HW1. Due: September 13, 2018

Size: px
Start display at page:

Download "HW1. Due: September 13, 2018"

Transcription

1 CSCI 1010 Theory of Computation HW1 Due: September 13, 2018 Attach a fully filled-in cover sheet to the front of your printed homework. Your name should not appear anywhere; the cover sheet and each individual page of the homework should include your Banner ID only. While collaboration is encouraged in this class, please remember not to take away notes from any labs or collaboration sessions. Please monitor Piazza, as we will post clarifications of questions there. Hand in your solutions by 10:20am to the CSCI 1010 bin on the second floor of the CIT. Late homeworks are not accepted. Problem 1 This problem uses the logical symbols representing AND, representing OR, and representing NOT. Conjunctive Normal Form (CNF) is a particular way of writing Boolean formulas that will be used in this course. We define it constructively: 1. A literal is a variable or its complement. x i and x i are examples of literals. 2. A clause is any disjunction (that is, OR) of any number of literals. A literal by itself is also a clause. 3. A formula is in conjunctive normal form if it is the conjunction (that is, AND) of any number of clauses. As an example, the formula (x 1 x 3 ) ( x 1 x 2 ) x 2 is in CNF. Using the above definition, convert the following formulas into equivalent formulas in conjunctive normal form. We say that two formulas are equivalent if they evaluate to the same truth value for each assignment of the variables (i.e., no matter how the variables are assigned true or false, the two formulas either both evaluate to true or both evaluate to false). a. (x 1 x 2 ) ( x 1 x 3 x 4 ) x 2

2 b. (x 1 (x 2 x 3 )) x 2 c. (x 1 x 2 ) x 3 d. (x 1 x 2 ) (x 2 x 3 ) (For parts (c) and (d), recall that denotes exclusive-or, where x 1 x 2 = (x 1 x 2 ) (x 1 x 2 ); denotes implies, where x 1 x 2 = x 1 x 2 ; and denotes if-and-only-if, where x 1 x 2 = (x 1 x 2 ) (x 2 x 1 ).) Problem 2 Oh no! The ClueFinders have wound up in trouble. The numbers 1 through n, which are attached to fire traps, will be arbitrarily arranged along a circle around them. In order to escape, the ClueFinders must find 4 numbers that appear consecutively along the circle that have a sum greater than or equal to 2n+2. Prove that, no matter how the numbers are arranged along the circle, the ClueFinders will be able to escape. Problem 3 You are playing a variant of the well-known game Snake, and start to notice a pattern in the snake s coloring. A snake contains squares arranged in a straight line (unlike regular Snake, the snake does not bend), and each square is colored either dark purple or light blue. In addition, the first square (the head) must be dark purple, and the last square must be light blue. The figure below shows an example of a snake. Prove that, in any snake, there are an odd number of places where consecutive squares are colored differently. For example, in the figure, there are three pairs of consecutive squares where one square is colored dark purple and the other is colored light blue. (Hint: it might help to think of the snake as a graph where the squares are vertices and consecutive squares are joined by an edge.) 2

3 The following questions are lab problems. Lab Problem 1 A CS1010 student hops onto their MySpace page and decides to do some graph analysis of their friend connections. They decide to represent people as vertices and friend connections as edges. So, MySpace is represented as a simple graph G = (V,E). First, some terminology: A simple graph is an undirected graph with no self-loops (an edge from a vertex to itself) or multiple edges (more than one edge between the same pair of vertices). A clique is a subset of vertices S V such that u,v S, (u,v) E (if u v). That is, every pair of vertices in S is connected by an edge in E. A vertex cover is a subset of vertices S V such that for any edge (u,v) E, u S or v S. Anindependent setisasubsetofverticess V suchthat u,v S, (u,v) / E. The complement of a simple graph G is the simple graph G = (V,E) on the same vertices such that, for every pair of (distinct) vertices u,v, we have (u,v) E if and only if (u,v) / E. Consider a graph G = (V,E). a. Show that a subset of vertices is an independent set in G if and only if it is a clique in G. b. Show that a subset of vertices S V is an independent set if and only if V \S is a vertex cover. Recall that \ denotes set difference, so V \S is the set of vertices not in S. Lab Problem 2 1. When it was first discovered that there are computational problems that cannot be solved by computers, it was a very surprising result. 3

