[11] Gibson, C.G., Elementary Geometry of Algebraic Curves. Cambridge University

Size: px
Start display at page:

Download "[11] Gibson, C.G., Elementary Geometry of Algebraic Curves. Cambridge University"

Transcription

1 References [1] Abhyankar, S S and Bajaj, C, Automatic parametrization of rational curves and surfaces I: Conics and conicoids. Computer-Aided Design Vol. 19, pp11 14, [2] Bézier, P, Style, mathematics and NC. Computer-Aided Design Vol. 22 No. 9, pp , [3] Boehm, W and Prautzsch, H, The insertion algorithm. Computer-Aided Design Vol. 17 No. 2, pp58 59, [4] Braid, I C, Hillyard, R C, and Stroud I A, Stepwise construction of polhedra in geometric modelling in Mathematical Methods in Computer Graphics and Design, ed. K W Brodlie, pp , Academic Press, [5] Coolidge, J L, A History of the Conic Sections and Quadric Surfaces. OUP, [6] Davis, P, B-splines and geometric design, SIAM News Vol. 29 No. 5, [7] Dill, J. An application of colour graphics to the display of surface curvature. Computer Graphics Vol. 15, pp , [8] Do Carmo, M P, Differential Geometry of Curves and Surfaces. Prentice- Hall, [9] Farin, G, Curves and Surfaces for Computer-Aided Geometric Design. Third Edition. Academic Press, [10] Forrest, A R, Interactive interpolation and approximation by Bézier polynomials, Computer-Aided Design Vol. 22 No. 9, pp , Originally published in The Computer Journal Vol. 15 No. 1, pp71 79,

2 346 References [11] Gibson, C.G., Elementary Geometry of Algebraic Curves. Cambridge University Press, [12] Haralick, R M and Shapiro, L G, Computer and Robot Vision. Addison- Wesley, [13] Hoschek, J and Lasser, D, Fundamentals of Computer Aided Geometric Design. A K Peters, [14] Howard, T L J, Hewitt, W T, Hubbold, R J, and Wyrwas, K M, APractical Introduction to PHIGS and PHIGS PLUS. Addison-Wesley, [15] Lane, J and Riesenfeld, R, A geometric proof for the variation diminishing property of B-spline approximation. J. of Approximation Theory Vol. 37, pp1 4, [16] Mäntylä, M, An Introduction to Solid Modeling, Computer Science Press, Maryland, [17] Munchmeyer, F, On surface imperfections. In R.Martin, editor, The Mathematics of Surfaces II, pp OUP, [18] Munchmeyer, F, Shape interrogation: a case study. In G.Farin, editor, Geometric Modelling: Algorithms and New Trends, pp SIAM, Philadelphia, [19] Phong, B-T, Illumination for computer-generated pictures. Comm. ACM, Vol. 18, No. 6, pp , June [20] Piegl, L and Tiller, W, The NURBS Book. Springer-Verlag, [21] Rogers, D F and Adams, J A, Mathematical Elements for Computer Graphics. Second Edition. McGraw-Hill, [22] Schoenberg, I, Contributions to the problem of approximation of equidistant data by analytic functions, Quart. Appl. Math. Vol. 4, pp45 99, [23] Sederberg, Th W, Anderson, D C and Goldman, R N, Implicit representation of parametric curves and surfaces. Computer Vision, Graphics and Image Processing Vol. 28, pp72 84, [24] Semple, J G and Kneebone, G T, Algebraic Projective Geometry. OUP, [25] Smith, G, Introductory Mathematics: Algebra and Analysis. Springer- Verlag, [26] Sommerville, D M Y, Analytical Conics. Bell and Sons, [27] Spivak, M, Calculus. W.A.Benjamin, 1967.

3 Index affine invariance 147, 177, 195, 214, 236 ambient light 299, 304 apparent contour 310 apparent cusps 319 attenuation 305 axonometric projection see projection B-rep 263 B-spline 194 basis 187, 192 closed 200, 235 curve 188 derivatives 207, 216, 238 integral 188 NURBS 212 open 196, 235 open uniform 202 periodic 200, 235 rational 213 surface 234 uniform 198 Bernstein polynomial 141, 144 Bézier control point 135 homogeneous 175 control polygon , 141 cubic 137 curve 136, 141, 161 curvature 283 torsion 283 derivatives 162 endpoint-interpolation 139, 147, 236 integral 141 linear 136 piecewise 168 properties 147 quadratic 136 rational 175 rendering 157 subdivision 154 surface 234 binomial 142 blend 233 Boehm algorithm 221 breakpoints 169, 192 C k -continuity 99, 170, 226 CAD see computer-aided design, 260 Cartesian plane 2 catenary 273 cavalier projection see projection centre of perspectivity 68 clip 76 clothoid 273 CMY 299 computer-aided design 49, 135 concatenation see transformation conic 109 applications 132 central 113 conversion 127 degenerate 109 directrix 110 discriminant 112 eccentricity 110 ellipse 109, 116, 177 focus 110 hyperbola 109, 116, 134, 177 irreducible 112,

