prelim I Solutions Spring 010 1. Let f(x, y) = x3 y for (x, y) (0, 0). x 6 + y (4 pts) (a) Show that the cubic curves y = x 3 are level curves of the function f. Solution. Substituting y = x 3 in

More information

Curves, Tangent Planes, and Differentials ( ) Feb. 26, 2012 (Sun) Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent

Curves, Tangent Planes, and Differentials ( ) Feb. 26, 2012 (Sun) Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent Planes, and Differentials ( 11.3-11.4) Feb. 26, 2012 (Sun) Signs of Partial Derivatives on Level Curves Level curves are shown for a function

More information

Parametric Surfaces and Surface Area

Parametric Surfaces and Surface Area Parametric Surfaces and Surface Area What to know: 1. Be able to parametrize standard surfaces, like the ones in the handout.. Be able to understand what a parametrized surface looks like (for this class,

More information

Winter 2012 Math 255 Section 006. Problem Set 7

Winter 2012 Math 255 Section 006. Problem Set 7 Problem Set 7 1 a) Carry out the partials with respect to t and x, substitute and check b) Use separation of varibles, i.e. write as dx/x 2 = dt, integrate both sides and observe that the solution also

More information

Worksheet 3.5: Triple Integrals in Spherical Coordinates. Warm-Up: Spherical Coordinates (ρ, φ, θ)

Worksheet 3.5: Triple Integrals in Spherical Coordinates. Warm-Up: Spherical Coordinates (ρ, φ, θ) Boise State Math 275 (Ultman) Worksheet 3.5: Triple Integrals in Spherical Coordinates From the Toolbox (what you need from previous classes) Know what the volume element dv represents. Be able to find

More information

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant. By the definition of a derivative, we have Then we are really

More information

18.02 Final Exam. y = 0

18.02 Final Exam. y = 0 No books, notes or calculators. 5 problems, 50 points. 8.0 Final Exam Useful formula: cos (θ) = ( + cos(θ)) Problem. (0 points) a) (5 pts.) Find the equation in the form Ax + By + z = D of the plane P

More information

Section 4: Extreme Values & Lagrange Multipliers.

Section 4: Extreme Values & Lagrange Multipliers. Section 4: Extreme Values & Lagrange Multipliers. Compiled by Chris Tisdell S1: Motivation S2: What are local maxima & minima? S3: What is a critical point? S4: Second derivative test S5: Maxima and Minima

More information

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14 Vector and Multivariable Calculus L Marizza A Bailey Practice Trimester Final Exam Name: Problem 1. To prepare for true/false and multiple choice: Compute the following (a) (4, 3) ( 3, 2) Solution 1. (4)(

More information

Objectives: Find a function that models a problem and apply the techniques from 4.1, 4.2, and 4.3 the find the optimal or best value.

Objectives: Find a function that models a problem and apply the techniques from 4.1, 4.2, and 4.3 the find the optimal or best value. Objectives: Find a function that models a problem and apply the techniques from 4.1, 4., and 4.3 the find the optimal or best value. Suggested procedure: Step 1. Draw a picture! Label variables and known

More information

Constrained Optimization and Lagrange Multipliers

Constrained Optimization and Lagrange Multipliers Constrained Optimization and Lagrange Multipliers MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Constrained Optimization In the previous section we found the local or absolute

More information

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals MATH 234 Excercises on Integration in everal Variables I. Double Integrals Problem 1. D = {(x, y) : y x 1, 0 y 1}. Compute D ex3 da. Problem 2. Find the volume of the solid bounded above by the plane 3x

More information

HSC Mathematics - Extension 1. Workshop E2

HSC Mathematics - Extension 1. Workshop E2 HSC Mathematics - Extension Workshop E Presented by Richard D. Kenderdine BSc, GradDipAppSc(IndMaths), SurvCert, MAppStat, GStat School of Mathematics and Applied Statistics University of Wollongong Moss

More information

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b.

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. Practice problems 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. 1, 1 = c 1 3, 2 + c 2 2, 1. Solve c 1, c 2. 2. Suppose a is a vector in the plane. If the component of the a in

More information

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative Polar (BC Only) Polar coordinates are another way of expressing points in a plane. Instead of being centered at an origin and moving horizontally or vertically, polar coordinates are centered at the pole

More information

Section T Similar and congruent shapes

Section T Similar and congruent shapes Section T Similar and congruent shapes Two shapes are similar if one is an enlargement of the other (even if it is in a different position and orientation). There is a constant scale factor of enlargement

More information

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane.

