Spatiotemporal Access to Moving Objects. Hao LIU, Xu GENG 17/04/2018

Size: px
Start display at page:

Download "Spatiotemporal Access to Moving Objects. Hao LIU, Xu GENG 17/04/2018"

Transcription

1 Spatiotemporal Access to Moving Objects Hao LIU, Xu GENG 17/04/2018

2 Contents Overview & applications Spatiotemporal queries Movingobjects modeling Sampled locations Linear function of time Indexing structure TPR-tree Tree organization heuristics Operations

3 Spatiotemporal vs. Spatial Space and time Space Moving objects Static objects Frequent updates Less frequent updates

4 Application: Air Traffic Controller Moving objects: airplanes Example: which airplanes will probably arrive at the airport in the next 5 minutes? (Euclidean space: straight and direct Euclidean distance as the distance)

5 Application: Taxi-hailing Service Moving objects: taxis on the city roads Example: what are the nearest five taxis at this moment? (Road network: spatial network distance as the distance)

6 Application: Wireless Communication System Moving objects: mobile phone users Example: how many mobile phone users have been in area #47 in last 2 hours? (Cellular network)

7 Location-based Spatiotemporal Queries Spatial queries at a certain timestamp or within a certain time interval Intersection join Window query knn T 1 T 2 Return the 2 nearest neighbors of q at time T 1 and T 2

8 Trajectory-based Spatiotemporal Queries Trajectory: path that a moving object follows over a time period Topological query Enter Leave Cross Bypass p 1 (enter) p 3 (cross) Window W p 2 (leave) p 4 (bypass) T 1 T 2

9 Trajectory-based Spatiotemporal Queries Navigational query Heading Speed Distance Area p 1 p 2 Return the moving direction of p 1 Return the objects that have moved to the north Return the travel speed of p 2 Return the objects having traveled at speed of no less than 20 m/min

10 Aggregate Spatiotemporal Queries Aggregate query: summarized information about moving objects that lie in a query region during a query interval Window W p 1 p 2 p 3 p 4 Should be counted once only! Return the number of objects that have visited W between time T 1 and T 2 T 1 T 2

11 Modeling Moving Objects Historical queries: by sampled locations Historical R-tree 3D R-tree

12 R-tree Spatial indexing with MBR(Minimum Bounding Rectangle) How to deal with objects that evolves? A 4 B 5 6 Window W 7 8 C 9

13 R-tree Storing All Previous States? 1 A B 5 6 Window W C A1 3a B 5 6 Window W C C1 8a A1 3a B 5 6 Window W T 0 T 1 T 2

14 Historical R-tree

15 3D R-tree MBB Time is viewed as another dimension A trajectory of a point in 2D space is transformed to a set of 3D line segments, bounded by MBB(Minimum Bounding Box), its 2D projection reflects the origin trajectory 2D topological queries are transformed to 3D static range queries

16 Historical R-tree vs. 3D R-tree Historical H-tree Advantages All the historical states of the moving objects are maintained with reduced disk space Efficient access to the previous states Disadvantages Inefficient in preserving trajectory of objects 3D R-tree Advantages Good at processing trajectorybased queries Disadvantages There can be large dead spaces in an MBB, so overlapping is high in the whole index structure

17 Modeling Moving Objects Predictive queries: by linear function of time TPR tree

18 Moving objects Assume linear motion, modeling position as a function of time x t = x t $%& + v(t t $%& ) Make tentative future predictions Avoid frequent update What to store Set t $%& as index creation time Store (x t $%&, v) for tracking moving objects T = t $%& x(t $%& ) v T = t x(t)

19 MBR for tracking moving objects Fig 1: Initial setting for reference position and velocity at t $%& T = t $%& T = t $%& Fig2: MBR under initial setting Fig 3: Position at time t. The original MBR assignment is deteriorated. T = t T = t Fig 4: The ideal MBR assignment in t.

20 TPR tree index structure Time Parameterized R tree Design for querying moving objects in a period of time in the future Leaf nodes Position of moving object Represented by (x $%&, v) Pointer to moving object Internal (non-leaf) nodes Bounding rectangle Represented by (MBR, VBR) Pointer to subtree

21 Example in tracking moving rectangles 10 y t = 0 VBRs: {left, right, bottom, top} N a 1 1 b d N2 c 2 a 0 = 1,1,1,1 ; b 0 = 2, 2, 2, 2 ; N 60 = { 2,1, 2,1} c 0 = 2,0,0,2 ; d 0 = 1, 1,1,1 ; N <0 = { 2,0,0,2} x 10 5 y N1 b a t = 1 d c N2 Some characteristics on this bounding strategy The bounding strategy is conservative keeps expanding Avoids excessive storage cost. Bound rectangle tightened when new rectangle inserted or deleted x

22 Heuristics on designing tree The TPR tree is designed for timestamp queries in T =, T = + H T = : Current update time H: Tree parameter the timespan the tree can see in the future TPR-tree Given an objective function A t = T = for static data Static indexing structures minimize A t = T = during tree organization TPR-tree minimize the integral over time: G H IJ minimize F A t dt G H

23 Time as a parameter Left: Right: minimize A(t = T = ) G H IJ minimize F A t dt G H Tc Tc+H Trapezoid in R tree Trapezoid in timeparameterized model

24 Objective Use objective from R*-tree For TPR-tree G H IJ The area of a bounding rectangle A N, t dt [1] G H G The overlap of two rectangle. H IJ OVR N 6, N <, t dt [2] G H G The perimeter of a bound rectangle H IJ P N, t dt [3] G H G The distance between the centroids H IJ CDIST N 6, N <, t dt [4] G H The four objectives are adapted in different parts of R*-tree and TPRtree algorithm Keeps bound rectangles small The probability of rectangle intersects query region is small

