CS 523: Computer Graphics, Spring Differential Geometry of Surfaces

Size: px
Start display at page:

Download "CS 523: Computer Graphics, Spring Differential Geometry of Surfaces"

Transcription

1 CS 523: Computer Graphics, Spring 2009 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, /4/2009

2 Recap Differential Geometry of Curves Andrew Nealen, Rutgers, /4/2009 2

3 Circle of curvature Consider the circle passing through three points on the curve Andrew Nealen, Rutgers, /4/2009 3

4 Circle of curvature the limiting circle as threepoints come together. Andrew Nealen, Rutgers, /4/2009 4

5 Radius of curvature, r Andrew Nealen, Rutgers, /4/2009 5

6 Radius of curvature, r = 1/κ Curvature κ = 1 r 1/κ Andrew Nealen, Rutgers, /4/2009 6

7 Signed curvature Sense of traversal along curve. +κ κ Andrew Nealen, Rutgers, /4/2009 7

8 Assume t is arc length parameter p ( t ) = κ nˆ( t ) Curvature normal parametric form n(t) ˆ( p(t) p (t) [Kobbelt and Schröder] Andrew Nealen, Rutgers, /4/2009 8

9 Discrete planar curves Piecewise linear curves Not smooth at vertices Can t take derivatives i Generalize notions from the smooth world for the discrete case! Andrew Nealen, Rutgers, /4/2009 9

10 Tangents, normals For any point on the edge, the tangent is simply the unit vector along the edge and the normal is theperpendicular vector Andrew Nealen, Rutgers, /4/

11 Tangents, normals For vertices, we have many options Andrew Nealen, Rutgers, /4/

12 Tangents, normals Can choose to average theadjacent edge normals nˆ v = nˆ nˆ e 1 + nˆ + nˆ e 2 e 1 e 2 e 2 e 1 Andrew Nealen, Rutgers, /4/

13 Tangents, normals Tangents, normals Weight by edge lengths Weight by edge lengths e 2 e 1 ˆ e ˆ e n n e 2 e 1 e 2 e 1 v ˆ e ˆ e ˆ n n n + = e e 2 e 1 3/4/ Andrew Nealen, Rutgers, 2009

14 Curvature normal = length gradient Can use this to dfi define discrete curvature! Andrew Nealen, Rutgers, /4/

15 Curvature normal = length gradient Andrew Nealen, Rutgers, /4/

16 Differential Geometry of Surfaces Continuous and Discrete Andrew Nealen, Rutgers, /4/

17 Motivation Smoothness Mesh smoothing Adaptive tessellation Mesh decimation Shape preserving mesh editing Andrew Nealen, Rutgers, /4/

18 Surfaces Parametric form Continuous surface x( u, v) p ( u,v ) = y ( u,v ), ( u, v ) R ( ) z u,v Tangent plane at point p(u,v) is spanned by 2 p u v n p v p(u,v) p u = p( u,v) p( u,v), pv = uu vv u Andrew Nealen, Rutgers, /4/

19 Surfaces Isoparametric lines Lines on the surface when keeping one parameter fixed γ γ u v ( v) = ( u0 0 p, v) ( u) = ( u, v0 ) 0 p v u Andrew Nealen, Rutgers, /4/

20 Surfaces Surface normal: n n ( u,v ) = p p u u p p v v p u p v p(u,v) Assuming regular parameterization, i.e., v p u p v 0 u Andrew Nealen, Rutgers, /4/

21 Normal curvature p u n p v n = p p u u p p v v t p Direction t in the tangent plane: t p p u = cos φ + u sin φ p p v v p v / p v ϕ t p u / p u Andrew Nealen, Rutgers, /4/

22 Normal curvature p u n p v The curve γ is the intersection of the surface with the plane through n and t. γ t p Normal curvature: κ(γ(p)) p v / p v ϕ t p u / p u Andrew Nealen, Rutgers, /4/

23 Surface curvatures Principal curvatures Maximal curvature Minimal curvature Mean curvature Gaussian curvature Andrew Nealen, Rutgers, /4/

24 Mean curvature Intuition for mean curvature Andrew Nealen, Rutgers, /4/

25 Surface curvatures Andrew Nealen, Rutgers, /4/

26 Classification A point p on the surface is called Elliptic, if K > 0 Parabolic, if K =0 Hyperbolic, if K < 0 Umbilical, l if Developable surface K = 0 Andrew Nealen, Rutgers, /4/

