Math 5801 General Topology and Knot Theory

Size: px
Start display at page:

Download "Math 5801 General Topology and Knot Theory"

Transcription

1 Lecture 23-10/17/2012 Math 5801 Ohio State University October 17, 2012 Course Info Reading for Friday, October 19 Chapter 3.26, pgs HW 8 for Monday, October 22 Chapter 2.24: 3, 5a-d, 8a-d, 12a-f (see pg. 66 for required definitions) Chapter 2.25: 1, 2a-c

2 Connectedness How does path connectedness relate to connectedness? Proposition 217 (Path connected implies connected) If X is a path connected space then X is connected. Proof. Fix x0 X for each x X let fx : [0, 1] X be a path from x0 to x. X = x X fx([0, 1]) is a union of connected sets. What about the other direction? Connectedness Proposition 218 (Connected does not imply path connected) There is a space which is connected but not path connected. Example 219 (Ordered square is connected but not path connected) Let I 2 o = I I with dictionary order topology. I 2 o is a linear continuum and hence connected. Suppose f : [0, 1] I 2 o is continuous and satisfies f (0) = (0, 0) and f (1) = (1, 1) For each r [0, 1] the set {r} ( 1 3, 2 3 ) is open so f 1 ({r} ( 1 3, 2 3 )) is open in [0, 1]. Thus it contains some q Q [0, 1]. Thus π1 f is a surjection from countable Q [0, 1] to uncountable [0, 1]. Contradiction.

3 Connectedness Example 220 (Topologist s sine curve) Let X R 2 be the following subspace U = {(x, sin( 1 x )) x > 0} V = {(0, y) 0 y 1} X = U V U is path connected and hence connected. U X U so X is connected. No path can connect (0, y) to (1, sin 1). Suppose f : [0, 1] X is a path from (0, y) to (1, sin 1) with f (t) = (x(t), y(t)). Assume x(0) = 0 and x(t) > 0 for t > 0 otherwise restrict f to smaller domain. Choose (tn)n Z+ to be a sequence in I with y(tn) = ( 1) n and tn 0 f cannot be continuous. Definition 221 ( of a space) Let X be topological space. For each x, y X set x c y if X has a connected subset A with x, y A. A component of X is an equivalence class of c. Why is c transitive? Definition 222 (Path components of a space) Let X be topological space. For each x, y X set x p y if X if there is a path in X from x to y. A path component of X is an equivalence class of p. Why is p transitive?

4 Definition 223 (Concatenation of paths) Let f, g : I X be paths in X such that f (1) = g(0). The concatenation of f and g is the path f g : I X where { f (2t), 0 t 1 f g(t) = 2 1 g(2t 1), 2 t 1 Proposition 224 (Path components of a space) If f, g : I X are paths in X such that f (1) = g(0) then f g is a path in X from f (0) to g(1). Proof. f cont. and t 2t cont. so t f (2t) cont. g cont. and t 2t 1 cont. so t g(2t 1) cont. Gluing lemma gives f g cont. Examples 225 ( and path components) 1. of Q are single points. Suppose a, b A Q and a b. Let m = 2 a + (1 2 )b 2 2 Let U = {x A x < m} and V = {x A x > m}. Then U and V give a separation of A. 2. Path components of Q are single points. Each path component of a space X must be contained in a component of X Single points are path connected. 3. of topologists s sine curve X from Example 220 are the space X since X is connected. 4. Path components of topologists s sine curve X are the space are the sets U and V from Example 220.

5 Definition 226 (Locally connected) A topological space X is locally connected if for all x X and every open neighborhood Ux of x there is a connected neighborhood Vx of x with Vx Ux. Definition 227 (Locally path connected) A topological space X is locally path connected if for all x X and every open neighborhood Ux of x there is a path connected neighborhood Vx of x with Vx Ux. Examples 228 (Local connectivity) 1. Q is not locally connected or locally path connected. 2. [ ] 1 n Z+ 2n+1, 1 2n R is locally path connected. 3. {0} [ ] 1 n Z+ 2n+1, 1 2n R is not locally path connected. 4. Topologist s sine curve is not locally connected (hence not locally path connected). 5. R Q is not locally connected or locally path connected. 6. R 2 Q 2 is locally path connected.

6 Proposition 229 A space X is locally connected if and only if for every open subset U X each component of U is open in X. Proof. Suppose X is locally connected. Let U X be open. Let C U be a component of U. Let x C. x has a connected open nbdh Vx U. By definition of component Vx C. Thus C = x C Vx is open. Suppose for every open subset U X each component of U is open in X. Let U X be open. Let C U be the component of x U. C is a connected open neighborhood of x contained in U. Proposition 230 A space X is locally path connected if and only if for every open subset U X each path component of U is open in X. Proposition 231 If X is locally path connected then its components are also path components.

