Skeletal deformation

Size: px
Start display at page:

Download "Skeletal deformation"

Transcription

1 CS 523: Computer Graphics, Spring 2009 Shape Modeling Skeletal deformation 4/22/2009 1

2 Believable character animation Computers games and movies Skeleton: intuitive, low dimensional subspace Clip courtesy of Ilya Baran 4/22/2009 2

3 Discrete representation Skeleton: Skin: collection of line segments discrete samples of the connected by joints surface polygonal mesh 4/22/2009 3

4 Skin + skeleton Skeleton Seeo defines es the overall motion Skin moves oeswith the skeleton The process of building the skeleton kl and binding it to the skin mesh is called rigging. i 4/22/2009 Clips courtesy of Ilya Baran 4

5 Skeletal subspace deformation (SSD) The artist needs to specify, for each point on the skin, how much itisinfluencedis influenced by the skeleton bones. 4/22/2009 5

6 Skeletal subspace deformation (SSD) Affine combination of transformations K v = w T v j kj k j k = 1 v j T 2 T 1 De facto standard for interactive applications simple + fast + works on the GPU T 3 4/22/2009 6

7 Skeletal subspace deformation (SSD) Hard to set up Visual artifacts No context 4/22/2009 7

8 Pose space deformation (PSD) [Lewis et al. 2000, Sloan et al. 2001] Each degree of freedom of the skeleton is a dimension: P = ( α, β, γ, α, β, γ, K, α, β, γ ) K K K P 0 P 2 P P D P 1 4/22/2009 8

9 Pose space deformation (PSD) [Lewis et al. 2000, Sloan et al. 2001] P0 P1 P 2 PD P Radial Basis functions: a ( P ) = h j D ( P ) + m Φ ( P - P ) j i, j i i i= 1 a 0 a 1 a 2 a D M Blend Linear displacements Deformed Shape 4/22/2009 9

10 Pose space deformation (PSD) [Lewis et al. 2000, Sloan et al. 2001] 4/22/

11 SSD artifacts, requires many examples + setup PSD limitations [Lewis et al. 2000, Sloan et al. 2001] Linear displacements no rotation High memory consumption, performance L 4/22/

12 Rotation interpolation and extrapolation 4/22/

13 Linear displacements (PSD) 4/22/

14 Context Aware Skeletal Shape Deformation Eurographics 2007 Ofir Weber Olga Sorkine Yaron Lipman Craig Gotsman 4/22/

15 The contributions Replace SSD by detail preserving pese mesh deformation [Sorkine et al. 2004, Sumner et al. 2004, Yu et al. 2004, Lipman et al. 2005, Zayer et al. 2005] Easy setup Differential morphing Sparse representation of example shapes 4/22/

16 Other previous work Pose Space Deformation eo o [Lewis et al. 2000, Sloan et al. 2001, Kry et al. 2002, Kurihara et al. 2004, Rhee et al. 2006] Detail preserving mesh deformation [Sorkine et al. 2004, Sumner et al. 2004, Yu et al. 2004, Lipman et al. 2005, Zayer et al ] Survey: [Botsch and Sorkine 2008] MeshIK [Sumner et al. 2005, Der et al. 2006] SCAPE [Anguelov et al. 2005] 4/22/

17 Detail preserving Detail preserving deformation 1 Hip 0.5 Knee Ankle Δw k = Dirichlet boundary y conditions: wk(tn) = 1 for tn Hk wk(tn) = 0 for tn Hl where l k. 4/22/

18 Blending rotations For each face t: R(t)= w 1 (t)r 1 w 2 (t)r 2 w K (t)r K : [Buss 93] R 1 R 3 log quaternion R 2 Poisson equation [Yu et al. 2004] Δ [ x y z ] = div[ R ] Sparse linear system 4/22/

19 Poisson stitching The Poisson equation averages the different vertex positions Tries to preserve the shape and orientation of thetriangles triangles as much as possible 4/22/

20 Poisson stitching The Poisson equation averages the different vertex positions Tries to preserve the shape and orientation of thetriangles triangles as much as possible 4/22/

21 Setup 4/22/

22 Comparison to SSD Context-aware SSD SSD 4/22/

23 Comparison to SSD SSD CASSD Video: 0:0:18 4/22/

24 Using context examples 4/22/

25 Relative encoding R (t) A (t) T(t) A (t) = T(t)x R (t) T(t)= A (t) x R T (t) 4/22/

26 Relative encoding u 2 v 1 n v v u 1 2 R (t) g n n u A (t) = T(t)x R (t) T(t) = A (t) x R T (t) R T (t) applied to the example shape (+ stitched) = T(t) 4/22/

27 Blending transformations Polar Decomposition T Q 0 S 0 0 a 0 T 1 Q 1 S 1 a 1 R(t) a 2 T 2 Q 2 S 2 M M M a D t T D Q D S D 4/22/