27 Laplace operator Andrew Nealen, Rutgers, /4/

28 Laplace Beltrami operator Extension of Laplace to functions on manifolds Andrew Nealen, Rutgers, /4/

29 Laplace Beltrami operator Extension of Laplace to functions on manifolds Andrew Nealen, Rutgers, /4/

30 Discrete differential operators Assumption: meshes are piecewise linear approximations of smooth surfaces Approach: approximate differential properties at point x as spatial average over local mesh neighborhood N(x) where typically x = mesh vertex N k (x) = k ring neighborhood or local geodesic ball Andrew Nealen, Rutgers, /4/

31 Discrete Laplace Beltrami Uniform discretization L(v) or v Depends only on connectivity = simple and efficient v i Bad approximation for irregular triangulations Andrew Nealen, Rutgers, /4/ v j

32 Discrete Laplace Beltrami Intuition for uniform discretization v i-1 v i v i+1 γ H 2π 0 = κθ ( ) dθ ( ) ( ) κ = && γ && γ v v v v = v + v v i 1 i i i+ 1 i 1 i+ 1 2 i Andrew Nealen, Rutgers, /4/

33 Discrete Laplace Beltrami Intuition for uniform discretization v j1 v j2 v j6 v i v j3 v j5 v j4 H 2π v j1+ v j4 2vi + = κθ ( ) dθ v 2 + v 5 2 v + 0 j j i j3 j6 2 i 6 v + v v = = v j 6 vi = L ( vi ) k = 1 k Andrew Nealen, Rutgers, /4/

34 Discrete Laplace Beltrami Cotangent formula Andrew Nealen, Rutgers, /4/

35 Discrete Laplace Beltrami Cotangent formula Problems Potentially oe negative e weights Depends on geometry Andrew Nealen, Rutgers, /4/

36 Discrete Laplace Beltrami α v i β Laplacian operators Uniform Laplacian L u (v i ) Cotangent Laplacian L c (v i ) Mean curvature normal v j A i Andrew Nealen, Rutgers, /4/

37 Discrete Laplace Beltrami α A i v i β v j Laplacian operators Uniform Laplacian L u (v i ) Cotangent Laplacian L c (v i ) Mean curvature normal Cotangent Laplacian = mean curvature normal x vertex area (A i ) For nearly equal edge lengths Uniform Cotangent Andrew Nealen, Rutgers, /4/

38 Discrete Laplace Beltrami α v i A i β v j Laplacian operators Uniform Laplacian L u (v i ) Cotangent Laplacian L c (v i ) Mean curvature normal Cotangent Laplacian = mean curvature normal x vertex area (A i ) For nearly equal edge lengths Uniform Cotangent Andrew Nealen, Rutgers, /4/

39 Discrete curvatures Mean curvature Gaussian curvature Principal curvatures Andrew Nealen, Rutgers, /4/

40 Links and literature M. Meyer, M. Desbrun, P. Schroeder, A. Barr Discrete Differential Geometry Operators for Triangulated 2 Manifolds Manifolds, VisMath, 2002 Andrew Nealen, Rutgers, /4/

41 Links and literature P. Alliez, Estimating Curvature Tensors on Triangle Meshes, Source Code a/team/pierre.alliez/d / / emos/curvature/ Andrew Nealen, Rutgers, /4/

42 Links and literature Grinspun et al.: Computing discrete shape operators on general meshes, Eurographics 2006 Andrew Nealen, Rutgers, /4/

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2011 2/22/2011 Differential Geometry of Surfaces Continuous and Discrete Motivation Smoothness

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011 CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell 2/15/2011 1 Motivation Geometry processing: understand geometric characteristics,

More information

(Discrete) Differential Geometry

(Discrete) Differential Geometry (Discrete) Differential Geometry Motivation Understand the structure of the surface Properties: smoothness, curviness, important directions How to modify the surface to change these properties What properties

More information

Laplacian Operator and Smoothing

Laplacian Operator and Smoothing Laplacian Operator and Smoothing Xifeng Gao Acknowledgements for the slides: Olga Sorkine-Hornung, Mario Botsch, and Daniele Panozzo Applications in Geometry Processing Smoothing Parameterization Remeshing

More information

Mesh Processing Pipeline

Mesh Processing Pipeline Mesh Smoothing 1 Mesh Processing Pipeline... Scan Reconstruct Clean Remesh 2 Mesh Quality Visual inspection of sensitive attributes Specular shading Flat Shading Gouraud Shading Phong Shading 3 Mesh Quality

More information

Digital Geometry Processing Parameterization I

Digital Geometry Processing Parameterization I Problem Definition Given a surface (mesh) S in R 3 and a domain find a bective F: S Typical Domains Cutting to a Disk disk = genus zero + boundary sphere = closed genus zero Creates artificial boundary