4 In this problem, we will do a high-level argument of a related result. Gödel showed that there exist true mathematical statements that cannot be proven. Instead of using mathematical statements, we will simply use English sentences. This is the sentence we are trying to prove: There exists a true sentence for which there is no proof. We will argue this by contradiction. 1 That is, we will assume the following statement, then obtain a contradiction: Assumption: All true sentences have proofs. You may assume that any statement for which there exists a proof is true. (Hint: Examine the sentence S = No proof exists for this sentence. Show that given our assumption, if S is true or false, we obtain a contradiction.) 2. In class we looked at the Halting Problem, the problem of determining whether a program P will terminate on an input X. We wanted to know whether a program Jeeves (a mathematical butler) that solves the Halting Problem exists: Jeeves: Input: a program P, an input X Output: Yes if P terminates on X, No if P runs forever We concluded that Jeeves cannot exist, meaning that no program can solve the halting problem. We will now look at another problem that cannot be solved by computers: the problem of deciding the truth value of a sentence. We want to know whether a program TruthSolver exists: TruthSolver: Input: a sentence S Output: True if S is true, False if S is false 1 We are being informal here, because we have not given a mathematical formalization of the statement we are trying to prove. 4

5 Argue that TruthSolver cannot exist, by first showing that if we had a TruthSolver, we could use it to build a Jeeves. Then argue that since Jeeves cannot exist, TruthSolver cannot exist. (Hint: Jeeves will use TruthSolver as a subroutine. What kind of statement should it give as input?) Lab Problem 3 GLaDOS has just offered you a two-dimensional cake. While the cake is a lie, the claim that GLaDOS makes is true: if the cake is cut n times (each cut is a straight line), then each resulting slice of cake can be frosted with a different color than its adjacent slices (two slices are adjacent if they meet at an edge; they are not adjacent if they only touch at a corner). Here s the catch you only have two colors of frosting. Prove that you can frost the cake in this way, regardless of where the cuts are made. Here is an example of a valid frosting: 5

Computability Theory

Computability Theory CS:4330 Theory of Computation Spring 2018 Computability Theory Other NP-Complete Problems Haniel Barbosa Readings for this lecture Chapter 7 of [Sipser 1996], 3rd edition. Sections 7.4 and 7.5. The 3SAT

More information

1. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

1. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time: 1. Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time: Input: A CNF formula ϕ with n variables x 1, x 2,..., x n. Output: True if there is an

More information

W4231: Analysis of Algorithms

W4231: Analysis of Algorithms W4231: Analysis of Algorithms 11/23/99 NP-completeness of 3SAT, Minimum Vertex Cover, Maximum Independent Set, Boolean Formulae A Boolean formula is an expression that we can build starting from Boolean

More information

NP-Complete Reductions 2

NP-Complete Reductions 2 x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 CS 447 11 13 21 23 31 33 Algorithms NP-Complete Reductions 2 Prof. Gregory Provan Department of Computer Science University College Cork 1 Lecture Outline NP-Complete

More information

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics 400 lecture note #4 [Ch 6] Set Theory 1. Basic Concepts and Definitions 1) Basics Element: ; A is a set consisting of elements x which is in a/another set S such that P(x) is true. Empty set: notated {

More information

Midterm 2 Solutions. CS70 Discrete Mathematics and Probability Theory, Spring 2009

Midterm 2 Solutions. CS70 Discrete Mathematics and Probability Theory, Spring 2009 CS70 Discrete Mathematics and Probability Theory, Spring 2009 Midterm 2 Solutions Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature, and sometimes

More information

Homework 4 Solutions

Homework 4 Solutions CS3510 Design & Analysis of Algorithms Section A Homework 4 Solutions Uploaded 4:00pm on Dec 6, 2017 Due: Monday Dec 4, 2017 This homework has a total of 3 problems on 4 pages. Solutions should be submitted

More information

1 Algorithm and Proof for Minimum Vertex Coloring

1 Algorithm and Proof for Minimum Vertex Coloring Solutions to Homework 7, CS 173A (Fall 2018) Homework 7 asked you to show that the construction problems Maximum Independent Set, Minimum Vertex Coloring, and Maximum Clique could all be solved in polynomial

More information

1. Chapter 1, # 1: Prove that for all sets A, B, C, the formula

1. Chapter 1, # 1: Prove that for all sets A, B, C, the formula Homework 1 MTH 4590 Spring 2018 1. Chapter 1, # 1: Prove that for all sets,, C, the formula ( C) = ( ) ( C) is true. Proof : It suffices to show that ( C) ( ) ( C) and ( ) ( C) ( C). ssume that x ( C),

More information

Best known solution time is Ω(V!) Check every permutation of vertices to see if there is a graph edge between adjacent vertices

Best known solution time is Ω(V!) Check every permutation of vertices to see if there is a graph edge between adjacent vertices Hard Problems Euler-Tour Problem Undirected graph G=(V,E) An Euler Tour is a path where every edge appears exactly once. The Euler-Tour Problem: does graph G have an Euler Path? Answerable in O(E) time.