7 Intermediate Value Theorem for R lead us to notion of connectedess. Another classic theorem for continuous functions on R is the Maximum Theorem: If f : [a, b] R is continuous then there is y [a, b] s.t. for all x [a, b] we have f (y) f (x). What topological property of [a, b] ensures that continuous images achieve a maximum value? We want a property P such that if X has property P then for any continuous f : X R there is y X such that x X, f (y) f (x). Note that this property is not shared by R or (a, b). On the other hand it should (probably) be shared by any finite set with the discrete topology. Definition 232 (Cover) A cover of a topological space X is a collection A of subsets of X such that A = X. Definition 233 (Subcover) A subcover of a cover A of a topological space X is a collection S A such that S = X. Definition 234 (Open cover) An open cover of a topological space X is a collection U of open sets such that U = X. Definition 235 (Compact) A topological space X is compact if every open cover of X has a finite subcover.

8 Examples 236 (Noncompact Spaces) Showing that X is not compact only requires an infinite open cover of X which has no finite subcover: 1. R is not compact. For each n Z let Un = (n, n + 4 ). 3 Let U = {Un n Z}. U is an open cover of R since U = R. Let S U be a subcover. For all n Z n + 1 Un and n + 1 / Um for m n Hence for each n Z we have Un S. Thus the only subcover of U is U which is infinite. 2. (0, 1) is not compact. For each n Z+ let Un = ( 1, 1 ). n Let U = {Un n Z+}. 3. Q and Z are not compact. 4. R n is not compact. n+ 4 3 Definition 237 (Cover of a subspace) If A is a subspace of X a collection of set S covers A if A S. Proposition 238 A subspace A X is compact if and only if any covering of A by open sets of X has a finite subcovering.

9 Proposition 239 (Continuous images of compact spaces are compact) If X and Y are spaces and X is compact and f : X Y is continuous then f (X ) is a compact subspace of Y. Proof. Suppose X is compact and f : X Y is continuous Let V be a cover of f (X ) by open sets in Y. Let U = {f 1 (V ) V V}. U is an open cover of X so it has a finite subcover {f 1 (V1),, f 1 (Vn)} So {V1,, Vn} is a finite subcover of f (X ).

Homework Set #2 Math 440 Topology Topology by J. Munkres

Homework Set #2 Math 440 Topology Topology by J. Munkres Homework Set #2 Math 440 Topology Topology by J. Munkres Clayton J. Lungstrum October 26, 2012 Exercise 1. Prove that a topological space X is Hausdorff if and only if the diagonal = {(x, x) : x X} is

More information

T. Background material: Topology

T. Background material: Topology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 T. Background material: Topology For convenience this is an overview of basic topological ideas which will be used in the course. This material

More information

Point-Set Topology II

Point-Set Topology II Point-Set Topology II Charles Staats September 14, 2010 1 More on Quotients Universal Property of Quotients. Let X be a topological space with equivalence relation. Suppose that f : X Y is continuous and

More information

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Definition 1.1. Let X be a set and T a subset of the power set P(X) of X. Then T is a topology on X if and only if all of the following

More information

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions.

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions. THREE LECTURES ON BASIC TOPOLOGY PHILIP FOTH 1. Basic notions. Let X be a set. To make a topological space out of X, one must specify a collection T of subsets of X, which are said to be open subsets of

More information

Math 5801 General Topology and Knot Theory

Math 5801 General Topology and Knot Theory Lecture 13-9/21/2012 Math 5801 Ohio State University September 21, 2012 Course Info Reading for Monday, September 24 Review Chapter 2.19 HW 5 for Monday, September 24 Chapter 2.17: 3, 5, 9, 13 Chapter

More information

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3.

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. 301. Definition. Let m be a positive integer, and let X be a set. An m-tuple of elements of X is a function x : {1,..., m} X. We sometimes use x i instead

More information

Lecture 17: Continuous Functions

Lecture 17: Continuous Functions Lecture 17: Continuous Functions 1 Continuous Functions Let (X, T X ) and (Y, T Y ) be topological spaces. Definition 1.1 (Continuous Function). A function f : X Y is said to be continuous if the inverse

More information

A Little Point Set Topology

A Little Point Set Topology A Little Point Set Topology A topological space is a generalization of a metric space that allows one to talk about limits, convergence, continuity and so on without requiring the concept of a distance

More information

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements.