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane. Math 21a Tangent Lines and Planes Fall, 2016 What do we know about the gradient f? Tangent Lines to Curves in the Plane. 1. For each of the following curves, find the tangent line to the curve at the point

More information

MATH 1020 WORKSHEET 10.1 Parametric Equations

MATH 1020 WORKSHEET 10.1 Parametric Equations MATH WORKSHEET. Parametric Equations If f and g are continuous functions on an interval I, then the equations x ft) and y gt) are called parametric equations. The parametric equations along with the graph

More information

Name: Final Exam Review. (b) Reparameterize r(t) with respect to arc length measured for the point (1, 0, 1) in the direction of increasing t.

Name: Final Exam Review. (b) Reparameterize r(t) with respect to arc length measured for the point (1, 0, 1) in the direction of increasing t. MATH 127 ALULU III Name: 1. Let r(t) = e t i + e t sin t j + e t cos t k (a) Find r (t) Final Exam Review (b) Reparameterize r(t) with respect to arc length measured for the point (1,, 1) in the direction

More information

MATH 2023 Multivariable Calculus

MATH 2023 Multivariable Calculus MATH 2023 Multivariable Calculus Problem Sets Note: Problems with asterisks represent supplementary informations. You may want to read their solutions if you like, but you don t need to work on them. Set

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002 Math 13 Calculus III Practice Exam Solutions Fall 00 1. Let g(x, y, z) = e (x+y) + z (x + y). (a) What is the instantaneous rate of change of g at the point (,, 1) in the direction of the origin? We want

More information

ID: Find all the local maxima, local minima, and saddle points of the function.

ID: Find all the local maxima, local minima, and saddle points of the function. 1. Find all the local maxima, local minima, and saddle points of the function. f(x,y) = x + xy + y + 5x 5y + 4 A. A local maximum occurs at. The local maximum value(s) is/are. B. There are no local maxima.

More information

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers 3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers Prof. Tesler Math 20C Fall 2018 Prof. Tesler 3.3 3.4 Optimization Math 20C / Fall 2018 1 / 56 Optimizing y = f (x) In Math 20A, we

More information

Chapter 8: Applications of Definite Integrals

Chapter 8: Applications of Definite Integrals Name: Date: Period: AP Calc AB Mr. Mellina Chapter 8: Applications of Definite Integrals v v Sections: 8.1 Integral as Net Change 8.2 Areas in the Plane v 8.3 Volumes HW Sets Set A (Section 8.1) Pages

More information

Moore Catholic High School Math Department

Moore Catholic High School Math Department Moore Catholic High School Math Department Geometry Vocabulary The following is a list of terms and properties which are necessary for success in a Geometry class. You will be tested on these terms during

More information

while its direction is given by the right hand rule: point fingers of the right hand in a 1 a 2 a 3 b 1 b 2 b 3 A B = det i j k

while its direction is given by the right hand rule: point fingers of the right hand in a 1 a 2 a 3 b 1 b 2 b 3 A B = det i j k I.f Tangent Planes and Normal Lines Again we begin by: Recall: (1) Given two vectors A = a 1 i + a 2 j + a 3 k, B = b 1 i + b 2 j + b 3 k then A B is a vector perpendicular to both A and B. Then length

More information

Applications of Triple Integrals

Applications of Triple Integrals Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

Answer Key: Three-Dimensional Cross Sections

Answer Key: Three-Dimensional Cross Sections Geometry A Unit Answer Key: Three-Dimensional Cross Sections Name Date Objectives In this lesson, you will: visualize three-dimensional objects from different perspectives be able to create a projection

More information

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures Grad operator, triple and line integrals Notice: this material must not be used as a substitute for attending the lectures 1 .1 The grad operator Let f(x 1, x,..., x n ) be a function of the n variables

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus III-Final review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the corresponding position vector. 1) Define the points P = (-,

More information

27. Tangent Planes & Approximations

27. Tangent Planes & Approximations 27. Tangent Planes & Approximations If z = f(x, y) is a differentiable surface in R 3 and (x 0, y 0, z 0 ) is a point on this surface, then it is possible to construct a plane passing through this point,