More information

Lecture 5: Graphs. Graphs! Euler Definitions: model. Fact! Euler Again!! Planar graphs. Euler Again!!!!

Lecture 5: Graphs. Graphs! Euler Definitions: model. Fact! Euler Again!! Planar graphs. Euler Again!!!! Lecture 5: Graphs. Graphs! Euler Definitions: model. Fact! Euler Again!! Planar graphs. Euler Again!!!! Konigsberg bridges problem. Can you make a tour visiting each bridge exactly once? Konigsberg bridges

More information

2SAT Andreas Klappenecker

2SAT Andreas Klappenecker 2SAT Andreas Klappenecker The Problem Can we make the following boolean formula true? ( x y) ( y z) (z y)! Terminology A boolean variable is a variable that can be assigned the values true (T) or false

More information

NP-Completeness. Algorithms

NP-Completeness. Algorithms NP-Completeness Algorithms The NP-Completeness Theory Objective: Identify a class of problems that are hard to solve. Exponential time is hard. Polynomial time is easy. Why: Do not try to find efficient

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information

An Introduction to Graph Theory

An Introduction to Graph Theory An Introduction to Graph Theory Evelyne Smith-Roberge University of Waterloo March 22, 2017 What is a graph? Definition A graph G is: a set V (G) of objects called vertices together with: a set E(G), of

More information

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60 CPS 102: Discrete Mathematics Instructor: Bruce Maggs Quiz 3 Date: Wednesday November 30, 2011 NAME: Prob # Score Max Score 1 10 2 10 3 10 4 10 5 10 6 10 Total 60 1 Problem 1 [10 points] Find a minimum-cost

More information

CS70 - Lecture 6. Graphs: Coloring; Special Graphs. 1. Review of L5 2. Planar Five Color Theorem 3. Special Graphs:

CS70 - Lecture 6. Graphs: Coloring; Special Graphs. 1. Review of L5 2. Planar Five Color Theorem 3. Special Graphs: CS70 - Lecture 6 Graphs: Coloring; Special Graphs 1. Review of L5 2. Planar Five Color Theorem 3. Special Graphs: Trees: Three characterizations Hypercubes: Strongly connected! Administration You need

More information

Some Hardness Proofs

Some Hardness Proofs Some Hardness Proofs Magnus Lie Hetland January 2011 This is a very brief overview of some well-known hard (NP Hard and NP complete) problems, and the main ideas behind their hardness proofs. The document

More information

A graph is a mathematical structure for representing relationships.

A graph is a mathematical structure for representing relationships. Graphs Part Two A graph is a mathematical structure for representing relationships. Nodes A graph consists of a set of nodes (or vertices) connected by edges (or arcs) A graph is a mathematical structure

More information

Computer Science 280 Fall 2002 Homework 10 Solutions

Computer Science 280 Fall 2002 Homework 10 Solutions Computer Science 280 Fall 2002 Homework 10 Solutions Part A 1. How many nonisomorphic subgraphs does W 4 have? W 4 is the wheel graph obtained by adding a central vertex and 4 additional "spoke" edges

More information

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE Professor Kindred Math 104, Graph Theory Homework 2 Solutions February 7, 2013 Introduction to Graph Theory, West Section 1.2: 26, 38, 42 Section 1.3: 14, 18 Section 2.1: 26, 29, 30 DO NOT RE-DISTRIBUTE

More information

8 NP-complete problem Hard problems: demo

8 NP-complete problem Hard problems: demo Ch8 NPC Millennium Prize Problems http://en.wikipedia.org/wiki/millennium_prize_problems 8 NP-complete problem Hard problems: demo NP-hard (Non-deterministic Polynomial-time hard), in computational complexity

More information

HW Graph Theory SOLUTIONS (hbovik) - Q

HW Graph Theory SOLUTIONS (hbovik) - Q 1, Diestel 9.3: An arithmetic progression is an increasing sequence of numbers of the form a, a+d, a+ d, a + 3d.... Van der Waerden s theorem says that no matter how we partition the natural numbers into

More information

Example of a Demonstration that a Problem is NP-Complete by reduction from CNF-SAT

Example of a Demonstration that a Problem is NP-Complete by reduction from CNF-SAT 20170926 CNF-SAT: CNF-SAT is a problem in NP, defined as follows: Let E be a Boolean expression with m clauses and n literals (literals = variables, possibly negated), in which - each clause contains only