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. Chapter 1: Metric spaces and convergence. (1.1) Recall the standard distance function

More information

Final Test in MAT 410: Introduction to Topology Answers to the Test Questions

Final Test in MAT 410: Introduction to Topology Answers to the Test Questions Final Test in MAT 410: Introduction to Topology Answers to the Test Questions Stefan Kohl Question 1: Give the definition of a topological space. (3 credits) A topological space (X, τ) is a pair consisting

More information

2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to

2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to 2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to be connected if it is not disconnected. A subset of

More information

Topology I Test 1 Solutions October 13, 2008

Topology I Test 1 Solutions October 13, 2008 Topology I Test 1 Solutions October 13, 2008 1. Do FIVE of the following: (a) Give a careful definition of connected. A topological space X is connected if for any two sets A and B such that A B = X, we

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

In class 75min: 2:55-4:10 Thu 9/30.

In class 75min: 2:55-4:10 Thu 9/30. MATH 4530 Topology. In class 75min: 2:55-4:10 Thu 9/30. Prelim I Solutions Problem 1: Consider the following topological spaces: (1) Z as a subspace of R with the finite complement topology (2) [0, π]

More information

Topology - I. Michael Shulman WOMP 2004

Topology - I. Michael Shulman WOMP 2004 Topology - I Michael Shulman WOMP 2004 1 Topological Spaces There are many different ways to define a topological space; the most common one is as follows: Definition 1.1 A topological space (often just

More information

Math 734 Aug 22, Differential Geometry Fall 2002, USC

Math 734 Aug 22, Differential Geometry Fall 2002, USC Math 734 Aug 22, 2002 1 Differential Geometry Fall 2002, USC Lecture Notes 1 1 Topological Manifolds The basic objects of study in this class are manifolds. Roughly speaking, these are objects which locally

More information

simply ordered sets. We ll state only the result here, since the proof is given in Munkres.

simply ordered sets. We ll state only the result here, since the proof is given in Munkres. p. 1 Math 490 Notes 20 More About Compactness Recall that in Munkres it is proved that a simply (totally) ordered set X with the order topology is connected iff it satisfies: (1) Every subset bounded above

More information

MATH 54 - LECTURE 4 DAN CRYTSER

MATH 54 - LECTURE 4 DAN CRYTSER MATH 54 - LECTURE 4 DAN CRYTSER Introduction In this lecture we review properties and examples of bases and subbases. Then we consider ordered sets and the natural order topology that one can lay on an

More information

4. Definition: topological space, open set, topology, trivial topology, discrete topology.

4. Definition: topological space, open set, topology, trivial topology, discrete topology. Topology Summary Note to the reader. If a statement is marked with [Not proved in the lecture], then the statement was stated but not proved in the lecture. Of course, you don t need to know the proof.

More information

1.7 The Heine-Borel Covering Theorem; open sets, compact sets

1.7 The Heine-Borel Covering Theorem; open sets, compact sets 1.7 The Heine-Borel Covering Theorem; open sets, compact sets This section gives another application of the interval halving method, this time to a particularly famous theorem of analysis, the Heine Borel

More information

Topology Proceedings. COPYRIGHT c by Topology Proceedings. All rights reserved.

Topology Proceedings. COPYRIGHT c by Topology Proceedings. All rights reserved. Topology Proceedings Web: http://topology.auburn.edu/tp/ Mail: Topology Proceedings Department of Mathematics & Statistics Auburn University, Alabama 36849, USA E-mail: topolog@auburn.edu ISSN: 0146-4124

More information

Manifolds (Relates to text Sec. 36)

Manifolds (Relates to text Sec. 36) 22M:132 Fall 07 J. Simon Manifolds (Relates to text Sec. 36) Introduction. Manifolds are one of the most important classes of topological spaces (the other is function spaces). Much of your work in subsequent

More information

Real Analysis, 2nd Edition, G.B.Folland

Real Analysis, 2nd Edition, G.B.Folland Real Analysis, 2nd Edition, G.B.Folland Chapter 4 Point Set Topology Yung-Hsiang Huang 4.1 Topological Spaces 1. If card(x) 2, there is a topology on X that is T 0 but not T 1. 2. If X is an infinite set,

More information

Notes on Topology. Andrew Forrester January 28, Notation 1. 2 The Big Picture 1

Notes on Topology. Andrew Forrester January 28, Notation 1. 2 The Big Picture 1 Notes on Topology Andrew Forrester January 28, 2009 Contents 1 Notation 1 2 The Big Picture 1 3 Fundamental Concepts 2 4 Topological Spaces and Topologies 2 4.1 Topological Spaces.........................................