4 348 Index parabola 109, 116, 132, 177 parametrization 124 reducible 112, 114 spatial 130 continuity 99, 192, 195, 214, 226, 253 control point 187 conversion tobézier form 166 convex hull 146, 147, 177, 195, 214, 236 Coons surface 256 coordinate functions 96 coordinate curve 226 coordinates Cartesian 1 homogeneous 14, 20, 41 Plücker 54 viewplane see viewplane Cornu spiral 273 CSG 261 curvature 267, 275 Bézier curves 283 normal 286 principal 286 vector 275 curve algebraic 96 curvature 267, 275 implicit 96 non-parametric explicit 96 parametric 96 polynomial 96 rational 96 regular 99 segment 96 cusp 138 cycloid 273 de Boor algorithm 205 rational 218 de Casteljau 151, 152 rational 180 deformation 204 degree 96, 187 degree raising 146 Denavit Hartenberg 17 device coordinate transformation 37, 80 device window 76 diffuse reflection 300 dimetric projection see projection dual 40 elliptic point 291 equivalence relation 21 Euler angles 51 Euler Poincaré formula 265 evolute 274 flat point 291 flat shading 307 font design 203 foreshortening ratio 85 Frenet frame 276 Frenet Serret formulae 277 G k -continuity 172, 253 geometric continuity 172 geometric modelling 260 gimbal lock 51, 64 Gordon Coons surface 256 Gouraud shading 307 graphical primitive 1, 15 Hamilton 56 helix 279 Hermite 254 hidden line 318 homogeneous control point 213 coordinates 19, 21 equation 24, 38 Horner s method 98 hotspot 303 HSV 298 hue 298 hyperbolic point 291 identity see transformation image 3 implicit 2, 225 incident ray 300 inflection 138 instancing 1, 15, 36 intensity 301, 305 intersection line and Bézier curve 158 line and conic 121 three planes 53 twobézier curves 159 two lines 39 inverse see transformation isometric projection see projection knot insertion 221 knot vector 187 Lambert s Law 301

5 Index 349 Lambertian surfaces 301 light ambient 299 attenuation 305 directional 299 distributive 299 intensity 301 point source 299 specular 299 line 2 through two points 39 line coordinates 54 line vector 39, 52 local control 195, 214 local support 192 lofting 254 logarithmic spiral 273 Monge patch 227 monomial form 166 morphing 203 natural equation 272 normal line 101 vector 100 normal plane 276 numerically controlled machining 107, 232 NURBS see B-spline object 4 oblique projection see projection offset 107, 232, 296 order 187 orientation 50 orthogonal change of coordinates 33 orthographic projection see projection see projective space parabolic point 291 parallel curve 107 parallel projection see projection parameter curve 226 parametric 2, 226 parametrization 96 partition of unity 192 perspective projection see projection Phong 303, 309 picture elements 15 piecewise polynomial 170, 187, 192 plane Cartesian 2 projective 19, 23, 24 P 3 through three points 52 plane vector 52 point at infinity 23, 25, 26, 41 positivity 192 principal curvature 286 principal direction 286 projection centre of perspectivity 72 line 68 ofbézier curve 181 of NURBS curve 214 parallel 69, 72 axonometric 86 cavalier 88 dimetric 87 isometric 87 oblique 87 orthographic 86 trimetric 87 perspective 68, 72, 90 one-point 91 three-point 91 two-point 91 viewpoint 72 projective invariance 178, 236 projective plane 19, 23, 24 P 2 see projective plane projective space 41 quaternions 51, 56 algebraic properties 58 animation 65 conjugate 59 interpolation 65 inverse 59 polar form 60 rotations 62 unit 59 R 2 see Cartesian plane rational 175, 213 rectifying plane 276 reflected ray 300 reflection see transformation ambient 304 diffuse 300 specular 302 regular 99, 226 relation 21 rendering 98 reparametrization 104 RGB 298 right inverse 77 robotics 17