More information

1 Definition of Reduction

1 Definition of Reduction 1 Definition of Reduction Problem A is reducible, or more technically Turing reducible, to problem B, denoted A B if there a main program M to solve problem A that lacks only a procedure to solve problem

More information

NP-complete Reductions

NP-complete Reductions NP-complete Reductions 1. Prove that 3SAT P DOUBLE-SAT, i.e., show DOUBLE-SAT is NP-complete by reduction from 3SAT. The 3-SAT problem consists of a conjunction of clauses over n Boolean variables, where

More information

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE Professor Kindred Math 104, Graph Theory Homework 3 Solutions February 14, 2013 Introduction to Graph Theory, West Section 2.1: 37, 62 Section 2.2: 6, 7, 15 Section 2.3: 7, 10, 14 DO NOT RE-DISTRIBUTE

More information

K 4 C 5. Figure 4.5: Some well known family of graphs

K 4 C 5. Figure 4.5: Some well known family of graphs 08 CHAPTER. TOPICS IN CLASSICAL GRAPH THEORY K, K K K, K K, K K, K C C C C 6 6 P P P P P. Graph Operations Figure.: Some well known family of graphs A graph Y = (V,E ) is said to be a subgraph of a graph

More information

(a) (4 pts) Prove that if a and b are rational, then ab is rational. Since a and b are rational they can be written as the ratio of integers a 1

(a) (4 pts) Prove that if a and b are rational, then ab is rational. Since a and b are rational they can be written as the ratio of integers a 1 CS 70 Discrete Mathematics for CS Fall 2000 Wagner MT1 Sol Solutions to Midterm 1 1. (16 pts.) Theorems and proofs (a) (4 pts) Prove that if a and b are rational, then ab is rational. Since a and b are

More information

CMPSCI611: The SUBSET-SUM Problem Lecture 18

CMPSCI611: The SUBSET-SUM Problem Lecture 18 CMPSCI611: The SUBSET-SUM Problem Lecture 18 We begin today with the problem we didn t get to at the end of last lecture the SUBSET-SUM problem, which we also saw back in Lecture 8. The input to SUBSET-

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 7

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 7 CS 70 Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 7 An Introduction to Graphs A few centuries ago, residents of the city of Königsberg, Prussia were interested in a certain problem.

More information

CS446: Machine Learning Fall Problem Set 4. Handed Out: October 17, 2013 Due: October 31 th, w T x i w

CS446: Machine Learning Fall Problem Set 4. Handed Out: October 17, 2013 Due: October 31 th, w T x i w CS446: Machine Learning Fall 2013 Problem Set 4 Handed Out: October 17, 2013 Due: October 31 th, 2013 Feel free to talk to other members of the class in doing the homework. I am more concerned that you

More information

GRAPH THEORY: AN INTRODUCTION

GRAPH THEORY: AN INTRODUCTION GRAPH THEORY: AN INTRODUCTION BEGINNERS 3/4/2018 1. GRAPHS AND THEIR PROPERTIES A graph G consists of two sets: a set of vertices V, and a set of edges E. A vertex is simply a labeled point. An edge is

More information

Notebook Assignments

Notebook Assignments Notebook Assignments These six assignments are a notebook using techniques from class in the single concrete context of graph theory. This is supplemental to your usual assignments, and is designed for

More information

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch]

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch] NP Completeness Andreas Klappenecker [partially based on slides by Jennifer Welch] Overview We already know the following examples of NPC problems: SAT 3SAT We are going to show that the following are

More information

Reductions and Satisfiability

Reductions and Satisfiability Reductions and Satisfiability 1 Polynomial-Time Reductions reformulating problems reformulating a problem in polynomial time independent set and vertex cover reducing vertex cover to set cover 2 The Satisfiability

More information

NP-Completeness of 3SAT, 1-IN-3SAT and MAX 2SAT

NP-Completeness of 3SAT, 1-IN-3SAT and MAX 2SAT NP-Completeness of 3SAT, 1-IN-3SAT and MAX 2SAT 3SAT The 3SAT problem is the following. INSTANCE : Given a boolean expression E in conjunctive normal form (CNF) that is the conjunction of clauses, each

More information

Reductions. Linear Time Reductions. Desiderata. Reduction. Desiderata. Classify problems according to their computational requirements.

Reductions. Linear Time Reductions. Desiderata. Reduction. Desiderata. Classify problems according to their computational requirements. Desiderata Reductions Desiderata. Classify problems according to their computational requirements. Frustrating news. Huge number of fundamental problems have defied classification for decades. Desiderata'.