More information

P1 REVISION EXERCISE: 1

P1 REVISION EXERCISE: 1 P1 REVISION EXERCISE: 1 1. Solve the simultaneous equations: x + y = x +y = 11. For what values of p does the equation px +4x +(p 3) = 0 have equal roots? 3. Solve the equation 3 x 1 =7. Give your answer

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

MA 114 Worksheet #17: Average value of a function

MA 114 Worksheet #17: Average value of a function Spring 2019 MA 114 Worksheet 17 Thursday, 7 March 2019 MA 114 Worksheet #17: Average value of a function 1. Write down the equation for the average value of an integrable function f(x) on [a, b]. 2. Find

More information

Math Exam 2a. 1) Take the derivatives of the following. DO NOT SIMPLIFY! 2 c) y = tan(sec2 x) ) b) y= , for x 2.

Math Exam 2a. 1) Take the derivatives of the following. DO NOT SIMPLIFY! 2 c) y = tan(sec2 x) ) b) y= , for x 2. Math 111 - Exam 2a 1) Take the derivatives of the following. DO NOT SIMPLIFY! a) y = ( + 1 2 x ) (sin(2x) - x- x 1 ) b) y= 2 x + 1 c) y = tan(sec2 x) 2) Find the following derivatives a) Find dy given

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Directional Derivatives and the Gradient Vector Philippe B Laval KSU April 7, 2012 Philippe B Laval (KSU) Functions of Several Variables April 7, 2012 1 / 19 Introduction

More information

Applications of Integration

Applications of Integration Week 12. Applications of Integration 12.1.Areas Between Curves Example 12.1. Determine the area of the region enclosed by y = x 2 and y = x. Solution. First you need to find the points where the two functions

More information

MATH 104 Sample problems for first exam - Fall MATH 104 First Midterm Exam - Fall (d) 256 3

MATH 104 Sample problems for first exam - Fall MATH 104 First Midterm Exam - Fall (d) 256 3 MATH 14 Sample problems for first exam - Fall 1 MATH 14 First Midterm Exam - Fall 1. Find the area between the graphs of y = 9 x and y = x + 1. (a) 4 (b) (c) (d) 5 (e) 4 (f) 81. A solid has as its base

More information

Section 7.6 Graphs of the Sine and Cosine Functions

Section 7.6 Graphs of the Sine and Cosine Functions Section 7.6 Graphs of the Sine and Cosine Functions We are going to learn how to graph the sine and cosine functions on the xy-plane. Just like with any other function, it is easy to do by plotting points.

More information

f x = 2e xy +y(2x+y)e xy = (2+2xy+y 2 )e xy.

f x = 2e xy +y(2x+y)e xy = (2+2xy+y 2 )e xy. gri (rg38778) Homework 11 gri (11111) 1 This print-out should have 3 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Find lim (x,y) (,) 1

More information

30. Constrained Optimization

30. Constrained Optimization 30. Constrained Optimization The graph of z = f(x, y) is represented by a surface in R 3. Normally, x and y are chosen independently of one another so that one may roam over the entire surface of f (within

More information

Math 21a Final Exam Solutions Spring, 2009

Math 21a Final Exam Solutions Spring, 2009 Math a Final Eam olutions pring, 9 (5 points) Indicate whether the following statements are True or False b circling the appropriate letter No justifications are required T F The (vector) projection of

More information

R f da (where da denotes the differential of area dxdy (or dydx)

R f da (where da denotes the differential of area dxdy (or dydx) Math 28H Topics for the second exam (Technically, everything covered on the first exam, plus) Constrained Optimization: Lagrange Multipliers Most optimization problems that arise naturally are not unconstrained;

More information

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. . Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. f (x, y) = x y, x + y = 8. Set up the triple integral of an arbitrary continuous function

More information

Second Midterm Exam Math 212 Fall 2010

Second Midterm Exam Math 212 Fall 2010 Second Midterm Exam Math 22 Fall 2 Instructions: This is a 9 minute exam. You should work alone, without access to any book or notes. No calculators are allowed. Do not discuss this exam with anyone other

More information

Daily WeBWorK, #1. This means the two planes normal vectors must be multiples of each other.