More information

A Tour of General Topology Chris Rogers June 29, 2010

A Tour of General Topology Chris Rogers June 29, 2010 A Tour of General Topology Chris Rogers June 29, 2010 1. The laundry list 1.1. Metric and topological spaces, open and closed sets. (1) metric space: open balls N ɛ (x), various metrics e.g. discrete metric,

More information

2 A topological interlude

2 A topological interlude 2 A topological interlude 2.1 Topological spaces Recall that a topological space is a set X with a topology: a collection T of subsets of X, known as open sets, such that and X are open, and finite intersections

More information

Elementary Topology. Note: This problem list was written primarily by Phil Bowers and John Bryant. It has been edited by a few others along the way.

Elementary Topology. Note: This problem list was written primarily by Phil Bowers and John Bryant. It has been edited by a few others along the way. Elementary Topology Note: This problem list was written primarily by Phil Bowers and John Bryant. It has been edited by a few others along the way. Definition. properties: (i) T and X T, A topology on

More information

MATH 215B MIDTERM SOLUTIONS

MATH 215B MIDTERM SOLUTIONS MATH 215B MIDTERM SOLUTIONS 1. (a) (6 marks) Show that a finitely generated group has only a finite number of subgroups of a given finite index. (Hint: Do it for a free group first.) (b) (6 marks) Show

More information

Excerpts from. Introduction to Modern Topology and Geometry. Anatole Katok Alexey Sossinsky

Excerpts from. Introduction to Modern Topology and Geometry. Anatole Katok Alexey Sossinsky Excerpts from Introduction to Modern Topology and Geometry Anatole Katok Alexey Sossinsky Contents Chapter 1. BASIC TOPOLOGY 3 1.1. Topological spaces 3 1.2. Continuous maps and homeomorphisms 6 1.3.

More information

H = {(1,0,0,...),(0,1,0,0,...),(0,0,1,0,0,...),...}.

H = {(1,0,0,...),(0,1,0,0,...),(0,0,1,0,0,...),...}. II.4. Compactness 1 II.4. Compactness Note. Conway states on page 20 that the concept of compactness is an extension of benefits of finiteness to infinite sets. I often state this idea as: Compact sets

More information

Topology and Topological Spaces

Topology and Topological Spaces Topology and Topological Spaces Mathematical spaces such as vector spaces, normed vector spaces (Banach spaces), and metric spaces are generalizations of ideas that are familiar in R or in R n. For example,

More information

Generell Topologi. Richard Williamson. May 6, 2013

Generell Topologi. Richard Williamson. May 6, 2013 Generell Topologi Richard Williamson May 6, 2013 1 8 Thursday 7th February 8.1 Using connectedness to distinguish between topological spaces I Proposition 8.1. Let (, O ) and (Y, O Y ) be topological spaces.

More information

Lecture 1. 1 Notation

Lecture 1. 1 Notation Lecture 1 (The material on mathematical logic is covered in the textbook starting with Chapter 5; however, for the first few lectures, I will be providing some required background topics and will not be

More information

The Set-Open topology

The Set-Open topology Volume 37, 2011 Pages 205 217 http://topology.auburn.edu/tp/ The Set-Open topology by A. V. Osipov Electronically published on August 26, 2010 Topology Proceedings Web: http://topology.auburn.edu/tp/ Mail:

More information

Metric and metrizable spaces

Metric and metrizable spaces Metric and metrizable spaces These notes discuss the same topic as Sections 20 and 2 of Munkres book; some notions (Symmetric, -metric, Ψ-spaces...) are not discussed in Munkres book.. Symmetric, -metric,

More information

INTRODUCTION TO TOPOLOGY

INTRODUCTION TO TOPOLOGY INTRODUCTION TO TOPOLOGY MARTINA ROVELLI These notes are an outline of the topics covered in class, and are not substitutive of the lectures, where (most) proofs are provided and examples are discussed

More information

Lecture 11 COVERING SPACES

Lecture 11 COVERING SPACES Lecture 11 COVERING SPACES A covering space (or covering) is not a space, but a mapping of spaces (usually manifolds) which, locally, is a homeomorphism, but globally may be quite complicated. The simplest

More information

Section 13. Basis for a Topology

Section 13. Basis for a Topology 13. Basis for a Topology 1 Section 13. Basis for a Topology Note. In this section, we consider a basis for a topology on a set which is, in a sense, analogous to the basis for a vector space. Whereas a

More information

2. Functions, sets, countability and uncountability. Let A, B be sets (often, in this module, subsets of R).

2. Functions, sets, countability and uncountability. Let A, B be sets (often, in this module, subsets of R). 2. Functions, sets, countability and uncountability I. Functions Let A, B be sets (often, in this module, subsets of R). A function f : A B is some rule that assigns to each element of A a unique element