More information

Parameterization of Meshes

Parameterization of Meshes 2-Manifold Parameterization of Meshes What makes for a smooth manifold? locally looks like Euclidian space collection of charts mutually compatible on their overlaps form an atlas Parameterizations are

More information

Surfaces: notes on Geometry & Topology

Surfaces: notes on Geometry & Topology Surfaces: notes on Geometry & Topology 1 Surfaces A 2-dimensional region of 3D space A portion of space having length and breadth but no thickness 2 Defining Surfaces Analytically... Parametric surfaces

More information

Face-based Estimations of Curvatures on Triangle Meshes

Face-based Estimations of Curvatures on Triangle Meshes Journal for Geometry and Graphics Volume 12 (2008), No. 1, 63 73. Face-based Estimations of Curvatures on Triangle Meshes Márta Szilvási-Nagy Dept. of Geometry, Budapest University of Technology and Economics

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

Gaussian and Mean Curvature Planar points: Zero Gaussian curvature and zero mean curvature Tangent plane intersects surface at infinity points Gauss C

Gaussian and Mean Curvature Planar points: Zero Gaussian curvature and zero mean curvature Tangent plane intersects surface at infinity points Gauss C Outline Shape Analysis Basics COS 526, Fall 21 Curvature PCA Distance Features Some slides from Rusinkiewicz Curvature Curvature Curvature κof a curve is reciprocal of radius of circle that best approximates

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

Smoothing & Fairing. Mario Botsch

Smoothing & Fairing. Mario Botsch Smoothing & Fairing Mario Botsch Motivation Filter out high frequency noise Desbrun, Meyer, Schroeder, Barr: Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow, SIGGRAPH 99 2 Motivation

More information

A GEOMETRIC APPROACH TO CURVATURE ESTIMATION ON TRIANGULATED 3D SHAPES

A GEOMETRIC APPROACH TO CURVATURE ESTIMATION ON TRIANGULATED 3D SHAPES A GEOMETRIC APPROACH TO CURVATURE ESTIMATION ON TRIANGULATED 3D SHAPES Mohammed Mostefa Mesmoudi, Leila De Floriani, Paola Magillo Department of Computer Science and Information Science (DISI), University

More information

Planar quad meshes from relative principal curvature lines

Planar quad meshes from relative principal curvature lines Planar quad meshes from relative principal curvature lines Alexander Schiftner Institute of Discrete Mathematics and Geometry Vienna University of Technology 15.09.2007 Alexander Schiftner (TU Vienna)

More information

Computing Curvature CS468 Lecture 8 Notes

Computing Curvature CS468 Lecture 8 Notes Computing Curvature CS468 Lecture 8 Notes Scribe: Andy Nguyen April 4, 013 1 Motivation In the previous lecture we developed the notion of the curvature of a surface, showing a bunch of nice theoretical

More information

Preliminary Mathematics of Geometric Modeling (3)

Preliminary Mathematics of Geometric Modeling (3) Preliminary Mathematics of Geometric Modeling (3) Hongxin Zhang and Jieqing Feng 2006-11-27 State Key Lab of CAD&CG, Zhejiang University Differential Geometry of Surfaces Tangent plane and surface normal

More information

Lectures in Discrete Differential Geometry 3 Discrete Surfaces

Lectures in Discrete Differential Geometry 3 Discrete Surfaces Lectures in Discrete Differential Geometry 3 Discrete Surfaces Etienne Vouga March 19, 2014 1 Triangle Meshes We will now study discrete surfaces and build up a parallel theory of curvature that mimics

More information

CS 468 (Spring 2013) Discrete Differential Geometry

CS 468 (Spring 2013) Discrete Differential Geometry Lecturer: Adrian Butscher, Justin Solomon Scribe: Adrian Buganza-Tepole CS 468 (Spring 2013) Discrete Differential Geometry Lecture 19: Conformal Geometry Conformal maps In previous lectures we have explored

More information

GAUSS-BONNET FOR DISCRETE SURFACES

GAUSS-BONNET FOR DISCRETE SURFACES GAUSS-BONNET FOR DISCRETE SURFACES SOHINI UPADHYAY Abstract. Gauss-Bonnet is a deep result in differential geometry that illustrates a fundamental relationship between the curvature of a surface and its

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

Spider: A robust curvature estimator for noisy, irregular meshes

Spider: A robust curvature estimator for noisy, irregular meshes Spider: A robust curvature estimator for noisy, irregular meshes Technical report CSRG-531, Dynamic Graphics Project, Department of Computer Science, University of Toronto, c September 2005 Patricio Simari