25 Insertion -- ChooseSubTree R-tree 1. n=root 2. IF n is a leaf return n ELSE choose entry that minimize MBR area ([1]) 3. n = chosen entry, go to 2 R*-tree and TPR-tree 1. n=root 2. IF n is a leaf return n IF n s child is leaf Choose entry that minimize BR overlap ([2]) with siblings; resolve ties by smallest area entanglement ELIF n s child is non-leaf Choose entry that minimize MBR area ([1]); resolve ties by smallest MBR size 3. n = chosen entry, go to 2

26 Insertion -- ChooseSubTree Try to insert k: Choose N5 min BR area increment Choose N1 Minimize BR overlap k R*-tree and TPR-tree 1. n=root 2. IF n is a leaf return n IF n s child is leaf Choose entry that minimize BR overlap ([2]) with siblings; resolve ties by smallest area entanglement ELIF n s child is non-leaf Choose entry that minimize MBR area ([1]); resolve ties by smallest MBR size 3. n = chosen entry, go to 2

27 Re-insert When a leaf node is full Remove and re-insert a fraction of entries Select entries with largest centroid distance If still full, do split N1 is full and k is awaiting: Re-insert b Largest centroid distance CDIST(b,N1), compared to a,c,k B is re-inserted to N1 Do split b k

28 Split Step 1 ChooseSplitAxis For each axis (x and y in this case): 1. Sort entries by lower value of the rectangle (a,k,c,b) 2. Determine all possible entry allocations (1-3, 2-2, 3-1) 3. Compute S = sum of perimeter for each allocation 4. go to 1 and do the same for higher value, accumulate S 5.6 Choose the split axis with minimum S

29 Split Step 2 ChooseSplitIndex Minimize overlap between MBRs Suppose x-axis is chosen in ChooseSplitAxis Considering 3 different divisions 2-2 division has minimal overlap Split using 2-2 division Insertion result

30 Deletion Identify the leaf node contains the entry to be deleted and remove the entry If leaf node underflows Re-insert all entries of the node Else Remove entry and terminate Propagate to upper levels if needed Bound rectangles are tightened after insertion or deletion

31 Reference Tao, Y., Papadias, D., & Sun, J. (2003, September). The TPR*-tree: an optimized spatiotemporal access method for predictive queries. In Proceedings of the 29th international conference on Very large data bases-volume 29 (pp ). VLDB Endowment. Šaltenis, S. (2008). Indexing the positions of continuously moving objects. Encyclopedia of GIS, Tao, Y., & Papadias, D. (2002, June). Time-parameterized queries in spatio-temporal databases. In Proceedings of the 2002 ACM SIGMOD international conference on Management of data (pp ). ACM. Beckmann, N., Kriegel, H. P., Schneider, R., & Seeger, B. (1990). The R*-tree: an efficient and robust access method for points and rectangles. Acm Sigmod Record, 19(2), Zhang, R., Qi, J., Lin, D., Wang, W. & Wong, R. C.-W. (2012). A highly optimized algorithm for continuous intersection join queries over moving objects, In Proceeding ADC '12 Proceedings of the Twenty-Third Australasian Database Conference (pp ). ACM.

32 Reference Alamri, S., Taniar, D., & Safar, M. (2014). A taxonomy for moving object queries in spatial databases. In Future Generation Computer Systems-Volume 37 (pp ). Tao, Y., Kollios, G., Considine, J., Li, F., & Papadias., D. (2004) Spatio-temporal aggregation using sketches. In Proc. of International Conference on Data Engineering (pp ). ACM. Nascimento, M. A., & Silva, J. R. O. (1998). Towards historical R-trees. In Proceedings of the ACM Symp. on Applied Computing (pp ). Pfoser, D., Jensen, C., & Theodoridis, Y. (2000). Novel Approaches in Query Processing for Moving Objects. In Proceedings of VLDB, Cairo Egypt. Tao, Y., & Papadias, D. (2001). MV3R-Tree: A Spatio-Temporal Access Method for Timestamp and Interval Queries. In Proceedings of the Intl. Conf. on Very Large Data Bases, VLDB (pp ).

Indexing the Positions of Continuously Moving Objects

Indexing the Positions of Continuously Moving Objects Indexing the Positions of Continuously Moving Objects Simonas Šaltenis Christian S. Jensen Aalborg University, Denmark Scott T. Leutenegger Mario A. Lopez Denver University, USA SIGMOD 2000 presented by

More information

Introduction to Indexing R-trees. Hong Kong University of Science and Technology

Introduction to Indexing R-trees. Hong Kong University of Science and Technology Introduction to Indexing R-trees Dimitris Papadias Hong Kong University of Science and Technology 1 Introduction to Indexing 1. Assume that you work in a government office, and you maintain the records

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Predicted Range Aggregate Processing in Spatio-temporal Databases Wei Liao, Guifen Tang, Ning Jing, Zhinong Zhong School of Electronic Science and Engineering, National University of Defense Technology

More information

Indexing Fast Moving Objects for knn Queries Based on Nearest Landmarks

Indexing Fast Moving Objects for knn Queries Based on Nearest Landmarks Geoinformatica (2006) 10: 423 445 DOI 10.1007/s10707-006-0341-9 Indexing Fast Moving Objects for knn Queries Based on Nearest Landmarks Dan Lin Rui Zhang Aoying Zhou Received: 29 January 2004 / Revised:

More information

Indexing Fast Moving Objects for KNN Queries Based on Nearest. Landmarks

Indexing Fast Moving Objects for KNN Queries Based on Nearest. Landmarks Indexing Fast Moving Objects for KNN Queries Based on Nearest Landmarks Dan Lin 1 Rui Zhang 1 Aoying Zhou 2 1 Department of Computer Science The National University of Singapore, Singapore {lindan, zhangru1}@comp.nus.edu.sg