More information

Math 205B - Topology. Dr. Baez. January 19, Christopher Walker. p(x) = (cos(2πx), sin(2πx))

Math 205B - Topology. Dr. Baez. January 19, Christopher Walker. p(x) = (cos(2πx), sin(2πx)) Math 205B - Topology Dr. Baez January 19, 2007 Christopher Walker Theorem 53.1. The map p : R S 1 given by the equation is a covering map p(x) = (cos(2πx), sin(2πx)) Proof. First p is continuous since

More information

1.1 The definition of a topological space

1.1 The definition of a topological space Chapter 1 Topological spaces 1.1 The definition of a topological space One of the first definitions of any course in calculus is that of a continuous function: Definition 1.1.1. A map f : R! R is continuous

More information

Notes on metric spaces and topology. Math 309: Topics in geometry. Dale Rolfsen. University of British Columbia

Notes on metric spaces and topology. Math 309: Topics in geometry. Dale Rolfsen. University of British Columbia Notes on metric spaces and topology Math 309: Topics in geometry Dale Rolfsen University of British Columbia Let X be a set; we ll generally refer to its elements as points. A distance function, or metric

More information

Cardinality Lectures

Cardinality Lectures Cardinality Lectures Enrique Treviño March 8, 014 1 Definition of cardinality The cardinality of a set is a measure of the size of a set. When a set A is finite, its cardinality is the number of elements

More information

CS 6170: Computational Topology, Spring 2019 Lecture 03

CS 6170: Computational Topology, Spring 2019 Lecture 03 CS 6170: Computational Topology, Spring 2019 Lecture 03 Topological Data Analysis for Data Scientists Dr. Bei Wang School of Computing Scientific Computing and Imaging Institute (SCI) University of Utah

More information

Notes on point set topology, Fall 2010

Notes on point set topology, Fall 2010 Notes on point set topology, Fall 2010 Stephan Stolz September 3, 2010 Contents 1 Pointset Topology 1 1.1 Metric spaces and topological spaces...................... 1 1.2 Constructions with topological

More information

CONNECTED SPACES AND HOW TO USE THEM

CONNECTED SPACES AND HOW TO USE THEM CONNECTED SPACES AND HOW TO USE THEM 1. How to prove X is connected Checking that a space X is NOT connected is typically easy: you just have to find two disjoint, non-empty subsets A and B in X, such

More information

A digital pretopology and one of its quotients

A digital pretopology and one of its quotients Volume 39, 2012 Pages 13 25 http://topology.auburn.edu/tp/ A digital pretopology and one of its quotients by Josef Šlapal Electronically published on March 18, 2011 Topology Proceedings Web: http://topology.auburn.edu/tp/

More information

Math 190: Quotient Topology Supplement

Math 190: Quotient Topology Supplement Math 190: Quotient Topology Supplement 1. Introduction The purpose of this document is to give an introduction to the quotient topology. The quotient topology is one of the most ubiquitous constructions

More information

On Soft Topological Linear Spaces

On Soft Topological Linear Spaces Republic of Iraq Ministry of Higher Education and Scientific Research University of AL-Qadisiyah College of Computer Science and Formation Technology Department of Mathematics On Soft Topological Linear

More information

Final Exam, F11PE Solutions, Topology, Autumn 2011

Final Exam, F11PE Solutions, Topology, Autumn 2011 Final Exam, F11PE Solutions, Topology, Autumn 2011 Question 1 (i) Given a metric space (X, d), define what it means for a set to be open in the associated metric topology. Solution: A set U X is open if,

More information

I-CONTINUITY IN TOPOLOGICAL SPACES. Martin Sleziak

I-CONTINUITY IN TOPOLOGICAL SPACES. Martin Sleziak I-CONTINUITY IN TOPOLOGICAL SPACES Martin Sleziak Abstract. In this paper we generalize the notion of I-continuity, which was defined in [1] for real functions, to maps on topological spaces. We study

More information

6c Lecture 3 & 4: April 8 & 10, 2014

6c Lecture 3 & 4: April 8 & 10, 2014 6c Lecture 3 & 4: April 8 & 10, 2014 3.1 Graphs and trees We begin by recalling some basic definitions from graph theory. Definition 3.1. A (undirected, simple) graph consists of a set of vertices V and

More information

CHAPTER 8. Copyright Cengage Learning. All rights reserved.