More information

Diagonalization. The cardinality of a finite set is easy to grasp: {1,3,4} = 3. But what about infinite sets?

Diagonalization. The cardinality of a finite set is easy to grasp: {1,3,4} = 3. But what about infinite sets? Diagonalization Cardinalities The cardinality of a finite set is easy to grasp: {1,3,4} = 3. But what about infinite sets? We say that a set S has at least as great cardinality as set T, written S T, if

More information

CS40-S13: Functional Completeness

CS40-S13: Functional Completeness CS40-S13: Functional Completeness Victor Amelkin victor@cs.ucsb.edu April 12, 2013 In class, we have briefly discussed what functional completeness means and how to prove that a certain system (a set)

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 6 Basic concepts and definitions of graph theory By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

Angles of Polygons. Essential Question What is the sum of the measures of the interior angles of a polygon?

Angles of Polygons. Essential Question What is the sum of the measures of the interior angles of a polygon? 7.1 Angles of Polygons Essential Question What is the sum of the measures of the interior angles of a polygon? The Sum of the Angle Measures of a Polygon Work with a partner. Use dynamic geometry software.

More information

Finding a winning strategy in variations of Kayles

Finding a winning strategy in variations of Kayles Finding a winning strategy in variations of Kayles Simon Prins ICA-3582809 Utrecht University, The Netherlands July 15, 2015 Abstract Kayles is a two player game played on a graph. The game can be dened

More information

Mathematics Masters Examination

Mathematics Masters Examination Mathematics Masters Examination OPTION 4 Fall 2011 COMPUTER SCIENCE??TIME?? NOTE: Any student whose answers require clarification may be required to submit to an oral examination. Each of the twelve numbered

More information

Homework 1 CS 1050 A Due:

Homework 1 CS 1050 A Due: 9-4-08 Homework 1 CS 1050 A Due: 9-11-08 Every assignment will be due at the beginning of class. Recall that you can collaborate in groups and/or use external references, but you must acknowledge the group/references

More information

Discrete Mathematics Introduction

Discrete Mathematics Introduction Discrete Mathematics Introduction Saad Mneimneh 1 Introduction College mathematics will often focus on calculus, and while it is true that calculus is the most important field that started modern mathematics,

More information

Chapter 8. NP-complete problems

Chapter 8. NP-complete problems Chapter 8. NP-complete problems Search problems E cient algorithms We have developed algorithms for I I I I I finding shortest paths in graphs, minimum spanning trees in graphs, matchings in bipartite

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Final exam The final exam is Saturday December 16 11:30am-2:30pm. Lecture A will take the exam in Lecture B will take the exam

More information

9.1 Cook-Levin Theorem

9.1 Cook-Levin Theorem CS787: Advanced Algorithms Scribe: Shijin Kong and David Malec Lecturer: Shuchi Chawla Topic: NP-Completeness, Approximation Algorithms Date: 10/1/2007 As we ve already seen in the preceding lecture, two

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 208 https://www-m0.ma.tum.de/bin/view/lehre/ss8/pgss8/webhome Solutions for

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.2 Direct Proof and Counterexample II: Rational Numbers Copyright Cengage Learning. All

More information

CS February 17

CS February 17 Discrete Mathematics CS 26 February 7 Equal Boolean Functions Two Boolean functions F and G of degree n are equal iff for all (x n,..x n ) B, F (x,..x n ) = G (x,..x n ) Example: F(x,y,z) = x(y+z), G(x,y,z)

More information

Standard Boolean Forms

Standard Boolean Forms Standard Boolean Forms In this section, we develop the idea of standard forms of Boolean expressions. In part, these forms are based on some standard Boolean simplification rules. Standard forms are either

More information

Ma/CS 6b Class 26: Art Galleries and Politicians

Ma/CS 6b Class 26: Art Galleries and Politicians Ma/CS 6b Class 26: Art Galleries and Politicians By Adam Sheffer The Art Gallery Problem Problem. We wish to place security cameras at a gallery, such that they cover it completely. Every camera can cover

More information

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W.