More information

Motivation. Parametric Curves (later Surfaces) Outline. Tangents, Normals, Binormals. Arclength. Advanced Computer Graphics (Fall 2010)

Motivation. Parametric Curves (later Surfaces) Outline. Tangents, Normals, Binormals. Arclength. Advanced Computer Graphics (Fall 2010) Advanced Computer Graphics (Fall 2010) CS 283, Lecture 19: Basic Geometric Concepts and Rotations Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/fa10 Motivation Moving from rendering to simulation,

More information

Curve and Surface Basics

Curve and Surface Basics Curve and Surface Basics Implicit and parametric forms Power basis form Bezier curves Rational Bezier Curves Tensor Product Surfaces ME525x NURBS Curve and Surface Modeling Page 1 Implicit and Parametric

More information

Surface Parameterization

Surface Parameterization Surface Parameterization A Tutorial and Survey Michael Floater and Kai Hormann Presented by Afra Zomorodian CS 468 10/19/5 1 Problem 1-1 mapping from domain to surface Original application: Texture mapping

More information

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS JIAN LIANG AND HONGKAI ZHAO Abstract. In this paper we present a general framework for solving partial differential equations on manifolds represented

More information

Estimating Curvatures and Their Derivatives on Triangle Meshes

Estimating Curvatures and Their Derivatives on Triangle Meshes Estimating Curvatures and Their Derivatives on Triangle Meshes Szymon Rusinkiewicz Princeton University Abstract The computation of curvature and other differential properties of surfaces is essential

More information

Let and be a differentiable function. Let Then be the level surface given by

Let and be a differentiable function. Let Then be the level surface given by Module 12 : Total differential, Tangent planes and normals Lecture 35 : Tangent plane and normal [Section 35.1] > Objectives In this section you will learn the following : The notion tangent plane to a

More information

1.7.1 Laplacian Smoothing

1.7.1 Laplacian Smoothing 1.7.1 Laplacian Smoothing 320491: Advanced Graphics - Chapter 1 434 Theory Minimize energy functional total curvature estimate by polynomial-fitting non-linear (very slow!) 320491: Advanced Graphics -

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

Geodesics in heat: A new approach to computing distance

Geodesics in heat: A new approach to computing distance Geodesics in heat: A new approach to computing distance based on heat flow Diana Papyan Faculty of Informatics - Technische Universität München Abstract In this report we are going to introduce new method

More information

Let be a function. We say, is a plane curve given by the. Let a curve be given by function where is differentiable with continuous.

Let be a function. We say, is a plane curve given by the. Let a curve be given by function where is differentiable with continuous. Module 8 : Applications of Integration - II Lecture 22 : Arc Length of a Plane Curve [Section 221] Objectives In this section you will learn the following : How to find the length of a plane curve 221

More information

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia 2008 1 Non-Convex Non Convex Boundary Convex boundary creates significant distortion Free boundary is better 2 Fixed

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

Parameterization. Michael S. Floater. November 10, 2011

Parameterization. Michael S. Floater. November 10, 2011 Parameterization Michael S. Floater November 10, 2011 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point

More information

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link)

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link) Advanced Computer Graphics (Spring 03) CS 83, Lecture 7: Subdivision Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs83/sp3 Slides courtesy of Szymon Rusinkiewicz, James O Brien with material from Denis

More information

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F:

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: CS 177 Homework 1 Julian Panetta October, 009 1 Euler Characteristic 1.1 Polyhedral Formula We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: V E + F = 1 First,

More information

Optimal (local) Triangulation of Hyperbolic Paraboloids

Optimal (local) Triangulation of Hyperbolic Paraboloids Optimal (local) Triangulation of Hyperbolic Paraboloids Dror Atariah Günter Rote Freie Universität Berlin December 14 th 2012 Outline Introduction Taylor Expansion Quadratic Surfaces Vertical Distance

More information

Manufacturing Classification of CAD Models Using Curvature and SVMs

Manufacturing Classification of CAD Models Using Curvature and SVMs Manufacturing Classification of CAD Models Using Curvature and SVMs Cheuk Yiu Ip William C. Regli Geometric and Intelligent Computing Laboratory Department of Computer Science, College of Engineering Drexel

More information

B-spline Patches Fitting on Surfaces and Triangular Meshes

B-spline Patches Fitting on Surfaces and Triangular Meshes KoG 1 211 Original scientific paper Accepted 21. 12. 211. MÁRTA SZILVÁSI-NAGY SZILVIA BÉLA B-spline Patches Fitting on Surfaces and Triangular Meshes B-spline Patches Fitting on Surfaces and Triangular

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Deformation Transfer for Detail-Preserving Surface Editing