28 4/22/

29 Smooth Difference Deformation without Examples Smooth Example 4/22/

30 Compact Representation T Transformations varies smoothly 1 Laplace equation T 2 T 3 T 4 Less than 5% memory Evaluation only at anchors performance Greedy selection ΔTT = 0 Boundary conditions: known T s at anchors See Least squares squares Meshes [Sorkine and Cohen Or 2004] 4/22/

31 4/22/

32 One more result Video: 3:55 4/22/

33 Conclusions Detail preserving skeletal shape deformation Easy setup No or small number of examples Interpolation ti and meaningful extrapolation ti Sparse representation of examples 4/22/

34 Limitations and extensions No dynamics The greedy algorithm is not optimal Map to GPU Wang et al. SIGGRAPH /22/

CS 523: Computer Graphics, Spring Shape Modeling. Skeletal deformation. Andrew Nealen, Rutgers, /12/2011 1

CS 523: Computer Graphics, Spring Shape Modeling. Skeletal deformation. Andrew Nealen, Rutgers, /12/2011 1 CS 523: Computer Graphics, Spring 2011 Shape Modeling Skeletal deformation 4/12/2011 1 Believable character animation Computers games and movies Skeleton: intuitive, low-dimensional subspace Clip courtesy

More information

12 - Spatial And Skeletal Deformations. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo

12 - Spatial And Skeletal Deformations. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo 12 - Spatial And Skeletal Deformations Space Deformations Space Deformation Displacement function defined on the ambient space Evaluate the function on the points of the shape embedded in the space Twist

More information

Context-Aware Skeletal Shape Deformation

Context-Aware Skeletal Shape Deformation Context-Aware Skeletal Shape Deformation Ofir Weber 1, Olga Sorkine 2, Yaron Lipman 3 and Craig Gotsman 1 1 Technion, Israel 2 TU Berlin, Germany 3 Tel Aviv University, Israel Abstract We describe a system

More information

CS 775: Advanced Computer Graphics. Lecture 4: Skinning

CS 775: Advanced Computer Graphics. Lecture 4: Skinning CS 775: Advanced Computer Graphics Lecture 4: http://www.okino.com/conv/skinning.htm Binding Binding Always done in a standard rest or bind pose. Binding Always done in a standard rest or bind pose. Associate

More information

Pose Space Deformation A unified Approach to Shape Interpolation and Skeleton-Driven Deformation

Pose Space Deformation A unified Approach to Shape Interpolation and Skeleton-Driven Deformation Pose Space Deformation A unified Approach to Shape Interpolation and Skeleton-Driven Deformation J.P. Lewis Matt Cordner Nickson Fong Presented by 1 Talk Outline Character Animation Overview Problem Statement

More information

SCAPE: Shape Completion and Animation of People

SCAPE: Shape Completion and Animation of People SCAPE: Shape Completion and Animation of People By Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, James Davis From SIGGRAPH 2005 Presentation for CS468 by Emilio Antúnez

More information

Skinning Mesh Animations

Skinning Mesh Animations Doug L. James, Christopher D. Twigg Carnegie Mellon University presented by Johannes Schmid 1 Outline Introduction & Motivation Overview & Details Results Discussion 2 Introduction Mesh sequence: 3 General

More information

10 - ARAP and Linear Blend Skinning

10 - ARAP and Linear Blend Skinning 10 - ARAP and Linear Blend Skinning Acknowledgements: Olga Sorkine-Hornung As Rigid As Possible Demo Libigl demo 405 As-Rigid-As-Possible Deformation Preserve shape of cells covering the surface Ask each

More information

05 Mesh Animation. Steve Marschner CS5625 Spring 2016

05 Mesh Animation. Steve Marschner CS5625 Spring 2016 05 Mesh Animation Steve Marschner CS5625 Spring 2016 Basic surface deformation methods Blend shapes: make a mesh by combining several meshes Mesh skinning: deform a mesh based on an underlying skeleton

More information

Example-Based Skeleton Extraction. Scott Schaefer Can Yuksel

Example-Based Skeleton Extraction. Scott Schaefer Can Yuksel Example-Based Skeleton Extraction Scott Schaefer Can Yuksel Example-Based Deformation Examples Previous Work Mesh-based Inverse Kinematics [Sumner et al. 2005], [Der et al. 2006] Example-based deformation

More information

Mesh-Based Inverse Kinematics

Mesh-Based Inverse Kinematics CS468, Wed Nov 9 th 2005 Mesh-Based Inverse Kinematics R. W. Sumner, M. Zwicker, C. Gotsman, J. Popović SIGGRAPH 2005 The problem 1 General approach Learn from experience... 2 As-rigid-as-possible shape

More information

CSE452 Computer Graphics

CSE452 Computer Graphics CSE452 Computer Graphics Lecture 19: From Morphing To Animation Capturing and Animating Skin Deformation in Human Motion, Park and Hodgins, SIGGRAPH 2006 CSE452 Lecture 19: From Morphing to Animation 1

More information

Animations. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Kavita Bala

Animations. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Kavita Bala Animations Hakan Bilen University of Edinburgh Computer Graphics Fall 2017 Some slides are courtesy of Steve Marschner and Kavita Bala Animation Artistic process What are animators trying to do? What tools