6 350 Index rolling-ball blend 233 rotation see transformation saturation 298 scaling see transformation self-occluding 302 shade 298 shading flat 307 Gouraud 307 Phong 309 shadow 320 shear see transformation shelling 232 silhouette 309 skinning 251 specular light 299 specular reflection 302 speed 99, 275 subdivision 154, 248 surface B-spline 235 Bézier 234 bilinear 243 constructions 241 curvature 285 Gaussian 291 mean 291 extruded 241 Gordon Coons 256 implicit 225 loft 254 non-parametric explicit 227 normal 227 NURBS 235 of revolution 49, 245 parametric 226 quadric 228 regular 226 ruled 242 singular 226 skin 251 subdivision 248 tangent vector 227 translational swept 244 tangent line 100, 101 vector 100, 275 thickening 233 tint 298 tone 298 torsion 275 vector 277 torus 232, 246, 295 trace 96 transformation 3 affine 21, 42 concatenation 13, 30 identity 6, 31 inverse 6, 31, 32 non-singular 4, 32 projective 20, 42 reflection 8 in arbitrary line 34 in arbitrary plane 47 rotation 9, 29, 43 about arbitrary line 45 about arbitrary point 33 scaling 7, 28, 43 shear 11 singular 4 translation 5, 27, 42 translation see transformation trimetric projection see projection umbilic point 291 variation diminishing property 147, 177 viewing pipeline 80 viewplane coordinates 76 window 76, 80 viewpoint see centre of perspectivity viewport window see device window visual tangent continuity 172 weight 175, 179

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

Curves and Surfaces for Computer-Aided Geometric Design

Curves and Surfaces for Computer-Aided Geometric Design Curves and Surfaces for Computer-Aided Geometric Design A Practical Guide Fourth Edition Gerald Farin Department of Computer Science Arizona State University Tempe, Arizona /ACADEMIC PRESS I San Diego

More information

Introduction p. 1 What Is Geometric Modeling? p. 1 Computer-aided geometric design Solid modeling Algebraic geometry Computational geometry

Introduction p. 1 What Is Geometric Modeling? p. 1 Computer-aided geometric design Solid modeling Algebraic geometry Computational geometry Introduction p. 1 What Is Geometric Modeling? p. 1 Computer-aided geometric design Solid modeling Algebraic geometry Computational geometry Representation Ab initio design Rendering Solid modelers Kinematic

More information

Bezier Curves. An Introduction. Detlef Reimers

Bezier Curves. An Introduction. Detlef Reimers Bezier Curves An Introduction Detlef Reimers detlefreimers@gmx.de http://detlefreimers.de September 1, 2011 Chapter 1 Bezier Curve Basics 1.1 Linear Interpolation This section will give you a basic introduction

More information

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg COMPUTER AIDED GEOMETRIC DESIGN Thomas W. Sederberg January 31, 2011 ii T. W. Sederberg iii Preface This semester is the 24 th time I have taught a course at Brigham Young University titled, Computer Aided

More information

Computer Graphics Curves and Surfaces. Matthias Teschner

Computer Graphics Curves and Surfaces. Matthias Teschner Computer Graphics Curves and Surfaces Matthias Teschner Outline Introduction Polynomial curves Bézier curves Matrix notation Curve subdivision Differential curve properties Piecewise polynomial curves

More information

Computer Graphics. Instructor: Oren Kapah. Office Hours: T.B.A.

Computer Graphics. Instructor: Oren Kapah. Office Hours: T.B.A. Computer Graphics Instructor: Oren Kapah (orenkapahbiu@gmail.com) Office Hours: T.B.A. The CG-IDC slides for this course were created by Toky & Hagit Hel-Or 1 CG-IDC 2 Exercise and Homework The exercise

More information

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY SRM INSTITUTE OF SCIENCE AND TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK SUB.NAME: COMPUTER GRAPHICS SUB.CODE: IT307 CLASS : III/IT UNIT-1 2-marks 1. What is the various applications

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK M.E: CAD/CAM I SEMESTER ED5151 COMPUTER APPLICATIONS IN DESIGN Regulation 2017 Academic

More information

Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL

Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL International Edition Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL Sixth Edition Edward Angel Dave Shreiner Interactive Computer Graphics: A Top-Down Approach with Shader-Based

More information

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2013 3D Object Representations Raw data Point cloud Range image Polygon soup Surfaces Mesh Subdivision Parametric Implicit Solids Voxels

More information

ME COMPUTER AIDED DESIGN COMPUTER AIDED DESIGN 2 MARKS Q&A

ME COMPUTER AIDED DESIGN COMPUTER AIDED DESIGN 2 MARKS Q&A ME6501 - COMPUTER AIDED DESIGN COMPUTER AIDED DESIGN 2 MARKS Q&A Unit I 1. What is CAD? Computer aided design (CAD) is the technology concerned with the use of computer systems to assist the creation,

More information

Mathematical Tools in Computer Graphics with C# Implementations Table of Contents

Mathematical Tools in Computer Graphics with C# Implementations Table of Contents Mathematical Tools in Computer Graphics with C# Implementations by Hardy Alexandre, Willi-Hans Steeb, World Scientific Publishing Company, Incorporated, 2008 Table of Contents List of Figures Notation