CHAPTER 8. Copyright Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS Copyright Cengage Learning. All rights reserved. SECTION 8.3 Equivalence Relations Copyright Cengage Learning. All rights reserved. The Relation Induced by a Partition 3 The Relation

More information

Cardinality of Sets MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Cardinality of Sets Fall / 15

Cardinality of Sets MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Cardinality of Sets Fall / 15 Cardinality of Sets MAT Transition to Higher Mathematics Fall 0 MAT (Transition to Higher Math) Cardinality of Sets Fall 0 / Outline Sets with Equal Cardinality Countable and Uncountable Sets MAT (Transition

More information

4 Basis, Subbasis, Subspace

4 Basis, Subbasis, Subspace 4 Basis, Subbasis, Subspace Our main goal in this chapter is to develop some tools that make it easier to construct examples of topological spaces. By Definition 3.12 in order to define a topology on a

More information

Lecture 0: Reivew of some basic material

Lecture 0: Reivew of some basic material Lecture 0: Reivew of some basic material September 12, 2018 1 Background material on the homotopy category We begin with the topological category TOP, whose objects are topological spaces and whose morphisms

More information

Section 17. Closed Sets and Limit Points

Section 17. Closed Sets and Limit Points 17. Closed Sets and Limit Points 1 Section 17. Closed Sets and Limit Points Note. In this section, we finally define a closed set. We also introduce several traditional topological concepts, such as limit

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets and Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University Dec 4, 2014 Outline 1 2 3 4 Definition A relation R from a set A to a set

More information

MATHEMATICS 191, FALL 2004 MATHEMATICAL PROBABILITY Outline #1 (Countability and Uncountability)

MATHEMATICS 191, FALL 2004 MATHEMATICAL PROBABILITY Outline #1 (Countability and Uncountability) MATHEMATICS 191, FALL 2004 MATHEMATICAL PROBABILITY Outline #1 (Countability and Uncountability) Last modified: September 16, 2004 Reference: Apostol, Calculus, Vol. 2, section 13.19 (attached). The aim

More information

Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012)

Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012) Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012) Michael Tagare De Guzman January 31, 2012 4A. The Sorgenfrey Line The following material concerns the Sorgenfrey line, E, introduced in

More information

Topology problem set Integration workshop 2010

Topology problem set Integration workshop 2010 Topology problem set Integration workshop 2010 July 28, 2010 1 Topological spaces and Continuous functions 1.1 If T 1 and T 2 are two topologies on X, show that (X, T 1 T 2 ) is also a topological space.

More information

Math 528 Jan 11, Geometry and Topology II Fall 2005, USC

Math 528 Jan 11, Geometry and Topology II Fall 2005, USC Math 528 Jan 11, 2005 1 Geometry and Topology II Fall 2005, USC Lecture Notes 2 1.4 Definition of Manifolds By a basis for a topological space (X, T), we mean a subset B of T such that for any U T and

More information

A B. bijection. injection. Section 2.4: Countability. a b c d e g

A B. bijection. injection. Section 2.4: Countability. a b c d e g Section 2.4: Countability We can compare the cardinality of two sets. A = B means there is a bijection between A and B. A B means there is an injection from A to B. A < B means A B and A B Example: Let

More information

Math 205B - Topology. Dr. Baez. February 23, Christopher Walker

Math 205B - Topology. Dr. Baez. February 23, Christopher Walker Math 205B - Topology Dr. Baez February 23, 2007 Christopher Walker Exercise 60.2. Let X be the quotient space obtained from B 2 by identifying each point x of S 1 with its antipode x. Show that X is homeomorphic

More information

Bounded subsets of topological vector spaces

Bounded subsets of topological vector spaces Chapter 2 Bounded subsets of topological vector spaces In this chapter we will study the notion of bounded set in any t.v.s. and analyzing some properties which will be useful in the following and especially

More information

Introduction to Topology MA3F1

Introduction to Topology MA3F1 Introduction to Introduction to Topology MA3F1 David Mond 1 Conventions September 2016 Topologists use a lot of diagrams showing spaces and maps. For example X f Y h q p W g Z has four spaces and five

More information

HW 1 CMSC 452. Morally DUE Feb 7 NOTE- THIS HW IS THREE PAGES LONG!!! SOLUTIONS THROUGOUT THIS HW YOU CAN ASSUME:

HW 1 CMSC 452. Morally DUE Feb 7 NOTE- THIS HW IS THREE PAGES LONG!!! SOLUTIONS THROUGOUT THIS HW YOU CAN ASSUME: HW 1 CMSC 452. Morally DUE Feb 7 NOTE- THIS HW IS THREE PAGES LONG!!! SOLUTIONS THROUGOUT THIS HW YOU CAN ASSUME: The union of a finite number of countable sets is countable. The union of a countable number

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Final exam The final exam is Saturday December 16 11:30am-2:30pm. Lecture A will take the exam in Lecture B will take the exam