Deformation Transfer for Detail-Preserving Surface Editing Deformation Transfer for Detail-Preserving Surface Editing Mario Botsch Robert W Sumner 2 Mark Pauly 2 Markus Gross Computer Graphics Laboratory, ETH Zurich 2 Applied Geometry Group, ETH Zurich Abstract

More information

3D Modeling Parametric Curves & Surfaces

3D Modeling Parametric Curves & Surfaces 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2012 3D Object Representations Raw data Point cloud Range image Polygon soup Solids Voxels BSP tree CSG Sweep Surfaces Mesh Subdivision

More information

Anisotropic Smoothing of Point Sets,

Anisotropic Smoothing of Point Sets, Anisotropic Smoothing of Point Sets, Carsten Lange Konrad Polthier TU Berlin Zuse Institute Berlin (a) (b) (c) (d) (e) Figure 1: The initial point set of the Venus torso (a) was disturbed with a 3% normal

More information

Large Mesh Deformation Using the Volumetric Graph Laplacian

Large Mesh Deformation Using the Volumetric Graph Laplacian Large Mesh Deformation Using the Volumetric Graph Laplacian Kun Zhou1 Jin Huang2 John Snyder3 Xinguo Liu1 Hujun Bao2 Baining Guo1 Heung-Yeung Shum1 1 Microsoft Research Asia 2 Zhejiang University 3 Microsoft

More information

Improved Curvature Estimation on Triangular Meshes

Improved Curvature Estimation on Triangular Meshes Washington University in St. Louis Washington University Open Scholarship All Computer Science and Engineering Research Computer Science and Engineering Report Number: WUCSE-2004-9 2004-09-01 Improved

More information

THE GEOMETRIC HEAT EQUATION AND SURFACE FAIRING

THE GEOMETRIC HEAT EQUATION AND SURFACE FAIRING THE GEOMETRIC HEAT EQUATION AN SURFACE FAIRING ANREW WILLIS BROWN UNIVERSITY, IVISION OF ENGINEERING, PROVIENCE, RI 02912, USA 1. INTROUCTION This paper concentrates on analysis and discussion of the heat

More information

Feature Lines on Surfaces

Feature Lines on Surfaces Feature Lines on Surfaces How to Describe Shape-Conveying Lines? Image-space features Object-space features View-independent View-dependent [Flaxman 1805] a hand-drawn illustration by John Flaxman Image-Space

More information

Estimating normal vectors and curvatures by centroid weights

Estimating normal vectors and curvatures by centroid weights Computer Aided Geometric Design 21 (2004) 447 458 www.elsevier.com/locate/cagd Estimating normal vectors and curvatures by centroid weights Sheng-Gwo Chen, Jyh-Yang Wu Department of Mathematics, National

More information

Greedy Routing with Guaranteed Delivery Using Ricci Flow

Greedy Routing with Guaranteed Delivery Using Ricci Flow Greedy Routing with Guaranteed Delivery Using Ricci Flow Jie Gao Stony Brook University Joint work with Rik Sarkar, Xiaotian Yin, Wei Zeng, Feng Luo, Xianfeng David Gu Greedy Routing Assign coordinatesto

More information

Harmonic Functions for Quadrilateral Remeshing of Arbitrary Manifolds

Harmonic Functions for Quadrilateral Remeshing of Arbitrary Manifolds Harmonic Functions for Quadrilateral Remeshing of Arbitrary Manifolds S. Dong, S. Kircher, M. Garland University of Illinois at Urbana Champaign, Department of Computer Science, 201 North Goodwin Avenue,

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 6. Mesh Simplification Problems High resolution meshes becoming increasingly available 3D active scanners Computer

More information

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2013 3D Object Representations Raw data Point cloud Range image Polygon soup Surfaces Mesh Subdivision Parametric Implicit Solids Voxels

More information

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane?

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane? Math 4 Practice Problems for Midterm. A unit vector that is perpendicular to both V =, 3, and W = 4,, is (a) V W (b) V W (c) 5 6 V W (d) 3 6 V W (e) 7 6 V W. In three dimensions, the graph of the equation

More information

Geometric Fairing of Irregular Meshes for Free-Form Surface Design

Geometric Fairing of Irregular Meshes for Free-Form Surface Design Geometric Fairing of Irregular Meshes for Free-Form Surface Design Robert Schneider, Leif Kobbelt 1 Max-Planck Institute for Computer Sciences, Stuhlsatzenhausweg 8, D-66123 Saarbrücken, Germany Abstract

More information

Morphorider: a new way for Structural Monitoring via the shape acquisition with a mobile device equipped with an inertial node of sensors