Daily WeBWorK, #1. This means the two planes normal vectors must be multiples of each other. Daily WeBWorK, #1 Consider the ellipsoid x 2 + 3y 2 + z 2 = 11. Find all the points where the tangent plane to this ellipsoid is parallel to the plane 2x + 3y + 2z = 0. In order for the plane tangent to

More information

Bellman s Escape Problem for Convex Polygons

Bellman s Escape Problem for Convex Polygons Bellman s Escape Problem for Convex Polygons Philip Gibbs philegibbs@gmail.com Abstract: Bellman s challenge to find the shortest path to escape from a forest of known shape is notoriously difficult. Apart

More information

Calculus IV. Exam 2 November 13, 2003

Calculus IV. Exam 2 November 13, 2003 Name: Section: Calculus IV Math 1 Fall Professor Ben Richert Exam November 1, Please do all your work in this booklet and show all the steps. Calculators and note-cards are not allowed. Problem Possible

More information

Week 5: Geometry and Applications

Week 5: Geometry and Applications Week 5: Geometry and Applications Introduction Now that we have some tools from differentiation, we can study geometry, motion, and few other issues associated with functions of several variables. Much

More information

Mathematics Background

Mathematics Background Measurement All measurements are approximations. In their work in this Unit, students explore ways to find measures for two and three dimensional figures. Even using exact formulas depends on how students

More information

1) Find. a) b) c) d) e) 2) The function g is defined by the formula. Find the slope of the tangent line at x = 1. a) b) c) e) 3) Find.

1) Find. a) b) c) d) e) 2) The function g is defined by the formula. Find the slope of the tangent line at x = 1. a) b) c) e) 3) Find. 1 of 7 1) Find 2) The function g is defined by the formula Find the slope of the tangent line at x = 1. 3) Find 5 1 The limit does not exist. 4) The given function f has a removable discontinuity at x

More information

Math 2260 Exam #1 Practice Problem Solutions

Math 2260 Exam #1 Practice Problem Solutions Math 6 Exam # Practice Problem Solutions. What is the area bounded by the curves y x and y x + 7? Answer: As we can see in the figure, the line y x + 7 lies above the parabola y x in the region we care

More information

MATH2111 Higher Several Variable Calculus Lagrange Multipliers

MATH2111 Higher Several Variable Calculus Lagrange Multipliers MATH2111 Higher Several Variable Calculus Lagrange Multipliers Dr. Jonathan Kress School of Mathematics and Statistics University of New South Wales Semester 1, 2016 [updated: February 29, 2016] JM Kress

More information

AP * Calculus Review. Area and Volume

AP * Calculus Review. Area and Volume AP * Calculus Review Area and Volume Student Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production of,

More information

Math 209, Fall 2009 Homework 3

Math 209, Fall 2009 Homework 3 Math 209, Fall 2009 Homework 3 () Find equations of the tangent plane and the normal line to the given surface at the specified point: x 2 + 2y 2 3z 2 = 3, P (2,, ). Solution Using implicit differentiation

More information

Math 11 Fall 2016 Section 1 Monday, October 17, 2016

Math 11 Fall 2016 Section 1 Monday, October 17, 2016 Math 11 Fall 16 Section 1 Monday, October 17, 16 First, some important points from the last class: f(x, y, z) dv, the integral (with respect to volume) of f over the three-dimensional region, is a triple

More information

The Differential df, the Gradient f, & the Directional Derivative Dû f sec 14.4 (cont), Goals. Warm-up: Differentiability. Notes. Notes.

The Differential df, the Gradient f, & the Directional Derivative Dû f sec 14.4 (cont), Goals. Warm-up: Differentiability. Notes. Notes. The Differential df, the Gradient f, & the Directional Derivative Dû f sec 14.4 (cont), 14.5 10 March 2014 Goals. We will: Define the differential df and use it to approximate changes in a function s value.

More information

2.9 Linear Approximations and Differentials

2.9 Linear Approximations and Differentials 2.9 Linear Approximations and Differentials 2.9.1 Linear Approximation Consider the following graph, Recall that this is the tangent line at x = a. We had the following definition, f (a) = lim x a f(x)

More information

Double Integrals, Iterated Integrals, Cross-sections

Double Integrals, Iterated Integrals, Cross-sections Chapter 14 Multiple Integrals 1 ouble Integrals, Iterated Integrals, Cross-sections 2 ouble Integrals over more general regions, efinition, Evaluation of ouble Integrals, Properties of ouble Integrals

More information