More information

Lecture - 8A: Subbasis of Topology

Lecture - 8A: Subbasis of Topology Lecture - 8A: Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline 1 Introduction 2 3 4 Introduction I As we know that topology generated by a basis B may

More information

Compactness in Countable Fuzzy Topological Space

Compactness in Countable Fuzzy Topological Space Compactness in Countable Fuzzy Topological Space Apu Kumar Saha Assistant Professor, National Institute of Technology, Agartala, Email: apusaha_nita@yahoo.co.in Debasish Bhattacharya Associate Professor,

More information

TOPOLOGY CHECKLIST - SPRING 2010

TOPOLOGY CHECKLIST - SPRING 2010 TOPOLOGY CHECKLIST - SPRING 2010 The list below serves as an indication of what we have covered in our course on topology. (It was written in a hurry, so there is a high risk of some mistake being made

More information

THE TOPOLOGICAL ENTROPY OF HOMEOMORPHISMS ON ONE-DIMENSIONAL CONTINUA

THE TOPOLOGICAL ENTROPY OF HOMEOMORPHISMS ON ONE-DIMENSIONAL CONTINUA PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 108, Number 4, April 1990 THE TOPOLOGICAL ENTROPY OF HOMEOMORPHISMS ON ONE-DIMENSIONAL CONTINUA GERALD T. SEIDLER (Communicated by James E. West)

More information

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations Lecture 15 Lecturer: Prof. Sergei Fedotov 10131 - Calculus and Vectors Length of a Curve and Parametric Equations Sergei Fedotov (University of Manchester) MATH10131 2011 1 / 5 Lecture 15 1 Length of a

More information

Don t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary?

Don t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary? Don t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary? Is the converse true? What happens in the classical special case?

More information

Chapter One Topological Spaces

Chapter One Topological Spaces Chapter One Topological Spaces Definition. A collection T of subsets of a set X is a topology if a) and X are elements of T; b) the intersection of any two elements of T is an element of T; and c) the

More information

Math 395: Topology. Bret Benesh (College of Saint Benedict/Saint John s University)

Math 395: Topology. Bret Benesh (College of Saint Benedict/Saint John s University) Math 395: Topology Bret Benesh (College of Saint Benedict/Saint John s University) October 30, 2012 ii Contents Acknowledgments v 1 Topological Spaces 1 2 Closed sets and Hausdorff spaces 7 iii iv CONTENTS

More information

2. Metric and Topological Spaces

2. Metric and Topological Spaces 2 Metric and Topological Spaces Topology begins where sets are implemented with some cohesive properties enabling one to define continuity Solomon Lefschetz In order to forge a language of continuity,

More information

ISSN X (print) COMPACTNESS OF S(n)-CLOSED SPACES

ISSN X (print) COMPACTNESS OF S(n)-CLOSED SPACES Matematiqki Bilten ISSN 0351-336X (print) 41(LXVII) No. 2 ISSN 1857-9914 (online) 2017(30-38) UDC: 515.122.2 Skopje, Makedonija COMPACTNESS OF S(n)-CLOSED SPACES IVAN LONČAR Abstract. The aim of this paper

More information

or else take their intersection. Now define

or else take their intersection. Now define Samuel Lee Algebraic Topology Homework #5 May 10, 2016 Problem 1: ( 1.3: #3). Let p : X X be a covering space with p 1 (x) finite and nonempty for all x X. Show that X is compact Hausdorff if and only

More information

Section 16. The Subspace Topology

Section 16. The Subspace Topology 16. The Subspace Product Topology 1 Section 16. The Subspace Topology Note. Recall from Analysis 1 that a set of real numbers U is open relative to set X if there is an open set of real numbers O such

More information

Lectures on topology. S. K. Lando

Lectures on topology. S. K. Lando Lectures on topology S. K. Lando Contents 1 Reminder 2 1.1 Topological spaces and continuous mappings.......... 3 1.2 Examples............................. 4 1.3 Properties of topological spaces.................

More information

MATH 54 - LECTURE 10

MATH 54 - LECTURE 10 MATH 54 - LECTURE 10 DAN CRYTSER The Universal Mapping Property First we note that each of the projection mappings π i : j X j X i is continuous when i X i is given the product topology (also if the product

More information

Chapter 1. Preliminaries

Chapter 1. Preliminaries Chapter 1 Preliminaries 1.1 Topological spaces 1.1.1 The notion of topological space The topology on a set X is usually defined by specifying its open subsets of X. However, in dealing with topological

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Final exam The final exam is Saturday March 18 8am-11am. Lecture A will take the exam in GH 242 Lecture B will take the exam