Morphorider: a new way for Structural Monitoring via the shape acquisition with a mobile device equipped with an inertial node of sensors 9 th European Workshop on Structural Health Monitoring July 10-13, 2018, Manchester, United Kingdom Morphorider: a new way for Structural Monitoring via the shape acquisition with a mobile device equipped

More information

CURVES AND SURFACES, S.L. Rueda SUPERFACES. 2.3 Ruled Surfaces

CURVES AND SURFACES, S.L. Rueda SUPERFACES. 2.3 Ruled Surfaces SUPERFACES. 2.3 Ruled Surfaces Definition A ruled surface S, is a surface that contains at least one uniparametric family of lines. That is, it admits a parametrization of the next kind α : D R 2 R 3 α(u,

More information

Impulse Gauss Curvatures 2002 SSHE-MA Conference. Howard Iseri Mansfield University

Impulse Gauss Curvatures 2002 SSHE-MA Conference. Howard Iseri Mansfield University Impulse Gauss Curvatures 2002 SSHE-MA Conference Howard Iseri Mansfield University Abstract: In Riemannian (differential) geometry, the differences between Euclidean geometry, elliptic geometry, and hyperbolic

More information

COMPUTING CURVATURE AND CURVATURE NORMALS ON SMOOTH LOGICALLY CARTESIAN SURFACE MESHES

COMPUTING CURVATURE AND CURVATURE NORMALS ON SMOOTH LOGICALLY CARTESIAN SURFACE MESHES COMPUTING CURVATURE AND CURVATURE NORMALS ON SMOOTH LOGICALLY CARTESIAN SURFACE MESHES by John Thomas Hutchins A thesis submitted in partial fulfillment of the requirements for the degree of Master of

More information

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017 DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU 15-458/858B Fall 2017 LECTURE 10: DISCRETE CURVATURE DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU 15-458/858B

More information

The World Is Not Flat: An Introduction to Modern Geometry

The World Is Not Flat: An Introduction to Modern Geometry The World Is Not Flat: An to The University of Iowa September 15, 2015 The story of a hunting party The story of a hunting party What color was the bear? The story of a hunting party Overview Gauss and

More information

A Comparison of Gaussian and Mean Curvatures Estimation Methods on Triangular Meshes

A Comparison of Gaussian and Mean Curvatures Estimation Methods on Triangular Meshes A Comparison of Gaussian and Mean Curvatures Estimation Methods on Triangular Meshes Tatiana Surazhsky, Evgeny Magid, Octavian Soldea, Gershon Elber and Ehud Rivlin Center for Graphics and Geometric Computing,

More information

Real-Time Shape Editing using Radial Basis Functions

Real-Time Shape Editing using Radial Basis Functions Real-Time Shape Editing using Radial Basis Functions, Leif Kobbelt RWTH Aachen Boundary Constraint Modeling Prescribe irregular constraints Vertex positions Constrained energy minimization Optimal fairness

More information

THIS paper presents the recent advances in mesh deformation

THIS paper presents the recent advances in mesh deformation 1 On Linear Variational Surface Deformation Methods Mario Botsch Computer Graphics Laboratory ETH Zurich Olga Sorkine Computer Graphics Group TU Berlin Abstract This survey reviews the recent advances

More information

Differential Geometry: Circle Packings. [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson]

Differential Geometry: Circle Packings. [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson] Differential Geometry: Circle Packings [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson] Conformal Maps Recall: Given a domain Ω R 2, the map F:Ω R 2 is conformal if it

More information

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION Dan Englesson danen344@student.liu.se Sunday 12th April, 2011 Abstract In this lab assignment which was done in the course TNM079, Modeling and animation,

More information

Parametric Surfaces and Surface Area

Parametric Surfaces and Surface Area Parametric Surfaces and Surface Area What to know: 1. Be able to parametrize standard surfaces, like the ones in the handout.. Be able to understand what a parametrized surface looks like (for this class,

More information

CS 468 (Spring 2013) Discrete Differential Geometry

CS 468 (Spring 2013) Discrete Differential Geometry CS 468 (Spring 2013) Discrete Differential Geometry 1 Math Review Lecture 14 15 May 2013 Discrete Exterior Calculus Lecturer: Justin Solomon Scribe: Cassidy Saenz Before we dive into Discrete Exterior

More information

An introduction to mesh generation Part IV : elliptic meshing

An introduction to mesh generation Part IV : elliptic meshing Elliptic An introduction to mesh generation Part IV : elliptic meshing Department of Civil Engineering, Université catholique de Louvain, Belgium Elliptic Curvilinear Meshes Basic concept A curvilinear