More information

Animation of 3D surfaces

Animation of 3D surfaces Animation of 3D surfaces 2013-14 Motivations When character animation is controlled by skeleton set of hierarchical joints joints oriented by rotations the character shape still needs to be visible: visible

More information

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala Animation CS 4620 Lecture 33 Cornell CS4620 Fall 2015 1 Announcements Grading A5 (and A6) on Monday after TG 4621: one-on-one sessions with TA this Friday w/ prior instructor Steve Marschner 2 Quaternions

More information

Deformation Transfer for Triangle Meshes

Deformation Transfer for Triangle Meshes Deformation Transfer for Triangle Meshes a Paper (SIGGRAPH 2004) by Robert W. Sumner & Jovan Popovic presented by Roni Oeschger Deformation Transfer Source deformed Target deformed 1 Outline of my presentation

More information

Animation. Motion over time

Animation. Motion over time Animation Animation Motion over time Animation Motion over time Usually focus on character animation but environment is often also animated trees, water, fire, explosions, Animation Motion over time Usually

More information

计算机图形学. Computer Graphics 刘利刚.

计算机图形学. Computer Graphics 刘利刚. 计算机图形学 Computer Graphics 刘利刚 lgliu@ustc.edu.cn http://staff.ustc.edu.cn/~lgliu Computer Animation Skinning and Enveloping The slide are from Durand from MIT. Before getting started One more word about

More information

Skeleton Based As-Rigid-As-Possible Volume Modeling

Skeleton Based As-Rigid-As-Possible Volume Modeling Skeleton Based As-Rigid-As-Possible Volume Modeling Computer Science Department, Rutgers University As-rigid-as-possible (ARAP) shape modeling is a popular technique to obtain natural deformations. There

More information

arxiv: v1 [cs.gr] 16 May 2017

arxiv: v1 [cs.gr] 16 May 2017 Automated Body Structure Extraction from Arbitrary 3D Mesh Yong Khoo, Sang Chung This paper presents an automated method for 3D character skeleton extraction that can be arxiv:1705.05508v1 [cs.gr] 16 May

More information

Animation of 3D surfaces.

Animation of 3D surfaces. Animation of 3D surfaces Motivations When character animation is controlled by skeleton set of hierarchical joints joints oriented by rotations the character shape still needs to be visible: visible =

More information

Chapter 9 Animation System

Chapter 9 Animation System Chapter 9 Animation System 9.1 Types of Character Animation Cel Animation Cel animation is a specific type of traditional animation. A cel is a transparent sheet of plastic on which images can be painted

More information

CageIK: Dual-Laplacian Cage-Based Inverse Kinematics

CageIK: Dual-Laplacian Cage-Based Inverse Kinematics CageIK: Dual-Laplacian Cage-Based Inverse Kinematics Yann Savoye and Jean-Sébastien Franco LaBRI-INRIA Sud-Ouest, University of Bordeaux {yann.savoye,jean-sebastien.franco}@inria.fr Abstract. Cage-based

More information

Deformation Transfer for Detail-Preserving Surface Editing

Deformation Transfer for Detail-Preserving Surface Editing Deformation Transfer for Detail-Preserving Surface Editing Mario Botsch Robert W Sumner 2 Mark Pauly 2 Markus Gross Computer Graphics Laboratory, ETH Zurich 2 Applied Geometry Group, ETH Zurich Abstract

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 6. Mesh Simplification Problems High resolution meshes becoming increasingly available 3D active scanners Computer

More information

Inverse Kinematics for Reduced Deformable Models

Inverse Kinematics for Reduced Deformable Models To appear in SIGGRAPH 2006. Inverse Kinematics for Reduced Deformable Models Robert W. Sumner Kevin G. Der ETH Zu rich Examples Computer Science and Artificial Intelligence Laboratory Massachusetts Institute

More information

2D Shape Deformation Using Nonlinear Least Squares Optimization

2D Shape Deformation Using Nonlinear Least Squares Optimization 2D Shape Deformation Using Nonlinear Least Squares Optimization Paper ID: 20 Abstract This paper presents a novel 2D shape deformation algorithm based on nonlinear least squares optimization. The algorithm

More information

Inverse Kinematics for Reduced Deformable Models

Inverse Kinematics for Reduced Deformable Models Inverse Kinematics for Reduced Deformable Models Kevin G. Der Robert W. Sumner Jovan Popović Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology ETH Zürich Examples

More information

Animation. CS 465 Lecture 22

Animation. CS 465 Lecture 22 Animation CS 465 Lecture 22 Animation Industry production process leading up to animation What animation is How animation works (very generally) Artistic process of animation Further topics in how it works

More information

Skeleton-Based Shape Deformation Using Simplex Transformations

Skeleton-Based Shape Deformation Using Simplex Transformations Skeleton-Based Shape Deformation Using Simplex Transformations Han-Bing Yan 1, Shi-Min Hu 1,andRalphMartin 2 1 Dept. of Computer Science and Technology, Tsinghua University, P.R. China yanhb02@mails.tsinghua.edu.cn,