More information

Curriculum Vitae of the Authors

Curriculum Vitae of the Authors Curriculum Vitae of the Authors Mario Hirz has been awarded an M.S. degree in mechanical engineering and economics, a Ph.D. in mechanical engineering, and a venia docendi in the area of virtual product

More information

Computer Graphics I Lecture 11

Computer Graphics I Lecture 11 15-462 Computer Graphics I Lecture 11 Midterm Review Assignment 3 Movie Midterm Review Midterm Preview February 26, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

08 - Designing Approximating Curves

08 - Designing Approximating Curves 08 - Designing Approximating Curves Acknowledgement: Olga Sorkine-Hornung, Alexander Sorkine-Hornung, Ilya Baran Last time Interpolating curves Monomials Lagrange Hermite Different control types Polynomials

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to Computer Graphics James D. Foley Georgia Institute of Technology Andries van Dam Brown University Steven K. Feiner Columbia University John F. Hughes Brown University Richard L. Phillips

More information

Pythagorean - Hodograph Curves: Algebra and Geometry Inseparable

Pythagorean - Hodograph Curves: Algebra and Geometry Inseparable Rida T. Farouki Pythagorean - Hodograph Curves: Algebra and Geometry Inseparable With 204 Figures and 15 Tables 4y Springer Contents 1 Introduction 1 1.1 The Lure of Analytic Geometry 1 1.2 Symbiosis of

More information

End-Term Examination

End-Term Examination Paper Code: MCA-108 Paper ID : 44108 Second Semester [MCA] MAY-JUNE 2006 Q. 1 Describe the following in brief :- (3 x 5 = 15) (a) QUADRATIC SURFACES (b) RGB Color Models. (c) BSP Tree (d) Solid Modeling

More information

For each question, indicate whether the statement is true or false by circling T or F, respectively.

For each question, indicate whether the statement is true or false by circling T or F, respectively. True/False For each question, indicate whether the statement is true or false by circling T or F, respectively. 1. (T/F) Rasterization occurs before vertex transformation in the graphics pipeline. 2. (T/F)

More information

COMPUTER GRAPHICS, MULTIMEDIA AND ANIMATION, Second Edition (with CD-ROM) Malay K. Pakhira

COMPUTER GRAPHICS, MULTIMEDIA AND ANIMATION, Second Edition (with CD-ROM) Malay K. Pakhira Computer Graphics, Multimedia and Animation SECOND EDITION Malay K. Pakhira Assistant Professor Department of Computer Science and Engineering Kalyani Government Engineering College Kalyani New Delhi-110001

More information

Fathi El-Yafi Project and Software Development Manager Engineering Simulation

Fathi El-Yafi Project and Software Development Manager Engineering Simulation An Introduction to Geometry Design Algorithms Fathi El-Yafi Project and Software Development Manager Engineering Simulation 1 Geometry: Overview Geometry Basics Definitions Data Semantic Topology Mathematics

More information

CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside Blending Functions Blending functions are more convenient basis than monomial basis canonical form (monomial

More information

3D Modeling Parametric Curves & Surfaces

3D Modeling Parametric Curves & Surfaces 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2012 3D Object Representations Raw data Point cloud Range image Polygon soup Solids Voxels BSP tree CSG Sweep Surfaces Mesh Subdivision

More information

CS2401 COMPUTER GRAPHICS ANNA UNIV QUESTION BANK

CS2401 COMPUTER GRAPHICS ANNA UNIV QUESTION BANK CS2401 Computer Graphics CS2401 COMPUTER GRAPHICS ANNA UNIV QUESTION BANK CS2401- COMPUTER GRAPHICS UNIT 1-2D PRIMITIVES 1. Define Computer Graphics. 2. Explain any 3 uses of computer graphics applications.

More information

Les Piegl Wayne Tiller. The NURBS Book. Second Edition with 334 Figures in 578 Parts. A) Springer

Les Piegl Wayne Tiller. The NURBS Book. Second Edition with 334 Figures in 578 Parts. A) Springer Les Piegl Wayne Tiller The NURBS Book Second Edition with 334 Figures in 578 Parts A) Springer CONTENTS Curve and Surface Basics 1.1 Implicit and Parametric Forms 1 1.2 Power Basis Form of a Curve 5 1.3

More information

Design considerations

Design considerations Curves Design considerations local control of shape design each segment independently smoothness and continuity ability to evaluate derivatives stability small change in input leads to small change in

More information

GLOBAL EDITION. Interactive Computer Graphics. A Top-Down Approach with WebGL SEVENTH EDITION. Edward Angel Dave Shreiner