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W. : Coping with NP-Completeness Course contents: Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems Reading: Chapter 34 Chapter 35.1, 35.2 Y.-W. Chang 1 Complexity

More information

Problem Set 1. Solution. CS4234: Optimization Algorithms. Solution Sketches

Problem Set 1. Solution. CS4234: Optimization Algorithms. Solution Sketches CS4234: Optimization Algorithms Sketches Problem Set 1 S-1. You are given a graph G = (V, E) with n nodes and m edges. (Perhaps the graph represents a telephone network.) Each edge is colored either blue

More information

Math 485, Graph Theory: Homework #3

Math 485, Graph Theory: Homework #3 Math 485, Graph Theory: Homework #3 Stephen G Simpson Due Monday, October 26, 2009 The assignment consists of Exercises 2129, 2135, 2137, 2218, 238, 2310, 2313, 2314, 2315 in the West textbook, plus the

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand Midterm 1

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand Midterm 1 CS 70 Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand Midterm 1 PRINT Your Name:, (last) READ AND SIGN The Honor Code: As a member of the UC Berkeley community, I act with honesty,

More information

Section 1.4 Proving Conjectures: Deductive Reasoning

Section 1.4 Proving Conjectures: Deductive Reasoning Section 1.4 Proving Conjectures: Deductive Reasoning May 9 10:15 AM 1 Definition: Proof: A mathematical argument showing that a statement is valid in all cases, or that no counterexample exists. Generalization:

More information

CS261: Problem Set #1

CS261: Problem Set #1 CS261: Problem Set #1 Due by 11:59 PM on Tuesday, April 21, 2015 Instructions: (1) Form a group of 1-3 students. You should turn in only one write-up for your entire group. (2) Turn in your solutions by

More information

Senior Math Circles November 25, 2009 Graph Theory II

Senior Math Circles November 25, 2009 Graph Theory II University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Senior Math Circles November 5, 009 Graph Theory II Planar Graphs A graph that can be drawn in R without

More information

Graph Theory: Introduction

Graph Theory: Introduction Graph Theory: Introduction Pallab Dasgupta, Professor, Dept. of Computer Sc. and Engineering, IIT Kharagpur pallab@cse.iitkgp.ernet.in Resources Copies of slides available at: http://www.facweb.iitkgp.ernet.in/~pallab

More information

Homework 1. Due Date: Wednesday 11/26/07 - at the beginning of the lecture

Homework 1. Due Date: Wednesday 11/26/07 - at the beginning of the lecture Homework 1 Due Date: Wednesday 11/26/07 - at the beginning of the lecture Problems marked with a [*] are a littlebit harder and count as extra credit. Note 1. For any of the given problems make sure that

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Question 1. Incidence matrix with gaps Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 2016 www-m10.ma.tum.de/projektivegeometriess16

More information

Material from Recitation 1

Material from Recitation 1 Material from Recitation 1 Darcey Riley Frank Ferraro January 18, 2011 1 Introduction In CSC 280 we will be formalizing computation, i.e. we will be creating precise mathematical models for describing

More information

Pebble Sets in Convex Polygons

Pebble Sets in Convex Polygons 2 1 Pebble Sets in Convex Polygons Kevin Iga, Randall Maddox June 15, 2005 Abstract Lukács and András posed the problem of showing the existence of a set of n 2 points in the interior of a convex n-gon

More information

Recursively Enumerable Languages, Turing Machines, and Decidability

Recursively Enumerable Languages, Turing Machines, and Decidability Recursively Enumerable Languages, Turing Machines, and Decidability 1 Problem Reduction: Basic Concepts and Analogies The concept of problem reduction is simple at a high level. You simply take an algorithm

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Final exam The final exam is Saturday March 18 8am-11am. Lecture A will take the exam in GH 242 Lecture B will take the exam

More information

Week 8: The fundamentals of graph theory; Planar Graphs 25 and 27 October, 2017

Week 8: The fundamentals of graph theory; Planar Graphs 25 and 27 October, 2017 (1/25) MA284 : Discrete Mathematics Week 8: The fundamentals of graph theory; Planar Graphs 25 and 27 October, 2017 1 Definitions 1. A graph 2. Paths and connected graphs 3. Complete graphs 4. Vertex degree

More information

Final Exam May 8, 2018

Final Exam May 8, 2018 Real name: CS/ECE 374 A Spring 2018 Final Exam May 8, 2018 NetID: Gradescope name: Gradescope email: Don t panic! If you brought anything except your writing implements and your two double-sided 8½" 11"

More information

CSC 501 Semantics of Programming Languages

CSC 501 Semantics of Programming Languages CSC 501 Semantics of Programming Languages Subtitle: An Introduction to Formal Methods. Instructor: Dr. Lutz Hamel Email: hamel@cs.uri.edu Office: Tyler, Rm 251 Books There are no required books in this

More information

CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh HW#3 Due at the beginning of class Thursday 02/26/15

CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh HW#3 Due at the beginning of class Thursday 02/26/15 CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh (rezab@stanford.edu) HW#3 Due at the beginning of class Thursday 02/26/15 1. Consider a model of a nonbipartite undirected graph in which