More information

Stretchable and Twistable Bones for Skeletal Shape Deformation

Stretchable and Twistable Bones for Skeletal Shape Deformation Stretchable and Twistable Bones for Skeletal Shape Deformation Alec Jacobson Olga Sorkine New York University & ETH Zurich Original LBS DQS STBS Figure 1: Left to right: the Beast model is rigged to a

More information

Kinematics & Motion Capture

Kinematics & Motion Capture Lecture 27: Kinematics & Motion Capture Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2017 Forward Kinematics (Slides with James O Brien) Forward Kinematics Articulated skeleton Topology

More information

Def De orma f tion orma Disney/Pixar

Def De orma f tion orma Disney/Pixar Deformation Disney/Pixar Deformation 2 Motivation Easy modeling generate new shapes by deforming existing ones 3 Motivation Easy modeling generate new shapes by deforming existing ones 4 Motivation Character

More information

Laplacian Meshes. COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman

Laplacian Meshes. COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman Laplacian Meshes COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman Outline Differential surface representation Ideas and applications Compact shape representation Mesh editing and manipulation

More information

Bounded Distortion Mapping and Shape Deformation

Bounded Distortion Mapping and Shape Deformation Bounded Distortion Mapping and Shape Deformation 陈仁杰 德国马克斯普朗克计算机研究所 GAMES Web Seminar, 29 March 2018 Outline Planar Mapping & Applications Bounded Distortion Mapping Harmonic Shape Deformation Shape Interpolation

More information

Character animation Christian Miller CS Fall 2011

Character animation Christian Miller CS Fall 2011 Character animation Christian Miller CS 354 - Fall 2011 Exam 2 grades Avg = 74.4, std. dev. = 14.4, min = 42, max = 99 Characters Everything is important in an animation But people are especially sensitive

More information

Rigging / Skinning. based on Taku Komura, Jehee Lee and Charles B.Own's slides

Rigging / Skinning. based on Taku Komura, Jehee Lee and Charles B.Own's slides Rigging / Skinning based on Taku Komura, Jehee Lee and Charles B.Own's slides Skeletal Animation Victoria 2 CSE 872 Dr. Charles B. Owen Advanced Computer Graphics Skinning http://www.youtube.com/watch?

More information

CMSC 425: Lecture 10 Skeletal Animation and Skinning

CMSC 425: Lecture 10 Skeletal Animation and Skinning CMSC 425: Lecture 10 Skeletal Animation and Skinning Reading: Chapt 11 of Gregory, Game Engine Architecture. Recap: Last time we introduced the principal elements of skeletal models and discussed forward

More information

Advanced Computer Graphics

Advanced Computer Graphics G22.2274 001, Fall 2009 Advanced Computer Graphics Project details and tools 1 Project Topics Computer Animation Geometric Modeling Computational Photography Image processing 2 Optimization All projects

More information

CS354 Computer Graphics Character Animation and Skinning

CS354 Computer Graphics Character Animation and Skinning Slide Credit: Don Fussell CS354 Computer Graphics Character Animation and Skinning Qixing Huang April 9th 2018 Instance Transformation Start with a prototype object (a symbol) Each appearance of the object

More information

A skeleton/cage hybrid paradigm for digital animation

A skeleton/cage hybrid paradigm for digital animation A skeleton/cage hybrid paradigm for digital animation Fabrizio Corda 1 1 Università degli studi di Cagliari Abstract. Digital animators require simple tools and techniques that allow them to create computer

More information

Real-Time Weighted Pose-Space Deformation on the GPU

Real-Time Weighted Pose-Space Deformation on the GPU EUROGRAPHICS 2006 / E. Gröller and L. Szirmay-Kalos (Guest Editors) Volume 25 (2006), Number 3 Real-Time Weighted Pose-Space Deformation on the GPU Taehyun Rhee 1 J.P. Lewis 2 and Ulrich Neumann 1 1 University

More information

Reusable Skinning Templates Using Cage-based Deformations

Reusable Skinning Templates Using Cage-based Deformations Reusable Skinning Templates Using Cage-based Deformations Tao Ju 1 Qian-Yi Zhou 2 Michiel van de Panne 3 Daniel Cohen-Or 4 Ulrich Neumann 2 1 Washington Univ. in St. Louis 2 Univ. of Southern California

More information

Spherical Blend Skinning on GPU

Spherical Blend Skinning on GPU Spherical Blend Skinning on GPU Kasper Amstrup Andersen Dept. of Computer Science, University of Copenhagen Figure 1: Two animated characters using spherical blend skinning on GPU. Abstract Skeletal animation

More information

Animation. CS 4620 Lecture 32. Cornell CS4620 Fall Kavita Bala

Animation. CS 4620 Lecture 32. Cornell CS4620 Fall Kavita Bala Animation CS 4620 Lecture 32 Cornell CS4620 Fall 2015 1 What is animation? Modeling = specifying shape using all the tools we ve seen: hierarchies, meshes, curved surfaces Animation = specifying shape