GLOBAL EDITION. Interactive Computer Graphics. A Top-Down Approach with WebGL SEVENTH EDITION. Edward Angel Dave Shreiner GLOBAL EDITION Interactive Computer Graphics A Top-Down Approach with WebGL SEVENTH EDITION Edward Angel Dave Shreiner This page is intentionally left blank. Interactive Computer Graphics with WebGL, Global

More information

Geometric Modeling of Curves

Geometric Modeling of Curves Curves Locus of a point moving with one degree of freedom Locus of a one-dimensional parameter family of point Mathematically defined using: Explicit equations Implicit equations Parametric equations (Hermite,

More information

CEG477/CEG677. Computer Graphics II

CEG477/CEG677. Computer Graphics II CEG477/CEG677 Computer Graphics II 0-1 Outline 0 Introduction 1 Three-Dimensional Object Representations 2 Visible-Surface Detection Methods 3 Illumination Models and Surface-Rendering Methods 4 Interactive

More information

LECTURE #6. Geometric Modelling for Engineering Applications. Geometric modeling for engineering applications

LECTURE #6. Geometric Modelling for Engineering Applications. Geometric modeling for engineering applications LECTURE #6 Geometric modeling for engineering applications Geometric Modelling for Engineering Applications Introduction to modeling Geometric modeling Curve representation Hermite curve Bezier curve B-spline

More information

GEOMETRY OF CURVES CHAPMAN & HALL/CRC. Boca Raton London New York Washington, D.C.

GEOMETRY OF CURVES CHAPMAN & HALL/CRC. Boca Raton London New York Washington, D.C. GEOMETRY OF CURVES JOHN W. RUTTER CHAPMAN & HALL/CRC Boca Raton London New York Washington, D.C. Contents Introduction 0.1 Cartesian coordinates 0.2 Polar coordinates 0.3 The Argand diagram 0.4 Polar equations

More information

OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS

OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS YEAR/SEM.: III/V STAFF NAME: T.ELANGOVAN SUBJECT NAME: Computer Graphics SUB. CODE:

More information

The Viewing Pipeline Coordinate Systems

The Viewing Pipeline Coordinate Systems Overview Interactive Graphics System Model Graphics Pipeline Coordinate Systems Modeling Transforms Cameras and Viewing Transform Lighting and Shading Color Rendering Visible Surface Algorithms Rasterization

More information

Curve and Surface Basics

Curve and Surface Basics Curve and Surface Basics Implicit and parametric forms Power basis form Bezier curves Rational Bezier Curves Tensor Product Surfaces ME525x NURBS Curve and Surface Modeling Page 1 Implicit and Parametric

More information

Course Title: Computer Graphics Course no: CSC209

Course Title: Computer Graphics Course no: CSC209 Course Title: Computer Graphics Course no: CSC209 Nature of the Course: Theory + Lab Semester: III Full Marks: 60+20+20 Pass Marks: 24 +8+8 Credit Hrs: 3 Course Description: The course coversconcepts of

More information

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS GEOMETRIC TOOLS FOR COMPUTER GRAPHICS PHILIP J. SCHNEIDER DAVID H. EBERLY MORGAN KAUFMANN PUBLISHERS A N I M P R I N T O F E L S E V I E R S C I E N C E A M S T E R D A M B O S T O N L O N D O N N E W

More information

Rational Bezier Curves

Rational Bezier Curves Rational Bezier Curves Use of homogeneous coordinates Rational spline curve: define a curve in one higher dimension space, project it down on the homogenizing variable Mathematical formulation: n P(u)

More information

Parametric Curves. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Parametric Curves. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Parametric Curves University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Parametric Representations 3 basic representation strategies: Explicit: y = mx + b Implicit: ax + by + c

More information

GL9: Engineering Communications. GL9: CAD techniques. Curves Surfaces Solids Techniques

GL9: Engineering Communications. GL9: CAD techniques. Curves Surfaces Solids Techniques 436-105 Engineering Communications GL9:1 GL9: CAD techniques Curves Surfaces Solids Techniques Parametric curves GL9:2 x = a 1 + b 1 u + c 1 u 2 + d 1 u 3 + y = a 2 + b 2 u + c 2 u 2 + d 2 u 3 + z = a

More information

Motivation. Parametric Curves (later Surfaces) Outline. Tangents, Normals, Binormals. Arclength. Advanced Computer Graphics (Fall 2010)

Motivation. Parametric Curves (later Surfaces) Outline. Tangents, Normals, Binormals. Arclength. Advanced Computer Graphics (Fall 2010) Advanced Computer Graphics (Fall 2010) CS 283, Lecture 19: Basic Geometric Concepts and Rotations Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/fa10 Motivation Moving from rendering to simulation,