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

Bipartite Roots of Graphs

Bipartite Roots of Graphs Bipartite Roots of Graphs Lap Chi Lau Department of Computer Science University of Toronto Graph H is a root of graph G if there exists a positive integer k such that x and y are adjacent in G if and only

More information

CS2 Algorithms and Data Structures Note 10. Depth-First Search and Topological Sorting

CS2 Algorithms and Data Structures Note 10. Depth-First Search and Topological Sorting CS2 Algorithms and Data Structures Note 10 Depth-First Search and Topological Sorting In this lecture, we will analyse the running time of DFS and discuss a few applications. 10.1 A recursive implementation

More information

NP and computational intractability. Kleinberg and Tardos, chapter 8

NP and computational intractability. Kleinberg and Tardos, chapter 8 NP and computational intractability Kleinberg and Tardos, chapter 8 1 Major Transition So far we have studied certain algorithmic patterns Greedy, Divide and conquer, Dynamic programming to develop efficient

More information

MC302 GRAPH THEORY SOLUTIONS TO HOMEWORK #1 9/19/13 68 points + 6 extra credit points

MC302 GRAPH THEORY SOLUTIONS TO HOMEWORK #1 9/19/13 68 points + 6 extra credit points MC02 GRAPH THEORY SOLUTIONS TO HOMEWORK #1 9/19/1 68 points + 6 extra credit points 1. [CH] p. 1, #1... a. In each case, for the two graphs you say are isomorphic, justify it by labeling their vertices

More information

Instructor: Paul Zeitz, University of San Francisco

Instructor: Paul Zeitz, University of San Francisco Berkeley Math Circle Graph Theory and Ramsey Theory Instructor: Paul Zeitz, University of San Francisco (zeitz@usfca.edu) Definitions 1 A graph is a pair (V,E), where V is a finite set and E is a set of

More information

CPSC 121 Some Sample Questions for the Final Exam Tuesday, April 15, 2014, 8:30AM

CPSC 121 Some Sample Questions for the Final Exam Tuesday, April 15, 2014, 8:30AM CPSC 121 Some Sample Questions for the Final Exam Tuesday, April 15, 2014, 8:30AM Name: Student ID: Signature: Section (circle one): George Steve Your signature acknowledges your understanding of and agreement

More information

Solutions for the Exam 6 January 2014

Solutions for the Exam 6 January 2014 Mastermath and LNMB Course: Discrete Optimization Solutions for the Exam 6 January 2014 Utrecht University, Educatorium, 13:30 16:30 The examination lasts 3 hours. Grading will be done before January 20,

More information

An Eternal Domination Problem in Grids

An Eternal Domination Problem in Grids Theory and Applications of Graphs Volume Issue 1 Article 2 2017 An Eternal Domination Problem in Grids William Klostermeyer University of North Florida, klostermeyer@hotmail.com Margaret-Ellen Messinger

More information

Definition: A graph G = (V, E) is called a tree if G is connected and acyclic. The following theorem captures many important facts about trees.

Definition: A graph G = (V, E) is called a tree if G is connected and acyclic. The following theorem captures many important facts about trees. Tree 1. Trees and their Properties. Spanning trees 3. Minimum Spanning Trees 4. Applications of Minimum Spanning Trees 5. Minimum Spanning Tree Algorithms 1.1 Properties of Trees: Definition: A graph G

More information

BOOLEAN ALGEBRA AND CIRCUITS

BOOLEAN ALGEBRA AND CIRCUITS UNIT 3 Structure BOOLEAN ALGEBRA AND CIRCUITS Boolean Algebra and 3. Introduction 3. Objectives 3.2 Boolean Algebras 3.3 Logic 3.4 Boolean Functions 3.5 Summary 3.6 Solutions/ Answers 3. INTRODUCTION This

More information

P Is Not Equal to NP. ScholarlyCommons. University of Pennsylvania. Jon Freeman University of Pennsylvania. October 1989

P Is Not Equal to NP. ScholarlyCommons. University of Pennsylvania. Jon Freeman University of Pennsylvania. October 1989 University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science October 1989 P Is Not Equal to NP Jon Freeman University of Pennsylvania Follow this and

More information

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism CHAPTER 2 Graphs 1. Introduction to Graphs and Graph Isomorphism 1.1. The Graph Menagerie. Definition 1.1.1. A simple graph G = (V, E) consists of a set V of vertices and a set E of edges, represented

More information

Partitions and Packings of Complete Geometric Graphs with Plane Spanning Double Stars and Paths