More information

Real-Time Enveloping with Rotational Regression. Robert Yuanbo Wang

Real-Time Enveloping with Rotational Regression. Robert Yuanbo Wang Real-Time Enveloping with Rotational Regression by Robert Yuanbo Wang Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree

More information

Cloning Skeleton-driven Animation to Other Models

Cloning Skeleton-driven Animation to Other Models Cloning Skeleton-driven Animation to Other Models Wan-Chi Luo Jian-Bin Huang Bing-Yu Chen Pin-Chou Liu National Taiwan University {maggie, azar, toby}@cmlab.csie.ntu.edu.tw robin@ntu.edu.tw Abstract-3D

More information

The correspondence problem. A classic problem. A classic problem. Deformation-Drive Shape Correspondence. Fundamental to geometry processing

The correspondence problem. A classic problem. A classic problem. Deformation-Drive Shape Correspondence. Fundamental to geometry processing The correspondence problem Deformation-Drive Shape Correspondence Hao (Richard) Zhang 1, Alla Sheffer 2, Daniel Cohen-Or 3, Qingnan Zhou 2, Oliver van Kaick 1, and Andrea Tagliasacchi 1 July 3, 2008 1

More information

Animation II: Soft Object Animation. Watt and Watt Ch.17

Animation II: Soft Object Animation. Watt and Watt Ch.17 Animation II: Soft Object Animation Watt and Watt Ch.17 Soft Object Animation Animation I: skeletal animation forward kinematics x=f(φ) inverse kinematics φ=f -1 (x) Curves and Surfaces I&II: parametric

More information

Human body animation. Computer Animation. Human Body Animation. Skeletal Animation

Human body animation. Computer Animation. Human Body Animation. Skeletal Animation Computer Animation Aitor Rovira March 2010 Human body animation Based on slides by Marco Gillies Human Body Animation Skeletal Animation Skeletal Animation (FK, IK) Motion Capture Motion Editing (retargeting,

More information

Encoding Meshes in Differential Coordinates

Encoding Meshes in Differential Coordinates Encoding Meshes in Differential Coordinates Daniel Cohen-Or Olga Sorkine School of Computer Science Tel Aviv University Abstract Representing surfaces in local, rather than global, coordinate systems proves

More information

Animation COM3404. Richard Everson. School of Engineering, Computer Science and Mathematics University of Exeter

Animation COM3404. Richard Everson. School of Engineering, Computer Science and Mathematics University of Exeter Animation COM3404 Richard Everson School of Engineering, Computer Science and Mathematics University of Exeter R.M.Everson@exeter.ac.uk http://www.secamlocal.ex.ac.uk/studyres/com304 Richard Everson Animation

More information

Deformation Sensitive Decimation

Deformation Sensitive Decimation Deformation Sensitive Decimation Alex Mohr Michael Gleicher University of Wisconsin, Madison Abstract In computer graphics, many automatic methods for simplifying polygonal meshes have been developed.

More information

Texturing and Deforming Meshes with Casual Images. I-Chao Shen Yi-Hau Wang Yu-Mei Chen Bing-Yu Chen. National Taiwan University

Texturing and Deforming Meshes with Casual Images. I-Chao Shen Yi-Hau Wang Yu-Mei Chen Bing-Yu Chen. National Taiwan University Volume xx (200y), Number z, pp. 1 6 Texturing and Deforming Meshes with Casual Images I-Chao Shen Yi-Hau Wang Yu-Mei Chen Bing-Yu Chen National Taiwan University arxiv:1809.03144v1 [cs.gr] 10 Sep 2018

More information

Deformation II. Disney/Pixar

Deformation II. Disney/Pixar Deformation II Disney/Pixar 1 Space Deformation Deformation function on ambient space f : n n Shape S deformed by applying f to points of S S = f (S) f (x,y)=(2x,y) S S 2 Motivation Can be applied to any

More information

A Powell Optimization Approach for Example-Based Skinning in a Production Animation Environment

A Powell Optimization Approach for Example-Based Skinning in a Production Animation Environment A Powell Optimization Approach for Example-Based Skinning in a Production Animation Environment Xiao Xian Nanyang Technological University Seah Hock Soon Nanyang Technological University Tian Feng Nanyang

More information

APPLICATION OF INTERACTIVE DEFORMATION TO ASSEMBLED MESH MODELS FOR CAE ANALYSIS

APPLICATION OF INTERACTIVE DEFORMATION TO ASSEMBLED MESH MODELS FOR CAE ANALYSIS Proceedings of the ASME 007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 007 September 4-7, 007, Las Vegas, Nevada, USA DETC007-34636

More information

Kinematics. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University

Kinematics. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Kinematics CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Kinematics Kinematics: The science of pure motion, considered without reference to the matter of objects moved, or to the