More information

9/23/2009 CONFERENCES CONTINUOUS NEAREST NEIGHBOR SEARCH INTRODUCTION OVERVIEW PRELIMINARY -- POINT NN QUERIES

9/23/2009 CONFERENCES CONTINUOUS NEAREST NEIGHBOR SEARCH INTRODUCTION OVERVIEW PRELIMINARY -- POINT NN QUERIES CONFERENCES Short Name SIGMOD Full Name Special Interest Group on Management Of Data CONTINUOUS NEAREST NEIGHBOR SEARCH Yufei Tao, Dimitris Papadias, Qiongmao Shen Hong Kong University of Science and Technology

More information

A cost model for spatio-temporal queries using the TPR-tree

A cost model for spatio-temporal queries using the TPR-tree The Journal of Systems and Software 73 (2004) 101 112 www.elsevier.com/locate/jss A cost model for spatio-temporal queries using the TPR-tree Yong-Jin Choi *, Jun-Ki Min, Chin-Wan Chung Division of Computer

More information

Mobility Data Management and Exploration: Theory and Practice

Mobility Data Management and Exploration: Theory and Practice Mobility Data Management and Exploration: Theory and Practice Chapter 4 -Mobility data management at the physical level Nikos Pelekis & Yannis Theodoridis InfoLab, University of Piraeus, Greece infolab.cs.unipi.gr

More information

An Efficient Technique for Distance Computation in Road Networks

An Efficient Technique for Distance Computation in Road Networks Fifth International Conference on Information Technology: New Generations An Efficient Technique for Distance Computation in Road Networks Xu Jianqiu 1, Victor Almeida 2, Qin Xiaolin 1 1 Nanjing University

More information

Detect tracking behavior among trajectory data

Detect tracking behavior among trajectory data Detect tracking behavior among trajectory data Jianqiu Xu, Jiangang Zhou Nanjing University of Aeronautics and Astronautics, China, jianqiu@nuaa.edu.cn, jiangangzhou@nuaa.edu.cn Abstract. Due to the continuing

More information

Indexing of moving objects. Simonas Šaltenis Aalborg University

Indexing of moving objects. Simonas Šaltenis Aalborg University Indexing of moving objects Simonas Šaltenis Aalborg University Welcome! The audience of the course, what this course is about and what it is not about: research results not how to use commercial DBMSs,

More information

Incremental Nearest-Neighbor Search in Moving Objects

Incremental Nearest-Neighbor Search in Moving Objects Incremental Nearest-Neighbor Search in Moving Objects Katerina Raptopoulou, Apostolos N. Papadopoulos, Yannis Manolopoulos Department of Informatics, Aristotle University 54124 Thessaloniki, GREECE {katerina,apostol,manolopo}@delab.csd.auth.gr

More information

Update-efficient Indexing of Moving Objects in Road Networks

Update-efficient Indexing of Moving Objects in Road Networks In Proceedings of the Third Workshop on Spatio-Temporal Database Management in conjunction with VLDB (VLDB-STDBM), Seoul, Korea, September 11, Update-efficient Indexing of Moving Objects in Road Networks

More information

X-tree. Daniel Keim a, Benjamin Bustos b, Stefan Berchtold c, and Hans-Peter Kriegel d. SYNONYMS Extended node tree

X-tree. Daniel Keim a, Benjamin Bustos b, Stefan Berchtold c, and Hans-Peter Kriegel d. SYNONYMS Extended node tree X-tree Daniel Keim a, Benjamin Bustos b, Stefan Berchtold c, and Hans-Peter Kriegel d a Department of Computer and Information Science, University of Konstanz b Department of Computer Science, University

More information

Continuous Intersection Joins Over Moving Objects

Continuous Intersection Joins Over Moving Objects Continuous Intersection Joins Over Moving Objects Rui Zhang, Dan Lin 2, Kotagiri Ramamohanarao 3, Elisa Bertino 4,3 Department of Computer Science and Software Engineering, University of Melbourne Carlton

More information

Data Structures for Moving Objects on Fixed Networks

Data Structures for Moving Objects on Fixed Networks Data Structures for Moving Objects on Fixed Networks by Thuy Thi Thu Le and Bradford G. Nickerson TR06-181, February 13, 2007 Faculty of Computer Science University of New Brunswick Fredericton, N.B. E3B

More information

Close Pair Queries in Moving Object Databases

Close Pair Queries in Moving Object Databases Close Pair Queries in Moving Object Databases Panfeng Zhou, Donghui Zhang, Betty Salzberg, and Gene Cooperman Northeastern University Boston, MA, USA zhoupf@ccs.neu.edu, donghui@ccs.neu.edu, salzberg@ccs.neu.edu,

More information

Multidimensional Indexing The R Tree

Multidimensional Indexing The R Tree Multidimensional Indexing The R Tree Module 7, Lecture 1 Database Management Systems, R. Ramakrishnan 1 Single-Dimensional Indexes B+ trees are fundamentally single-dimensional indexes. When we create

More information

Continuous Density Queries for Moving Objects

Continuous Density Queries for Moving Objects Continuous Density Queries for Moving Objects Xing Hao School of Information Renmin University of China haoxing@ruc.edu.cn Xiaofeng Meng School of Information Renmin University of China xfmeng@ruc.edu.cn

More information

R-trees with Update Memos

R-trees with Update Memos R-trees with Update Memos Xiaopeng Xiong Walid G. Aref Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398 {xxiong, aref}@cs.purdue.edu Abstract The problem of frequently

More information

A Spatio-temporal Access Method based on Snapshots and Events

A Spatio-temporal Access Method based on Snapshots and Events A Spatio-temporal Access Method based on Snapshots and Events Gilberto Gutiérrez R Universidad del Bío-Bío / Universidad de Chile Blanco Encalada 2120, Santiago / Chile ggutierr@dccuchilecl Andrea Rodríguez

More information

Spatio-temporal Access Methods

Spatio-temporal Access Methods Spatio-temporal Access Methods Mohamed F. Mokbel Thanaa M. Ghanem Walid G. Aref Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398 mokbel,ghanemtm,aref @cs.purdue.edu Abstract

More information

Best Keyword Cover Search

Best Keyword Cover Search Vennapusa Mahesh Kumar Reddy Dept of CSE, Benaiah Institute of Technology and Science. Best Keyword Cover Search Sudhakar Babu Pendhurthi Assistant Professor, Benaiah Institute of Technology and Science.