More information

Deceleration 141 Deep Sensation 218 Design Considerations 191 Device Coordinate System 12 Diffuse Reflection 119 Digital to Analog Converter 12

Deceleration 141 Deep Sensation 218 Design Considerations 191 Device Coordinate System 12 Diffuse Reflection 119 Digital to Analog Converter 12 I A Acceleration 141 Affine Transformations 58 Agnosticism 209 AIML Language 349 ALICE 349 Ambient Light 116 Ambient Reflection 119 Anchor Node 305 Angular Speed 153 Animating a Gears Mesh 154 Animation

More information

Multipatched B-Spline Surfaces and Automatic Rough Cut Path Generation

Multipatched B-Spline Surfaces and Automatic Rough Cut Path Generation Int J Adv Manuf Technol (2000) 16:100 106 2000 Springer-Verlag London Limited Multipatched B-Spline Surfaces and Automatic Rough Cut Path Generation S. H. F. Chuang and I. Z. Wang Department of Mechanical

More information

Deccan Education Society s

Deccan Education Society s Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTONOMY SECOND YEAR B.Sc.(COMPUTER SCIENCE) MATHEMATICS SEMESTER III w.e.f. Academic Year 2017-2018 Deccan Education Society

More information

CS 464 Review. Review of Computer Graphics for Final Exam

CS 464 Review. Review of Computer Graphics for Final Exam CS 464 Review Review of Computer Graphics for Final Exam Goal: Draw 3D Scenes on Display Device 3D Scene Abstract Model Framebuffer Matrix of Screen Pixels In Computer Graphics: If it looks right then

More information

Final Exam CS 184: Foundations of Computer Graphics! page 1 of 12!

Final Exam CS 184: Foundations of Computer Graphics! page 1 of 12! Final Exam CS 184: Foundations of Computer Graphics! page 1 of 12! Student Name:! Class Account Username: Instructions: Read them carefully!! The exam begins at 8:10pm and ends at 10:00pm. You must turn

More information

Lecture IV Bézier Curves

Lecture IV Bézier Curves Lecture IV Bézier Curves Why Curves? Why Curves? Why Curves? Why Curves? Why Curves? Linear (flat) Curved Easier More pieces Looks ugly Complicated Fewer pieces Looks smooth What is a curve? Intuitively:

More information

Module Contact: Dr Stephen Laycock, CMP Copyright of the University of East Anglia Version 1

Module Contact: Dr Stephen Laycock, CMP Copyright of the University of East Anglia Version 1 UNIVERSITY OF EAST ANGLIA School of Computing Sciences Main Series PG Examination 2013-14 COMPUTER GAMES DEVELOPMENT CMPSME27 Time allowed: 2 hours Answer any THREE questions. (40 marks each) Notes are

More information

CS602- Computer Graphics Solved MCQS From Midterm Papers. MIDTERM EXAMINATION Spring 2013 CS602- Computer Graphics

CS602- Computer Graphics Solved MCQS From Midterm Papers. MIDTERM EXAMINATION Spring 2013 CS602- Computer Graphics CS602- Computer Graphics Solved MCQS From Midterm Papers Dec 18,2013 MC100401285 Moaaz.pk@gmail.com Mc100401285@gmail.com PSMD01 Question No: 1 ( Marks: 1 ) - Please choose one DDA abbreviated for. Discrete

More information

Geometric and Solid Modeling. Problems

Geometric and Solid Modeling. Problems Geometric and Solid Modeling Problems Define a Solid Define Representation Schemes Devise Data Structures Construct Solids Page 1 Mathematical Models Points Curves Surfaces Solids A shape is a set of Points

More information

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple Curves and surfaces Escaping Flatland Until now we have worked with flat entities such as lines and flat polygons Fit well with graphics hardware Mathematically simple But the world is not composed of

More information

GD - Geometry for Design

GD - Geometry for Design Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 295 - EEBE - Barcelona East School of Engineering 749 - MAT - Department of Mathematics BACHELOR'S DEGREE IN CHEMICAL ENGINEERING

More information

Knot Insertion and Reparametrization of Interval B-spline Curves

Knot Insertion and Reparametrization of Interval B-spline Curves International Journal of Video&Image Processing and Network Security IJVIPNS-IJENS Vol:14 No:05 1 Knot Insertion and Reparametrization of Interval B-spline Curves O. Ismail, Senior Member, IEEE Abstract

More information

Computer Aided Geometric Design

Computer Aided Geometric Design Brigham Young University BYU ScholarsArchive All Faculty Publications 2012-01-10 Computer Aided Geometric Design Thomas W. Sederberg tom@cs.byu.edu Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