More information

Introduction to Computer Graphics. Animation (1) May 19, 2016 Kenshi Takayama

Introduction to Computer Graphics. Animation (1) May 19, 2016 Kenshi Takayama Introduction to Computer Graphics Animation (1) May 19, 2016 Kenshi Takayama Skeleton-based animation Simple Intuitive Low comp. cost https://www.youtube.com/watch?v=dsonab58qva 2 Representing a pose using

More information

Large Mesh Deformation Using the Volumetric Graph Laplacian

Large Mesh Deformation Using the Volumetric Graph Laplacian Large Mesh Deformation Using the Volumetric Graph Laplacian Kun Zhou1 Jin Huang2 John Snyder3 Xinguo Liu1 Hujun Bao2 Baining Guo1 Heung-Yeung Shum1 1 Microsoft Research Asia 2 Zhejiang University 3 Microsoft

More information

Advanced Graphics and Animation

Advanced Graphics and Animation Advanced Graphics and Animation Character Marco Gillies and Dan Jones Goldsmiths Aims and objectives By the end of the lecture you will be able to describe How 3D characters are animated Skeletal animation

More information

Real-Time Shape Editing using Radial Basis Functions

Real-Time Shape Editing using Radial Basis Functions Real-Time Shape Editing using Radial Basis Functions, Leif Kobbelt RWTH Aachen Boundary Constraint Modeling Prescribe irregular constraints Vertex positions Constrained energy minimization Optimal fairness

More information

Game Programming. Bing-Yu Chen National Taiwan University

Game Programming. Bing-Yu Chen National Taiwan University Game Programming Bing-Yu Chen National Taiwan University Character Motion Hierarchical Modeling Character Animation Motion Editing 1 Hierarchical Modeling Connected primitives 2 3D Example: A robot arm

More information

Introduction to Computer Graphics. Image Processing (1) June 8, 2017 Kenshi Takayama

Introduction to Computer Graphics. Image Processing (1) June 8, 2017 Kenshi Takayama Introduction to Computer Graphics Image Processing (1) June 8, 2017 Kenshi Takayama Today s topics Edge-aware image processing Gradient-domain image processing 2 Image smoothing using Gaussian Filter Smoothness

More information

CSE 554 Lecture 7: Deformation II

CSE 554 Lecture 7: Deformation II CSE 554 Lecture 7: Deformation II Fall 2011 CSE554 Deformation II Slide 1 Review Rigid-body alignment Non-rigid deformation Intrinsic methods: deforming the boundary points An optimization problem Minimize

More information

Handle-Aware Isolines for Scalable Shape Editing

Handle-Aware Isolines for Scalable Shape Editing Handle-Aware Isolines for Scalable Shape Editing Oscar Kin-Chung Au Hongbo Fu Chiew-Lan Tai Hong Kong University of Science and Technology Daniel Cohen-Or Tel Aviv University Figure 1: Our method uses

More information

animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time

animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time computer graphics animation 2009 fabio pellacini 2 animation representation many ways to

More information

animation computer graphics animation 2009 fabio pellacini 1

animation computer graphics animation 2009 fabio pellacini 1 animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time computer graphics animation 2009 fabio pellacini 2 animation representation many ways to

More information

Example Based Skeletonization Using Harmonic One-Forms

Example Based Skeletonization Using Harmonic One-Forms Example Based Skeletonization Using Harmonic One-Forms Ying He Xian Xiao Hock-Soon Seah School of Computer Engineering Nanyang Technological University, Singapore ABSTRACT This paper presents a method

More information

Capturing Skeleton-based Animation Data from a Video

Capturing Skeleton-based Animation Data from a Video Capturing Skeleton-based Animation Data from a Video Liang-Yu Shih, Bing-Yu Chen National Taiwan University E-mail: xdd@cmlab.csie.ntu.edu.tw, robin@ntu.edu.tw ABSTRACT This paper presents a semi-automatic

More information

Computational Design. Stelian Coros

Computational Design. Stelian Coros Computational Design Stelian Coros Schedule for presentations February 3 5 10 12 17 19 24 26 March 3 5 10 12 17 19 24 26 30 April 2 7 9 14 16 21 23 28 30 Send me: ASAP: 3 choices for dates + approximate

More information

Easy modeling generate new shapes by deforming existing ones

Easy modeling generate new shapes by deforming existing ones Deformation I Deformation Motivation Easy modeling generate new shapes by deforming existing ones Motivation Easy modeling generate new shapes by deforming existing ones Motivation Character posing for

More information

Breathing life into your applications: Animation with Qt 3D. Dr Sean Harmer Managing Director, KDAB (UK)

Breathing life into your applications: Animation with Qt 3D. Dr Sean Harmer Managing Director, KDAB (UK) Breathing life into your applications: Animation with Qt 3D Dr Sean Harmer Managing Director, KDAB (UK) sean.harmer@kdab.com Contents Overview of Animations in Qt 3D Simple Animations Skeletal Animations

More information

Physically-Based Modeling and Animation. University of Missouri at Columbia

Physically-Based Modeling and Animation. University of Missouri at Columbia Overview of Geometric Modeling Overview 3D Shape Primitives: Points Vertices. Curves Lines, polylines, curves. Surfaces Triangle meshes, splines, subdivision surfaces, implicit surfaces, particles. Solids