More information

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012 ISSN (Online):

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012 ISSN (Online): www.ijcsi.org 287 A New Proposed Algorithm for BBx-Index Structure K. Appathurai 1 and Dr. S. Karthikeyan 2 1 Department of Information Technology, Karpagam University Coimbatore, Tamil Nadu Dr.S.Karthikeyan

More information

Temporal Range Exploration of Large Scale Multidimensional Time Series Data

Temporal Range Exploration of Large Scale Multidimensional Time Series Data Temporal Range Exploration of Large Scale Multidimensional Time Series Data Joseph JaJa Jusub Kim Institute for Advanced Computer Studies Department of Electrical and Computer Engineering University of

More information

DS504/CS586: Big Data Analytics Data Management Prof. Yanhua Li

DS504/CS586: Big Data Analytics Data Management Prof. Yanhua Li Welcome to DS504/CS586: Big Data Analytics Data Management Prof. Yanhua Li Time: 6:00pm 8:50pm R Location: KH 116 Fall 2017 First Grading for Reading Assignment Weka v 6 weeks v https://weka.waikato.ac.nz/dataminingwithweka/preview

More information

Experimental Evaluation of Spatial Indices with FESTIval

Experimental Evaluation of Spatial Indices with FESTIval Experimental Evaluation of Spatial Indices with FESTIval Anderson Chaves Carniel 1, Ricardo Rodrigues Ciferri 2, Cristina Dutra de Aguiar Ciferri 1 1 Department of Computer Science University of São Paulo

More information

Using Natural Clusters Information to Build Fuzzy Indexing Structure

Using Natural Clusters Information to Build Fuzzy Indexing Structure Using Natural Clusters Information to Build Fuzzy Indexing Structure H.Y. Yue, I. King and K.S. Leung Department of Computer Science and Engineering The Chinese University of Hong Kong Shatin, New Territories,

More information

Computing Continuous Skyline Queries without Discriminating between Static and Dynamic Attributes

Computing Continuous Skyline Queries without Discriminating between Static and Dynamic Attributes Computing Continuous Skyline Queries without Discriminating between Static and Dynamic Attributes Ibrahim Gomaa, Hoda M. O. Mokhtar Abstract Although most of the existing skyline queries algorithms focused

More information

Nearest Neighbor Search on Moving Object Trajectories

Nearest Neighbor Search on Moving Object Trajectories Nearest Neighbor Search on Moving Object Trajectories Elias Frentzos 1, Kostas Gratsias 1,2, Nikos Pelekis 1, Yannis Theodoridis 1,2 1 Department of Informatics, University of Piraeus, 8 Karaoli-Dimitriou

More information

Towards a Taxonomy of Location Based Services

Towards a Taxonomy of Location Based Services Towards a Taxonomy of Location Based Services Kostas Gratsias 1,2, Elias Frentzos 1, Vasilis Delis 2, and Yannis Theodoridis 1,2 1 Department of Informatics, University of Piraeus, 80 Karaoli-Dimitriou

More information

Indexing Mobile Objects Using Dual Transformations

Indexing Mobile Objects Using Dual Transformations Indexing Mobile Objects Using Dual Transformations George Kollios Boston University gkollios@cs.bu.edu Dimitris Papadopoulos UC Riverside tsotras@cs.ucr.edu Dimitrios Gunopulos Ý UC Riverside dg@cs.ucr.edu

More information

Relaxed Space Bounding for Moving Objects: A Case for the Buddy Tree

Relaxed Space Bounding for Moving Objects: A Case for the Buddy Tree Relaxed Space Bounding for Moving Objects: A Case for the Buddy ree Shuqiao Guo Zhiyong Huang H. V. Jagadish Beng Chin Ooi Zhenjie Zhang Department of Computer Science National University of Singapore,

More information

Multimedia Database Systems

Multimedia Database Systems Department of Informatics Aristotle University of Thessaloniki Fall 2016-2017 Multimedia Database Systems Indexing Part A Multidimensional Indexing Techniques Outline Motivation Multidimensional indexing

More information

Data Structures for Moving Objects

Data Structures for Moving Objects Data Structures for Moving Objects Pankaj K. Agarwal Department of Computer Science Duke University Geometric Data Structures S: Set of geometric objects Points, segments, polygons Ask several queries

More information

Handling Frequent Updates of Moving Objects

Handling Frequent Updates of Moving Objects Handling Frequent Updates of Moving Objects Bin Lin and Jianwen Su Dept. of Computer Science, University of California, Santa Barbara Santa Barbara, CA, USA linbin@cs.ucsb.edu, su@cs.ucsb.edu ABSTRACT

More information

An Edge-Based Algorithm for Spatial Query Processing in Real-Life Road Networks

An Edge-Based Algorithm for Spatial Query Processing in Real-Life Road Networks An Edge-Based Algorithm for Spatial Query Processing in Real-Life Road Networks Ye-In Chang, Meng-Hsuan Tsai, and Xu-Lun Wu Abstract Due to wireless communication technologies, positioning technologies,