More information

OUTLINE. Quadratic Bezier Curves Cubic Bezier Curves

OUTLINE. Quadratic Bezier Curves Cubic Bezier Curves BEZIER CURVES 1 OUTLINE Introduce types of curves and surfaces Introduce the types of curves Interpolating Hermite Bezier B-spline Quadratic Bezier Curves Cubic Bezier Curves 2 ESCAPING FLATLAND Until

More information

Shape Control of Cubic H-Bézier Curve by Moving Control Point

Shape Control of Cubic H-Bézier Curve by Moving Control Point Journal of Information & Computational Science 4: 2 (2007) 871 878 Available at http://www.joics.com Shape Control of Cubic H-Bézier Curve by Moving Control Point Hongyan Zhao a,b, Guojin Wang a,b, a Department

More information

Isoparametric Curve of Quadratic F-Bézier Curve

Isoparametric Curve of Quadratic F-Bézier Curve J. of the Chosun Natural Science Vol. 6, No. 1 (2013) pp. 46 52 Isoparametric Curve of Quadratic F-Bézier Curve Hae Yeon Park 1 and Young Joon Ahn 2, Abstract In this thesis, we consider isoparametric

More information

Curves and Surfaces 1

Curves and Surfaces 1 Curves and Surfaces 1 Representation of Curves & Surfaces Polygon Meshes Parametric Cubic Curves Parametric Bi-Cubic Surfaces Quadric Surfaces Specialized Modeling Techniques 2 The Teapot 3 Representing

More information

2D Spline Curves. CS 4620 Lecture 13

2D Spline Curves. CS 4620 Lecture 13 2D Spline Curves CS 4620 Lecture 13 2008 Steve Marschner 1 Motivation: smoothness In many applications we need smooth shapes [Boeing] that is, without discontinuities So far we can make things with corners

More information

CS 130 Final. Fall 2015

CS 130 Final. Fall 2015 CS 130 Final Fall 2015 Name Student ID Signature You may not ask any questions during the test. If you believe that there is something wrong with a question, write down what you think the question is trying

More information

2D Spline Curves. CS 4620 Lecture 18

2D Spline Curves. CS 4620 Lecture 18 2D Spline Curves CS 4620 Lecture 18 2014 Steve Marschner 1 Motivation: smoothness In many applications we need smooth shapes that is, without discontinuities So far we can make things with corners (lines,

More information

Bézier Splines. B-Splines. B-Splines. CS 475 / CS 675 Computer Graphics. Lecture 14 : Modelling Curves 3 B-Splines. n i t i 1 t n i. J n,i.

Bézier Splines. B-Splines. B-Splines. CS 475 / CS 675 Computer Graphics. Lecture 14 : Modelling Curves 3 B-Splines. n i t i 1 t n i. J n,i. Bézier Splines CS 475 / CS 675 Computer Graphics Lecture 14 : Modelling Curves 3 n P t = B i J n,i t with 0 t 1 J n, i t = i=0 n i t i 1 t n i No local control. Degree restricted by the control polygon.

More information

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY CS2401 COMPUTER GRAPHICS QUESTION BANK

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY CS2401 COMPUTER GRAPHICS QUESTION BANK CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CS2401 COMPUTER GRAPHICS QUESTION BANK PART A UNIT I-2D PRIMITIVES 1. Define Computer graphics. 2. Define refresh

More information

Parametric Curves. University of Texas at Austin CS384G - Computer Graphics

Parametric Curves. University of Texas at Austin CS384G - Computer Graphics Parametric Curves University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Parametric Representations 3 basic representation strategies: Explicit: y = mx + b Implicit: ax + by + c

More information

Know it. Control points. B Spline surfaces. Implicit surfaces

Know it. Control points. B Spline surfaces. Implicit surfaces Know it 15 B Spline Cur 14 13 12 11 Parametric curves Catmull clark subdivision Parametric surfaces Interpolating curves 10 9 8 7 6 5 4 3 2 Control points B Spline surfaces Implicit surfaces Bezier surfaces

More information

Central issues in modelling

Central issues in modelling Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction includes: manual modelling; fitting to

More information

Curves. Computer Graphics CSE 167 Lecture 11

Curves. Computer Graphics CSE 167 Lecture 11 Curves Computer Graphics CSE 167 Lecture 11 CSE 167: Computer graphics Polynomial Curves Polynomial functions Bézier Curves Drawing Bézier curves Piecewise Bézier curves Based on slides courtesy of Jurgen

More information

COURSE DELIVERY PLAN - THEORY Page 1 of 6

COURSE DELIVERY PLAN - THEORY Page 1 of 6 COURSE DELIVERY PLAN - THEORY Page 1 of 6 Department of Department of Computer Science and Engineering B.E/B.Tech/M.E/M.Tech : Department of Computer Science and Engineering Regulation : 2013 Sub. Code