More information

Video based Animation Synthesis with the Essential Graph. Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes

Video based Animation Synthesis with the Essential Graph. Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes Video based Animation Synthesis with the Essential Graph Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes Goal Given a set of 4D models, how to generate realistic motion from user specified

More information

SIMPLE FLEXIBLE SKINNING BASED ON MANIFOLD MODELING

SIMPLE FLEXIBLE SKINNING BASED ON MANIFOLD MODELING SIMPLE FLEXIBLE SKINNING BASED ON MANIFOLD MODELING Franck Hétroy 1,2, Cédric Gérot 3, Lin Lu 4, Boris Thibert 1 Franck.Hetroy@imag.fr, Cedric.Gerot@gipsa-lab.inpg.fr, llu@cs.hku.hk, Boris.Thibert@imag.fr

More information

Automatic Linearization of Nonlinear Skinning

Automatic Linearization of Nonlinear Skinning Automatic Linearization of Nonlinear Skinning Ladislav Kavan Steven Collins Carol O Sullivan Trinity College Dublin.0ms 0.38ms (a) (b) 0.4ms (c) (d) Figure : Linear blending is one of the fastest skinning

More information

Animating Characters in Pictures

Animating Characters in Pictures Animating Characters in Pictures Shih-Chiang Dai jeffrey@cmlab.csie.ntu.edu.tw Chun-Tse Hsiao hsiaochm@cmlab.csie.ntu.edu.tw Bing-Yu Chen robin@ntu.edu.tw ABSTRACT Animating pictures is an interesting

More information

An Animation Synthesis System based on 2D Skeleton Structures of Images

An Animation Synthesis System based on 2D Skeleton Structures of Images An Animation Synthesis System based on 2D Skeleton Structures of Images Lieu-Hen Chen Department of Computer Science and Information Engineering, National Chi Nan University Tel: 886-49-2910960 ext. 4861

More information

Physical based Rigging

Physical based Rigging Physical based Rigging Dinghuang Ji Introduction Computer animation has been a popular research topic since 1970s, when the first parametric facial model is proposed[0]. In the recent few years, a lot

More information

Robust Human Body Shape and Pose Tracking

Robust Human Body Shape and Pose Tracking Robust Human Body Shape and Pose Tracking Chun-Hao Huang 1 Edmond Boyer 2 Slobodan Ilic 1 1 Technische Universität München 2 INRIA Grenoble Rhône-Alpes Marker-based motion capture (mocap.) Adventages:

More information

Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics. Velocity Interpolation. Handing Free Surface with MAC

Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics. Velocity Interpolation. Handing Free Surface with MAC Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics Velocity Interpolation Original image from Foster & Metaxas, 1996 In 2D: For each axis, find the 4 closest face velocity samples: Self-intersecting

More information

Sweep-based Human Deformation

Sweep-based Human Deformation The Visual Computer manuscript No. (will be inserted by the editor) Dae-Eun Hyun Seung-Hyun Yoon Jung-Woo Chang Joon-Kyung Seong Myung-Soo Kim Bert Jüttler Sweep-based Human Deformation Abstract We present

More information

Modeling Deformable Human Hands from Medical Images

Modeling Deformable Human Hands from Medical Images Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2004) R. Boulic, D. K. Pai (Editors) Modeling Deformable Human Hands from Medical Images Tsuneya Kurihara 1 and Natsuki Miyata 2 1 Central Research

More information

THIS paper presents the recent advances in mesh deformation

THIS paper presents the recent advances in mesh deformation 1 On Linear Variational Surface Deformation Methods Mario Botsch Computer Graphics Laboratory ETH Zurich Olga Sorkine Computer Graphics Group TU Berlin Abstract This survey reviews the recent advances

More information

arxiv: v1 [cs.gr] 14 Aug 2014

arxiv: v1 [cs.gr] 14 Aug 2014 Regularized Harmonic Surface Deformation Yeara Kozlov, Janick Martinez Esturo, Hans-Peter Seidel, and Tino Weinkauf Max Planck Institute for Informatics, Germany {ykozlov,janick,hpseidel,weinkauf}@mpi-inf.mpg.de

More information

Interactive Mesh Deformation Using Equality-Constrained Least Squares

Interactive Mesh Deformation Using Equality-Constrained Least Squares Interactive Mesh Deformation Using Equality-Constrained Least Squares H. Masuda a,, Y. Yoshioka a, Y. Furukawa b a The University of Tokyo, Department of Environmental and Ocean Engineering, Hongo, Bunkyo-ku,

More information

A Real-time System of Crowd Rendering: Parallel LOD and Texture-Preserving Approach on GPU

A Real-time System of Crowd Rendering: Parallel LOD and Texture-Preserving Approach on GPU A Real-time System of Crowd Rendering: Parallel LOD and Texture-Preserving Approach on GPU Chao Peng, Seung In Park, Yong Cao Computer Science Department, Virginia Tech, USA {chaopeng,spark80,yongcao}@vt.edu