More information

DSTTMOD: A Discrete Spatio-Temporal Trajectory Based Moving Object Database System

DSTTMOD: A Discrete Spatio-Temporal Trajectory Based Moving Object Database System DSTTMOD: A Discrete Spatio-Temporal Trajectory Based Moving Object Database System Xiaofeng Meng 1 Zhiming Ding 2 1 Information School Renmin University of China, Beijing 100872, China xfmeng@mail.ruc.edu.cn

More information

State History Tree : an Incremental Disk-based Data Structure for Very Large Interval Data

State History Tree : an Incremental Disk-based Data Structure for Very Large Interval Data State History Tree : an Incremental Disk-based Data Structure for Very Large Interval Data A. Montplaisir-Gonçalves N. Ezzati-Jivan F. Wininger M. R. Dagenais alexandre.montplaisir, n.ezzati, florian.wininger,

More information

Comparative Analysis of Proposed POBBx-Index Structure

Comparative Analysis of Proposed POBBx-Index Structure Comparative Analysis of Proposed POBBx-Index Structure K. Appathurai 1 and Dr. S. Karthikeyan 2 1 Department of Information Technology, Karpagam University Coimbatore, Tamil Nadu k_appathurai@yahoo.co.uk

More information

Nearest Neighbor Search on Moving Object Trajectories

Nearest Neighbor Search on Moving Object Trajectories Nearest Neighbor Search on Moving Object Trajectories Elias Frentzos 1, Kostas Gratsias 1,2, Nikos Pelekis 1, and Yannis Theodoridis 1,2 1 Department of Informatics, University of Piraeus, 8 Karaoli-Dimitriou

More information

On Processing Location Based Top-k Queries in the Wireless Broadcasting System

On Processing Location Based Top-k Queries in the Wireless Broadcasting System On Processing Location Based Top-k Queries in the Wireless Broadcasting System HaRim Jung, ByungKu Cho, Yon Dohn Chung and Ling Liu Department of Computer Science and Engineering, Korea University, Seoul,

More information

Probabilistic Spatial Queries on Existentially Uncertain Data

Probabilistic Spatial Queries on Existentially Uncertain Data Probabilistic Spatial Queries on Existentially Uncertain Data Xiangyuan Dai 1, Man Lung Yiu 1, Nikos Mamoulis 1, Yufei Tao 2, and Michail Vaitis 3 1 Department of Computer Science, University of Hong Kong,

More information

Trajectory Queries and Octagons in Moving Object Databases

Trajectory Queries and Octagons in Moving Object Databases Trajectory Queries and Octagons in Moving Object Databases Hongjun Zhu Jianwen Su Oscar H. Ibarra Department of Computer Science University of California at Santa Barbara ABSTRACT An important class of

More information

A Novel Indexing Method for BBx-Index structure

A Novel Indexing Method for BBx-Index structure A Novel Indexing Method for BBx-Index structure K. Appathurai 1 and Dr. S. Karthikeyan 2 1 Department of Information Technology, Karpagam University Coimbatore, Tamil Nadu k_appathurai@yahoo.co.uk 2 Department

More information

Update-efficient indexing of moving objects in road networks

Update-efficient indexing of moving objects in road networks DOI 1.17/s177-8-52-5 Update-efficient indexing of moving objects in road networks Jidong Chen Xiaofeng Meng Received: 22 December 26 / Revised: 1 April 28 / Accepted: 3 April 28 Springer Science + Business

More information

Surrounding Join Query Processing in Spatial Databases

Surrounding Join Query Processing in Spatial Databases Surrounding Join Query Processing in Spatial Databases Lingxiao Li (B), David Taniar, Maria Indrawan-Santiago, and Zhou Shao Monash University, Melbourne, Australia lli278@student.monash.edu, {david.taniar,maria.indrawan,joe.shao}@monash.edu

More information

Spatial Data Management

Spatial Data Management Spatial Data Management [R&G] Chapter 28 CS432 1 Types of Spatial Data Point Data Points in a multidimensional space E.g., Raster data such as satellite imagery, where each pixel stores a measured value

More information

Moving Object indexing using Crossbreed Update

Moving Object indexing using Crossbreed Update Moving Object indexing using Crossbreed Update K. Appathurai Ph.D Research Scholar Karpagam University Coimbatore 21 S. Karthikeyan, PhD. Director, School of computer Science Karpagam University Coimbatore

More information

Spatial Data Management

Spatial Data Management Spatial Data Management Chapter 28 Database management Systems, 3ed, R. Ramakrishnan and J. Gehrke 1 Types of Spatial Data Point Data Points in a multidimensional space E.g., Raster data such as satellite

More information

R-Tree Based Indexing of Now-Relative Bitemporal Data

R-Tree Based Indexing of Now-Relative Bitemporal Data 36 R-Tree Based Indexing of Now-Relative Bitemporal Data Rasa Bliujūtė, Christian S. Jensen, Simonas Šaltenis, and Giedrius Slivinskas The databases of a wide range of applications, e.g., in data warehousing,

More information

External-Memory Algorithms with Applications in GIS - (L. Arge) Enylton Machado Roberto Beauclair

External-Memory Algorithms with Applications in GIS - (L. Arge) Enylton Machado Roberto Beauclair External-Memory Algorithms with Applications in GIS - (L. Arge) Enylton Machado Roberto Beauclair {machado,tron}@visgraf.impa.br Theoretical Models Random Access Machine Memory: Infinite Array. Access

More information

Group Nearest Neighbor Queries for Fuzzy Geo-Spatial Objects

Group Nearest Neighbor Queries for Fuzzy Geo-Spatial Objects Group Nearest Neighbor Queries for Fuzzy Geo-Spatial Objects Novia Nurain 1, Mohammed Eunus Ali 2, Tanzima Hashem 3, and Egemen Tanin 4 1,2,3 Dept. of CSE, Bangladesh University of Engineering Technology,

More information

MobiPLACE*: A Distributed Framework for Spatio-Temporal Data Streams Processing Utilizing Mobile Clients Processing Power.