More information

SMOOTH POLYHEDRAL SURFACES

SMOOTH POLYHEDRAL SURFACES SMOOTH POLYHEDRAL SURFACES Felix Günther Université de Genève and Technische Universität Berlin Geometry Workshop in Obergurgl 2017 PRELUDE Złote Tarasy shopping mall in Warsaw PRELUDE Złote Tarasy shopping

More information

Updated: August 24, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University

Updated: August 24, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University Updated: August 24, 216 Calculus III Section 1.2 Math 232 Calculus III Brian Veitch Fall 215 Northern Illinois University 1.2 Calculus with Parametric Curves Definition 1: First Derivative of a Parametric

More information

Isogeometric analysis with Axel

Isogeometric analysis with Axel Isogeometric analysis with Axel Gang Xu, Régis Duvigneau,Bernard Mourrain INRIA Sophia-Antipolis gxu@sophia.inria.fr SAGA Workshop, March 18th, 2010 Outline 1 Isogeometric toolbox in EXCITING 2 Isogeometric

More information

Finite element procedures for computing normals and mean curvature on triangulated surfaces and their use for mesh refinement

Finite element procedures for computing normals and mean curvature on triangulated surfaces and their use for mesh refinement arxiv:1703.05745v1 [math.na] 16 Mar 2017 Finite element procedures for computing normals and mean curvature on triangulated surfaces and their use for mesh refinement Mirza Cenanovic 1, Peter Hansbo 1,

More information

A Global Laplacian Smoothing Approach with Feature Preservation

A Global Laplacian Smoothing Approach with Feature Preservation A Global Laplacian Smoothing Approach with Feature Preservation hongping Ji Ligang Liu Guojin Wang Department of Mathematics State Key Lab of CAD&CG hejiang University Hangzhou, 310027 P.R. China jzpboy@yahoo.com.cn,

More information

A Primer on Laplacians. Max Wardetzky. Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany

A Primer on Laplacians. Max Wardetzky. Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany A Primer on Laplacians Max Wardetzky Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany Warm-up: Euclidean case Warm-up The Euclidean case Chladni s vibrating plates

More information

Teichmüller Space and Fenchel-Nielsen Coordinates

Teichmüller Space and Fenchel-Nielsen Coordinates Teichmüller Space and Fenchel-Nielsen Coordinates Nathan Lopez November 30, 2015 Abstract Here we give an overview of Teichmüller space and its realization as a smooth manifold through Fenchel- Nielsen

More information

Fairing Scalar Fields by Variational Modeling of Contours

Fairing Scalar Fields by Variational Modeling of Contours Fairing Scalar Fields by Variational Modeling of Contours Martin Bertram University of Kaiserslautern, Germany Abstract Volume rendering and isosurface extraction from three-dimensional scalar fields are

More information

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time.

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time. Module 15 : Vector fields, Gradient, Divergence and Curl Lecture 45 : Curves in space [Section 45.1] Objectives In this section you will learn the following : Concept of curve in space. Parametrization

More information

Introduction p. 1 What Is Geometric Modeling? p. 1 Computer-aided geometric design Solid modeling Algebraic geometry Computational geometry

Introduction p. 1 What Is Geometric Modeling? p. 1 Computer-aided geometric design Solid modeling Algebraic geometry Computational geometry Introduction p. 1 What Is Geometric Modeling? p. 1 Computer-aided geometric design Solid modeling Algebraic geometry Computational geometry Representation Ab initio design Rendering Solid modelers Kinematic

More information

Geometric Registration for Deformable Shapes 2.2 Deformable Registration

Geometric Registration for Deformable Shapes 2.2 Deformable Registration Geometric Registration or Deormable Shapes 2.2 Deormable Registration Variational Model Deormable ICP Variational Model What is deormable shape matching? Example? What are the Correspondences? Eurographics

More information

Surface segmentation for improved isotropic remeshing

Surface segmentation for improved isotropic remeshing J. Edwards (Univ. of Texas) IMR 2012 1 / 20 Surface segmentation for improved isotropic remeshing John Edwards, Wenping Wang, Chandrajit Bajaj Department of Computer Science The University of Texas at

More information

Motivation. Freeform Shape Representations for Efficient Geometry Processing. Operations on Geometric Objects. Functional Representations

Motivation. Freeform Shape Representations for Efficient Geometry Processing. Operations on Geometric Objects. Functional Representations Motivation Freeform Shape Representations for Efficient Geometry Processing Eurographics 23 Granada, Spain Geometry Processing (points, wireframes, patches, volumes) Efficient algorithms always have to