More information

Synthesizing Realistic Facial Expressions from Photographs

Synthesizing Realistic Facial Expressions from Photographs Synthesizing Realistic Facial Expressions from Photographs 1998 F. Pighin, J Hecker, D. Lischinskiy, R. Szeliskiz and D. H. Salesin University of Washington, The Hebrew University Microsoft Research 1

More information

Inverse Kinematics Programming Assignment

Inverse Kinematics Programming Assignment Inverse Kinematics Programming Assignment CS 448D: Character Animation Due: Wednesday, April 29 th 11:59PM 1 Logistics In this programming assignment, you will implement a simple inverse kinematics solver

More information

Smooth Rotation Enhanced As-Rigid-As-Possible Mesh Animation

Smooth Rotation Enhanced As-Rigid-As-Possible Mesh Animation TVCG-2013-10-0283 1 Smooth Rotation Enhanced As-Rigid-As-Possible Mesh Animation Zohar Levi and Craig Gotsman Abstract In recent years, the As-Rigid-As-Possible (ARAP) shape deformation and shape interpolation

More information

Meshless Modeling, Animating, and Simulating Point-Based Geometry

Meshless Modeling, Animating, and Simulating Point-Based Geometry Meshless Modeling, Animating, and Simulating Point-Based Geometry Xiaohu Guo SUNY @ Stony Brook Email: xguo@cs.sunysb.edu http://www.cs.sunysb.edu/~xguo Graphics Primitives - Points The emergence of points

More information

COMPUTER ANIMATION 3 KEYFRAME ANIMATION, RIGGING, SKINNING AND CHARACTER ANIMATION. Rémi Ronfard, Animation, M2R MOSIG

COMPUTER ANIMATION 3 KEYFRAME ANIMATION, RIGGING, SKINNING AND CHARACTER ANIMATION. Rémi Ronfard, Animation, M2R MOSIG COMPUTER ANIMATION 3 KEYFRAME ANIMATION, RIGGING, SKINNING AND CHARACTER ANIMATION Rémi Ronfard, Animation, M2R MOSIG 2 Outline Principles of animation Keyframe interpolation Rigging, skinning and walking

More information

MOTION CAPTURE DATA PROCESSING - MOTION EDITING / RETARGETING - MOTION CONTROL / GRAPH - INVERSE KINEMATIC. Alexandre Meyer Master Informatique

MOTION CAPTURE DATA PROCESSING - MOTION EDITING / RETARGETING - MOTION CONTROL / GRAPH - INVERSE KINEMATIC. Alexandre Meyer Master Informatique 1 MOTION CAPTURE DATA PROCESSING - MOTION EDITING / RETARGETING - MOTION CONTROL / GRAPH - INVERSE KINEMATIC Alexandre Meyer Master Informatique Overview: Motion data processing In this course Motion editing

More information

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2011 2/22/2011 Differential Geometry of Surfaces Continuous and Discrete Motivation Smoothness

More information

Animation. Keyframe animation. CS4620/5620: Lecture 30. Rigid motion: the simplest deformation. Controlling shape for animation

Animation. Keyframe animation. CS4620/5620: Lecture 30. Rigid motion: the simplest deformation. Controlling shape for animation Keyframe animation CS4620/5620: Lecture 30 Animation Keyframing is the technique used for pose-to-pose animation User creates key poses just enough to indicate what the motion is supposed to be Interpolate

More information

Surface Parameterization

Surface Parameterization Surface Parameterization A Tutorial and Survey Michael Floater and Kai Hormann Presented by Afra Zomorodian CS 468 10/19/5 1 Problem 1-1 mapping from domain to surface Original application: Texture mapping

More information

Skeleton Driven Laplacian Volumetric Deformation

Skeleton Driven Laplacian Volumetric Deformation Skeleton Driven Laplacian Volumetric Deformation C. Budd 1, A.Hilton2 1 University of Surrey, c.budd@surrey.ac.uk 2 University of Surrey, a.hilton@surrey.ac.uk Abstract This paper proposes a novel mesh

More information

Fast and Reliable Example-Based Mesh IK for Stylized Deformations

Fast and Reliable Example-Based Mesh IK for Stylized Deformations Fast and Reliable Example-Based Mesh IK for Stylized Deformations Kevin Wampler Adobe Systems Inc. Abstract Example-based shape deformation allows a mesh to be easily manipulated or animated with simple

More information

Animations. 1. Ogre Animation 2. Frames and Keyframes 3. Bind Pose and skinning 4. Clip Continuity and Additive Blending

Animations. 1. Ogre Animation 2. Frames and Keyframes 3. Bind Pose and skinning 4. Clip Continuity and Additive Blending Animation Animations 1. Ogre Animation 2. Frames and Keyframes 3. Bind Pose and skinning 4. Clip Continuity and Additive Blending Skeleton Graphics Pipeline void skeleton(void){ glpushmatrix();

More information