MobiPLACE*: A Distributed Framework for Spatio-Temporal Data Streams Processing Utilizing Mobile Clients Processing Power. MobiPLACE*: A Distributed Framework for Spatio-Temporal Data Streams Processing Utilizing Mobile Clients Processing Power. Victor Zakhary, Hicham G. Elmongui, and Magdy H. Nagi Computer and Systems Engineering,

More information

A Novel Method to Estimate the Route and Travel Time with the Help of Location Based Services

A Novel Method to Estimate the Route and Travel Time with the Help of Location Based Services A Novel Method to Estimate the Route and Travel Time with the Help of Location Based Services M.Uday Kumar Associate Professor K.Pradeep Reddy Associate Professor S Navaneetha M.Tech Student Abstract Location-based

More information

Continuous Spatiotemporal Trajectory Joins

Continuous Spatiotemporal Trajectory Joins Continuous Spatiotemporal Trajectory Joins Petko Bakalov 1 and Vassilis J. Tsotras 1 Computer Science Department, University of California, Riverside {pbakalov,tsotras}@cs.ucr.edu Abstract. Given the plethora

More information

R-trees with Update Memos

R-trees with Update Memos R-trees with Update Memos Xiaopeng Xiong Walid G. Aref Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398 {xxiong, aref}@cs.purdue.edu Abstract The problem of frequently

More information

SEST L : An Event-Oriented Spatio-Temporal Access Method

SEST L : An Event-Oriented Spatio-Temporal Access Method SEST L : An Event-Oriented Spatio-Temporal Access Method Gilberto A. Gutiérrez Gonzalo avarro Andrea Rodríguez Universidad del Bío-Bío Universidad de Chile Blanco Encalada 21 Santiago / Chile ggutierr@dcc.uchile.cl

More information

Two Ellipse-based Pruning Methods for Group Nearest Neighbor Queries

Two Ellipse-based Pruning Methods for Group Nearest Neighbor Queries Two Ellipse-based Pruning Methods for Group Nearest Neighbor Queries ABSTRACT Hongga Li Institute of Remote Sensing Applications Chinese Academy of Sciences, Beijing, China lihongga lhg@yahoo.com.cn Bo

More information

Background: disk access vs. main memory access (1/2)

Background: disk access vs. main memory access (1/2) 4.4 B-trees Disk access vs. main memory access: background B-tree concept Node structure Structural properties Insertion operation Deletion operation Running time 66 Background: disk access vs. main memory

More information

ISSN: (Online) Volume 4, Issue 1, January 2016 International Journal of Advance Research in Computer Science and Management Studies

ISSN: (Online) Volume 4, Issue 1, January 2016 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 4, Issue 1, January 2016 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online

More information

On Nearest Neighbor Indexing of Nonlinear Trajectories

On Nearest Neighbor Indexing of Nonlinear Trajectories On Nearest Neighbor Indexing of Nonlinear Trajectories Charu C. Aggarwal IBM T. J. Watson Research Center 19 Skyline Drive Hawthorne, NY 10532 charu@us.ibm.com Dakshi Agrawal IBM T. J. Watson Research

More information

The Area Code Tree for Nearest Neighbour Searching

The Area Code Tree for Nearest Neighbour Searching The Area Code Tree for Nearest Neighbour Searching Fatema Rahman and Wendy Osborn Department of Mathematics and Computer Science University of Lethbridge Lethbridge, Alberta T1K 3M4 Canada Email: (f.rahman,wendy.osborn)@uleth.ca

More information

SPATIAL RANGE QUERY. Rooma Rathore Graduate Student University of Minnesota

SPATIAL RANGE QUERY. Rooma Rathore Graduate Student University of Minnesota SPATIAL RANGE QUERY Rooma Rathore Graduate Student University of Minnesota SYNONYMS Range Query, Window Query DEFINITION Spatial range queries are queries that inquire about certain spatial objects related

More information

SPQI: An Efficient Index for Continuous Range Queries in Mobile Environments *

SPQI: An Efficient Index for Continuous Range Queries in Mobile Environments * JOURNAL OF INFORMATION SCIENCE AND ENGINEERING SPQI: An Efficient Index for Continuous Range Queries in Mobile Environments * HARIM JUNG, YONG SUNG KIM AND YON DOHN CHUNG Department of Computer Science

More information

Information Retrieval. Wesley Mathew

Information Retrieval. Wesley Mathew Information Retrieval Wesley Mathew 30-11-2012 Introduction and motivation Indexing methods B-Tree and the B+ Tree R-Tree IR- Tree Location-aware top-k text query 2 An increasing amount of trajectory data

More information

Approximate Continuous K Nearest Neighbor Queries for Continuous Moving Objects with Pre-Defined Paths

Approximate Continuous K Nearest Neighbor Queries for Continuous Moving Objects with Pre-Defined Paths Approximate Continuous K Nearest Neighbor Queries for Continuous Moving Objects with Pre-Defined Paths Yu-Ling Hsueh, Roger Zimmermann, and Meng-Han Yang Computer Science Department University of Southern

More information

Indexing and Querying Constantly Evolving Data Using Time Series Analysis

Indexing and Querying Constantly Evolving Data Using Time Series Analysis Indexing and Querying Constantly Evolving Data Using Time Series Analysis Yuni Xia 1, Sunil Prabhakar 1, Jianzhong Sun 2, and Shan Lei 1 1 Computer Science Department, Purdue University 2 Mathematics Department,