More information

Focal Surfaces of Discrete Geometry

Focal Surfaces of Discrete Geometry Eurographics Symposium on Geometry Processing (2007) Alexander Belyaev, Michael Garland (Editors) Focal Surfaces of Discrete Geometry Jingyi Yu 1, Xiaotian Yin 2, Xianfeng Gu 2, Leonard McMillan 3, and

More information

VOLUME CONSERVATION OF 3D SURFACE TRIANGULAR MESH SMOOTHING

VOLUME CONSERVATION OF 3D SURFACE TRIANGULAR MESH SMOOTHING 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) E. Oñate, J. Oliver

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

Outline of the presentation

Outline of the presentation Surface Reconstruction Petra Surynková Charles University in Prague Faculty of Mathematics and Physics petra.surynkova@mff.cuni.cz Outline of the presentation My work up to now Surfaces of Building Practice

More information

Curvature Estimation on Smoothed 3-D Meshes

Curvature Estimation on Smoothed 3-D Meshes Curvature Estimation on Smoothed 3-D Meshes Peter Yuen, Nasser Khalili and Farzin Mokhtarian Centre for Vision, Speech and Signal Processing School of Electronic Engineering, Information Technology and

More information

Freeform Shape Representations for Efficient Geometry Processing

Freeform Shape Representations for Efficient Geometry Processing Freeform Shape Representations for Efficient Geometry Processing Leif Kobbelt Mario Botsch Computer Graphics Group RWTH Aachen Abstract The most important concepts for the handling and storage of freeform

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Laplacian Meshes. COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman

Laplacian Meshes. COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman Laplacian Meshes COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman Outline Differential surface representation Ideas and applications Compact shape representation Mesh editing and manipulation

More information

Discrete Differential Geometry: An Applied Introduction

Discrete Differential Geometry: An Applied Introduction Discrete Differential Geometry: An Applied Introduction Eitan Grinspun with Mathieu Desbrun, Konrad Polthier, Peter Schröder, & Ari Stern 1 Differential Geometry Why do we care? geometry of surfaces Springborn

More information

Editing Operations for Irregular Vertices in Triangle Meshes

Editing Operations for Irregular Vertices in Triangle Meshes Editing Operations for Irregular Vertices in Triangle Meshes Yuanyuan Li Arizona State University Eugene Zhang Oregon State University Yoshihiro Kobayashi Arizona State University Peter Wonka Arizona State

More information

Curvatures of Smooth and Discrete Surfaces

Curvatures of Smooth and Discrete Surfaces Curvatures of Smooth and iscrete Surfaces John M. Sullivan The curvatures of a smooth curve or surface are local measures of its shape. Here we consider analogous quantities for discrete curves and surfaces,

More information

CS337 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics. Bin Sheng Representing Shape 9/20/16 1/15

CS337 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics. Bin Sheng Representing Shape 9/20/16 1/15 Describing Shapes Constructing Objects in Computer Graphics 1/15 2D Object Definition (1/3) Lines and polylines: Polylines: lines drawn between ordered points A closed polyline is a polygon, a simple polygon

More information

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv.

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv. MAC2313 Final A (5 pts) 1. Let f(x, y, z) be a function continuous in R 3 and let S be a surface parameterized by r(u, v) with the domain of the parameterization given by R; how many of the following are

More information

Curvature-Adaptive Remeshing with Feature Preservation of Manifold Triangle Meshes with Boundary

Curvature-Adaptive Remeshing with Feature Preservation of Manifold Triangle Meshes with Boundary Curvature-Adaptive Remeshing with Feature Preservation of Manifold Triangle Meshes with Boundary Master s Project Tanja Munz Master of Science Computer Animation and Visual Effects 24th August, 2015 Abstract

More information

Compactness Theorems for Saddle Surfaces in Metric Spaces of Bounded Curvature. Dimitrios E. Kalikakis

Compactness Theorems for Saddle Surfaces in Metric Spaces of Bounded Curvature. Dimitrios E. Kalikakis BULLETIN OF THE GREEK MATHEMATICAL SOCIETY Volume 51, 2005 (45 52) Compactness Theorems for Saddle Surfaces in Metric Spaces of Bounded Curvature Dimitrios E. Kalikakis Abstract The notion of a non-regular

More information

Shape Interrogation. 1 Introduction

Shape Interrogation. 1 Introduction Shape Interrogation Stefanie Hahmann 1, Alexander Belyaev 2, Laurent Busé 3, Gershon Elber 4, Bernard Mourrain 3, and Christian Rössl 3 1 Laboratoire Jean Kuntzmann, Institut National Polytechnique de

More information