Partitions and Packings of Complete Geometric Graphs with Plane Spanning Double Stars and Paths Partitions and Packings of Complete Geometric Graphs with Plane Spanning Double Stars and Paths Master Thesis Patrick Schnider July 25, 2015 Advisors: Prof. Dr. Emo Welzl, Manuel Wettstein Department of

More information

Graph Theory Questions from Past Papers

Graph Theory Questions from Past Papers Graph Theory Questions from Past Papers Bilkent University, Laurence Barker, 19 October 2017 Do not forget to justify your answers in terms which could be understood by people who know the background theory

More information

COMS 1003 Fall Introduction to Computer Programming in C. Bits, Boolean Logic & Discrete Math. September 13 th

COMS 1003 Fall Introduction to Computer Programming in C. Bits, Boolean Logic & Discrete Math. September 13 th COMS 1003 Fall 2005 Introduction to Computer Programming in C Bits, Boolean Logic & Discrete Math September 13 th Hello World! Logistics See the website: http://www.cs.columbia.edu/~locasto/ Course Web

More information

Extra Practice Problems 2

Extra Practice Problems 2 CS103 Handout 31 Fall 2018 October 29, 2018 Extra Practice Problems 2 Here's a set of a bunch of practice problems you can work through to solidify your understanding of the topics from Problem Sets Three,

More information

Math236 Discrete Maths with Applications

Math236 Discrete Maths with Applications Math236 Discrete Maths with Applications P. Ittmann UKZN, Pietermaritzburg Semester 1, 2012 Ittmann (UKZN PMB) Math236 2012 1 / 19 Degree Sequences Let G be a graph with vertex set V (G) = {v 1, v 2, v

More information

Logic: The Big Picture. Axiomatizing Arithmetic. Tautologies and Valid Arguments. Graphs and Trees

Logic: The Big Picture. Axiomatizing Arithmetic. Tautologies and Valid Arguments. Graphs and Trees Axiomatizing Arithmetic Logic: The Big Picture Suppose we restrict the domain to the natural numbers, and allow only the standard symbols of arithmetic (+,, =, >, 0, 1). Typical true formulas include:

More information

Angles Formed by Intersecting Lines

Angles Formed by Intersecting Lines 1 3 Locker LESSON 19.1 Angles Formed by Intersecting Lines Common Core Math Standards The student is expected to: G-CO.9 Prove theorems about lines and angles. Mathematical Practices MP.3 Logic Name Class

More information

Module 11. Directed Graphs. Contents

Module 11. Directed Graphs. Contents Module 11 Directed Graphs Contents 11.1 Basic concepts......................... 256 Underlying graph of a digraph................ 257 Out-degrees and in-degrees.................. 258 Isomorphism..........................

More information

Discrete structures - CS Fall 2017 Questions for chapter 2.1 and 2.2

Discrete structures - CS Fall 2017 Questions for chapter 2.1 and 2.2 Discrete structures - CS1802 - Fall 2017 Questions for chapter 2.1 and 2.2 1. (a) For the following switch diagrams, write the corresponding truth table and decide whether they correspond to one of the

More information

2. Draw a non-isosceles triangle. Now make a template of this triangle out of cardstock or cardboard.

2. Draw a non-isosceles triangle. Now make a template of this triangle out of cardstock or cardboard. Tessellations The figure at the left shows a tiled floor. Because the floor is entirely covered by the tiles we call this arrangement a tessellation of the plane. A regular tessellation occurs when: The

More information

Lecture 2: NP-Completeness

Lecture 2: NP-Completeness NP and Latin Squares Instructor: Padraic Bartlett Lecture 2: NP-Completeness Week 4 Mathcamp 2014 In our last class, we introduced the complexity classes P and NP. To motivate why we grouped all of NP

More information

CS264: Homework #4. Due by midnight on Wednesday, October 22, 2014

CS264: Homework #4. Due by midnight on Wednesday, October 22, 2014 CS264: Homework #4 Due by midnight on Wednesday, October 22, 2014 Instructions: (1) Form a group of 1-3 students. You should turn in only one write-up for your entire group. (2) Turn in your solutions

More information

Notes for Recitation 8

Notes for Recitation 8 6.04/8.06J Mathematics for Computer Science October 5, 00 Tom Leighton and Marten van Dijk Notes for Recitation 8 Build-up error Recall a graph is connected iff there is a path between every pair of its

More information

11.4 Bipartite Multigraphs

11.4 Bipartite Multigraphs 11.4 Bipartite Multigraphs Introduction Definition A graph G is bipartite if we can partition the vertices into two disjoint subsets U and V such that every edge of G has one incident vertex in U and the

More information