More information

Section 26. Compact Sets

Section 26. Compact Sets 26. Compact Sets 1 Section 26. Compact Sets Note. You encounter compact sets of real numbers in senior level analysis shortly after studying open and closed sets. Recall that, in the real setting, a continuous

More information

Separating Homeomorphisms

Separating Homeomorphisms Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 12, Number 1, pp. 17 24 (2017) http://campus.mst.edu/adsa Separating Homeomorphisms Alfonso Artigue Universidad de la República Departmento

More information

A NOTE ON SEMITOPOLOGICAL PROPERTIES. D. Sivaraj

A NOTE ON SEMITOPOLOGICAL PROPERTIES. D. Sivaraj A NOTE ON SEMITOPOLOGICAL PROPERTIES D. Sivaraj (received 11 May 1982, revised 16 November 1982) 1. Introduction Let (*,T) be a topological space and A a subset of X. The closure and interior of A in (.,t)

More information

MA651 Topology. Lecture 4. Topological spaces 2

MA651 Topology. Lecture 4. Topological spaces 2 MA651 Topology. Lecture 4. Topological spaces 2 This text is based on the following books: Linear Algebra and Analysis by Marc Zamansky Topology by James Dugundgji Fundamental concepts of topology by Peter

More information

Manifolds. Chapter X. 44. Locally Euclidean Spaces

Manifolds. Chapter X. 44. Locally Euclidean Spaces Chapter X Manifolds 44. Locally Euclidean Spaces 44 1. Definition of Locally Euclidean Space Let n be a non-negative integer. A topological space X is called a locally Euclidean space of dimension n if

More information

FUZZY TOPOLOGICAL VECTOR SPACE

FUZZY TOPOLOGICAL VECTOR SPACE CHAPTER 6 FUZZY TOPOLOGICAL VECTOR SPACE AND TOPOLOGICAL GROUP 6.1 Introduction: Fuzzy topological vector spaces are introduced by A. K. Katsaras and D. B. Liu [K; L]. In 1981, Katsaras [kat], changed

More information

Topology Homework 3. Section Section 3.3. Samuel Otten

Topology Homework 3. Section Section 3.3. Samuel Otten Topology Homework 3 Section 3.1 - Section 3.3 Samuel Otten 3.1 (1) Proposition. The intersection of finitely many open sets is open and the union of finitely many closed sets is closed. Proof. Note that

More information

Chapter 11. Topological Spaces: General Properties

Chapter 11. Topological Spaces: General Properties 11.1. Open Sets, Closed Sets, Bases, and Subbases 1 Chapter 11. Topological Spaces: General Properties Section 11.1. Open Sets, Closed Sets, Bases, and Subbases Note. In this section, we define a topological

More information

A NOTE ON PROPER MAPS

A NOTE ON PROPER MAPS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 51, Number 1, August 1975 A NOTE ON PROPER MAPS CHUNG-WU HO1 ABSTRACT. The authot establishes some necessary and sufficient conditions on a Hausdorff

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

The Fundamental Group, Braids and Circles

The Fundamental Group, Braids and Circles The Fundamental Group, Braids and Circles Pete Goetz Mathematics Colloquium Humboldt State University April 17, 2014 Outline 1) Topology 2) Path Homotopy and The Fundamental Group 3) Covering Spaces and

More information

FANS WITH THE PROPERTY OF KELLEY

FANS WITH THE PROPERTY OF KELLEY Topology and its Applications 29 (1988) 73-78 North-Holland 73 FANS WITH THE PROPERTY OF KELLEY 1.1. CHARATONIK and W.1. CHARATONIK Institute of Mathematics, University of Wrodaw, pl. Grunwaldzki 2/4,

More information

Infinity and Uncountability. Countable Countably infinite. Enumeration

Infinity and Uncountability. Countable Countably infinite. Enumeration Infinity and Uncountability. Countable Countably infinite. Enumeration How big is the set of reals or the set of integers? Infinite! Is one bigger or smaller? Same size? Same number? Make a function f

More information

Generell Topologi. Richard Williamson. May 27, 2013

Generell Topologi. Richard Williamson. May 27, 2013 Generell Topologi Richard Williamson May 27, 2013 1 1 Tuesday 15th January 1.1 Topological spaces definition, terminology, finite examples Definition 1.1. A topological space is a pair (X, O) of a set

More information

1 Point Set Topology. 1.1 Topological Spaces. CS 468: Computational Topology Point Set Topology Fall 2002

1 Point Set Topology. 1.1 Topological Spaces. CS 468: Computational Topology Point Set Topology Fall 2002 Point set topology is something that every analyst should know something about, but it s easy to get carried away and do too much it s like candy! Ron Getoor (UCSD), 1997 (quoted by Jason Lee) 1 Point

More information