More information

Efficient Construction of Safe Regions for Moving knn Queries Over Dynamic Datasets

Efficient Construction of Safe Regions for Moving knn Queries Over Dynamic Datasets Efficient Construction of Safe Regions for Moving knn Queries Over Dynamic Datasets Mahady Hasan, Muhammad Aamir Cheema, Xuemin Lin, Ying Zhang The University of New South Wales, Australia {mahadyh,macheema,lxue,yingz}@cse.unsw.edu.au

More information

Pointwise-Dense Region Queries in Spatio-temporal Databases

Pointwise-Dense Region Queries in Spatio-temporal Databases Pointwise-Dense Region Queries in Spatio-temporal Databases Jinfeng Ni and Chinya V. Ravishankar Department of Computer Science and Engineering University of California, Riverside Riverside, CA 95, USA

More information

Incremental calculation of isochrones regarding duration

Incremental calculation of isochrones regarding duration Incremental calculation of isochrones regarding duration Nikolaus Krismer University of Innsbruck, Austria nikolaus.krismer@uibk.ac.at Günther Specht University of Innsbruck, Austria guenther.specht@uibk.ac.at

More information

SPATIOTEMPORAL INDEXING MECHANISM BASED ON SNAPSHOT-INCREMENT

SPATIOTEMPORAL INDEXING MECHANISM BASED ON SNAPSHOT-INCREMENT SPATIOTEMPORAL INDEXING MECHANISM BASED ON SNAPSHOT-INCREMENT L. Lin a, Y. Z. Cai a, b, Z. Xu a a School of Resource and Environment Science,Wuhan university, Wuhan China 430079, lilin@telecarto.com b

More information

Searching Similar Trajectories in Real Time: an Effectiveness and Efficiency Study *

Searching Similar Trajectories in Real Time: an Effectiveness and Efficiency Study * Searching Similar Trajectories in Real Time: an Effectiveness and Efficiency Study * Yuchi Ma, Chunyan Qu, Tingting Liu, Ning Yang +, Changjie Tang College of Computer Science, Sichuan University 610065Chengdu,

More information

Querying Shortest Distance on Large Graphs

Querying Shortest Distance on Large Graphs .. Miao Qiao, Hong Cheng, Lijun Chang and Jeffrey Xu Yu Department of Systems Engineering & Engineering Management The Chinese University of Hong Kong October 19, 2011 Roadmap Preliminary Related Work

More information

The B-Tree. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland

The B-Tree. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland Yufei Tao ITEE University of Queensland Before ascending into d-dimensional space R d with d > 1, this lecture will focus on one-dimensional space, i.e., d = 1. We will review the B-tree, which is a fundamental

More information

Extracting Mobility Statistics from Indexed Spatio-Temporal Datasets

Extracting Mobility Statistics from Indexed Spatio-Temporal Datasets Extracting Mobility Statistics from Indexed Spatio-Temporal Datasets Yoshiharu Ishikawa Yuichi Tsukamoto Hiroyuki Kitagawa Department of Computer Science, Graduate School of Systems and Information Engineering,

More information

Using Novel Method ProMiSH Search Nearest keyword Set In Multidimensional Dataset

Using Novel Method ProMiSH Search Nearest keyword Set In Multidimensional Dataset Using Novel Method ProMiSH Search Nearest keyword Set In Multidimensional Dataset Miss. Shilpa Bhaskar Thakare 1, Prof. Jayshree.V.Shinde 2 1 Department of Computer Engineering, Late G.N.Sapkal C.O.E,

More information

Chapter 25: Spatial and Temporal Data and Mobility

Chapter 25: Spatial and Temporal Data and Mobility Chapter 25: Spatial and Temporal Data and Mobility Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Chapter 25: Spatial and Temporal Data and Mobility Temporal Data Spatial

More information

I/O-Algorithms Lars Arge Aarhus University

I/O-Algorithms Lars Arge Aarhus University I/O-Algorithms Aarhus University April 10, 2008 I/O-Model Block I/O D Parameters N = # elements in problem instance B = # elements that fits in disk block M = # elements that fits in main memory M T =

More information

Extending Rectangle Join Algorithms for Rectilinear Polygons

Extending Rectangle Join Algorithms for Rectilinear Polygons Extending Rectangle Join Algorithms for Rectilinear Polygons Hongjun Zhu, Jianwen Su, and Oscar H. Ibarra University of California at Santa Barbara Abstract. Spatial joins are very important but costly

More information

A Parallel Access Method for Spatial Data Using GPU

A Parallel Access Method for Spatial Data Using GPU A Parallel Access Method for Spatial Data Using GPU Byoung-Woo Oh Department of Computer Engineering Kumoh National Institute of Technology Gumi, Korea bwoh@kumoh.ac.kr Abstract Spatial access methods

More information

Nearest and reverse nearest neighbor queries for moving objects

Nearest and reverse nearest neighbor queries for moving objects The VLDB Journal (2006) 15(3): 229 250 DOI 10.1007/s00778-005-0166-4 REGULAR PAPER Rimantas Benetis Christian S. Jensen Gytis Karčiauskas Simonas Šaltenis Nearest and reverse nearest neighbor queries for

More information

Chapter 2: The Game Core. (part 2)

Chapter 2: The Game Core. (part 2) Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Lecture Notes for Managing and Mining Multiplayer Online Games for the Summer Semester 2017

More information

Effective Density Queries on Continuously Moving Objects

Effective Density Queries on Continuously Moving Objects Effective Queries on Continuously Moving Objects Christian S. Jensen 1 Dan Lin 2 Beng Chin Ooi 2 Rui Zhang 2 1 Department of Computer Science Aalborg University, Denmark csj@cs.aau.dk 2 School of Computing

More information

A Highly Optimized Algorithm for Continuous Intersection Join Queries over Moving Objects

A Highly Optimized Algorithm for Continuous Intersection Join Queries over Moving Objects Noname manuscript No. (will be inserted by the editor) A Highly Optimized Algorithm for Continuous Intersection Join Queries over Moving Objects Rui Zhang Jianzhong Qi Dan Lin Wei Wang Raymond Chi-Wing

More information

R-Tree Based Indexing of Now-Relative Bitemporal Data

R-Tree Based Indexing of Now-Relative Bitemporal Data R-Tree Based Indexing of Now-Relative Bitemporal Data Rasa Bliujūtė Christian S. Jensen Simonas Šaltenis Giedrius Slivinskas Department of Computer Science Aalborg University, Denmark rasa, csj, simas,

More information

Location Updating Strategies in Moving Object Databases

Location Updating Strategies in Moving Object Databases Location Updating Strategies in Moving Object Databases H. M. Abdul Kader Abstract Recent advances in wireless, communication systems have led to important new applications of Moving object databases (MOD).

More information

TRANSACTION-TIME INDEXING

TRANSACTION-TIME INDEXING TRANSACTION-TIME INDEXING Mirella M. Moro Universidade Federal do Rio Grande do Sul Porto Alegre, RS, Brazil http://www.inf.ufrgs.br/~mirella/ Vassilis J. Tsotras University of California, Riverside Riverside,

More information

NOVEL CACHE SEARCH TO SEARCH THE KEYWORD COVERS FROM SPATIAL DATABASE

NOVEL CACHE SEARCH TO SEARCH THE KEYWORD COVERS FROM SPATIAL DATABASE NOVEL CACHE SEARCH TO SEARCH THE KEYWORD COVERS FROM SPATIAL DATABASE 1 Asma Akbar, 2 Mohammed Naqueeb Ahmad 1 M.Tech Student, Department of CSE, Deccan College of Engineering and Technology, Darussalam

More information

Distributed k-nn Query Processing for Location Services

Distributed k-nn Query Processing for Location Services Distributed k-nn Query Processing for Location Services Jonghyeong Han 1, Joonwoo Lee 1, Seungyong Park 1, Jaeil Hwang 1, and Yunmook Nah 1 1 Department of Electronics and Computer Engineering, Dankook

More information

Spatial Queries. Nearest Neighbor Queries

Spatial Queries. Nearest Neighbor Queries Spatial Queries Nearest Neighbor Queries Spatial Queries Given a collection of geometric objects (points, lines, polygons,...) organize them on disk, to answer efficiently point queries range queries k-nn

More information

Quadrant-Based MBR-Tree Indexing Technique for Range Query Over HBase

Quadrant-Based MBR-Tree Indexing Technique for Range Query Over HBase Quadrant-Based MBR-Tree Indexing Technique for Range Query Over HBase Bumjoon Jo and Sungwon Jung (&) Department of Computer Science and Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107,

More information

Principles of Data Management. Lecture #14 (Spatial Data Management)

Principles of Data Management. Lecture #14 (Spatial Data Management) Principles of Data Management Lecture #14 (Spatial Data Management) Instructor: Mike Carey mjcarey@ics.uci.edu Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Today s Notable News v Project

More information

Nearest Neighbor Search on Moving Object Trajectories

Nearest Neighbor Search on Moving Object Trajectories Nearest Neighbor Search on oving Object Trajectories Elias Frentzos, Kostas Gratsias, Nikos Pelekis, Yannis Theodoridis Laboratory of Information Systems Department of Informatics University of Piraeus

More information

Abstract. 1 Introduction. in both infrastructure-based and handset-based positioning

Abstract. 1 Introduction. in both infrastructure-based and handset-based positioning 2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or

More information

VGQ-Vor: extending virtual grid quadtree with Voronoi diagram for mobile k nearest neighbor queries over mobile objects

VGQ-Vor: extending virtual grid quadtree with Voronoi diagram for mobile k nearest neighbor queries over mobile objects Front. Comput. Sci., 2013, 7(1): 44 54 DOI 10.1007/s11704-012-2069-z VGQ-Vor: extending virtual grid quadtree with Voronoi diagram for mobile k nearest neighbor queries over mobile objects Botao WANG 1,JingweiQU

More information

Complex Spatio-Temporal Pattern Queries

Complex Spatio-Temporal Pattern Queries Complex Spatio-Temporal attern Queries Marios Hadjieleftheriou, George Kollios Computer Science Department Boston University {marioh, gkollios}@cs.bu.edu etko Bakalov, Vassilis J. Tsotras Computer Science

More information

Advanced Data Types and New Applications

Advanced Data Types and New Applications C H A P T E R25 Advanced Data Types and New Applications Practice Exercises 25.1 What are the two types of time, and how are they different? Why does it make sense to have both types of time associated

More information

ANNATTO: Adaptive Nearest Neighbor Queries in Travel Time Networks

ANNATTO: Adaptive Nearest Neighbor Queries in Travel Time Networks ANNATTO: Adaptive Nearest Neighbor Queries in Travel Time Networks Wei-Shinn Ku, Roger Zimmermann, Haojun Wang and Trung Nguyen Computer Science Department University of Southern California Los Angeles,

More information

Evaluation of Top-k OLAP Queries Using Aggregate R trees

Evaluation of Top-k OLAP Queries Using Aggregate R trees Evaluation of Top-k OLAP Queries Using Aggregate R trees Nikos Mamoulis 1, Spiridon Bakiras 2, and Panos Kalnis 3 1 Department of Computer Science, University of Hong Kong, Pokfulam Road, Hong Kong, nikos@cs.hku.hk

More information