More information

Computer graphics (cs602) Final term mcqs fall 2013 Libriansmine

Computer graphics (cs602) Final term mcqs fall 2013 Libriansmine Computer graphics (cs602) Final term mcqs fall 2013 Libriansmine Question # 1 Total Marks: 1 Consider the following problem from lighting: A point (P1) is at (0, 0, 0) with normal equal to 1/(2*sqrt(2))*(sqrt(2),

More information

CS 475 / CS Computer Graphics. Modelling Curves 3 - B-Splines

CS 475 / CS Computer Graphics. Modelling Curves 3 - B-Splines CS 475 / CS 675 - Computer Graphics Modelling Curves 3 - Bézier Splines n P t = i=0 No local control. B i J n,i t with 0 t 1 J n,i t = n i t i 1 t n i Degree restricted by the control polygon. http://www.cs.mtu.edu/~shene/courses/cs3621/notes/spline/bezier/bezier-move-ct-pt.html

More information

Bezier Curves, B-Splines, NURBS

Bezier Curves, B-Splines, NURBS Bezier Curves, B-Splines, NURBS Example Application: Font Design and Display Curved objects are everywhere There is always need for: mathematical fidelity high precision artistic freedom and flexibility

More information

Modeling 3D Objects: Part 2

Modeling 3D Objects: Part 2 Modeling 3D Objects: Part 2 Patches, NURBS, Solids Modeling, Spatial Subdivisioning, and Implicit Functions 3D Computer Graphics by Alan Watt Third Edition, Pearson Education Limited, 2000 General Modeling

More information

VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : III Year, V Semester Section : CSE - 1 & 2 Subject Code : CS6504 Subject

More information

Chapter 5. Projections and Rendering

Chapter 5. Projections and Rendering Chapter 5 Projections and Rendering Topics: Perspective Projections The rendering pipeline In order to view manipulate and view a graphics object we must find ways of storing it a computer-compatible way.

More information

Curves D.A. Forsyth, with slides from John Hart

Curves D.A. Forsyth, with slides from John Hart Curves D.A. Forsyth, with slides from John Hart Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction

More information

A New Class of Quasi-Cubic Trigonometric Bezier Curve and Surfaces

A New Class of Quasi-Cubic Trigonometric Bezier Curve and Surfaces A New Class of Quasi-Cubic Trigonometric Bezier Curve and Surfaces Mridula Dube 1, Urvashi Mishra 2 1 Department of Mathematics and Computer Science, R.D. University, Jabalpur, Madhya Pradesh, India 2

More information

Blending Two Parametric Quadratic Bezier Curves

Blending Two Parametric Quadratic Bezier Curves 2015, TextRoad Publication ISSN 2090-4304 Journal of Basic and Applied Scientific Research www.textroad.com Blending Two Parametric Quadratic Bezier Curves Nurul Husna Hassan, Mazwin Tan, Norasrani Ramli,

More information

Geometric Programming for Computer-Aided Design

Geometric Programming for Computer-Aided Design Geometric Programming for Computer-Aided Design Alberto Paoluzzi Dip. Informatica e Automazione, Università Roma Tre, Rome Italy with contributions from Valerio Pascucci Center for Applied Scientific Computing,

More information

QUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION

QUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION QUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION INTRODUCTION OBJECTIVE: This chapter deals the applications of computer graphics and overview of graphics systems and imaging. UNIT I 1 With clear

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS480: Computer Graphics Curves and Surfaces Sung-Eui Yoon ( 윤성의 ) Course URL: http://jupiter.kaist.ac.kr/~sungeui/cg Today s Topics Surface representations Smooth curves Subdivision 2 Smooth Curves and

More information

Topics and things to know about them:

Topics and things to know about them: Practice Final CMSC 427 Distributed Tuesday, December 11, 2007 Review Session, Monday, December 17, 5:00pm, 4424 AV Williams Final: 10:30 AM Wednesday, December 19, 2007 General Guidelines: The final will

More information

COMPUTER AIDED ENGINEERING DESIGN (BFF2612)

COMPUTER AIDED ENGINEERING DESIGN (BFF2612) COMPUTER AIDED ENGINEERING DESIGN (BFF2612) BASIC MATHEMATICAL CONCEPTS IN CAED by Dr. Mohd Nizar Mhd Razali Faculty of Manufacturing Engineering mnizar@ump.edu.my COORDINATE SYSTEM y+ y+ z+ z+ x+ RIGHT

More information

Properties of Blending Functions

Properties of Blending Functions Chapter 5 Properties of Blending Functions We have just studied how the Bernstein polynomials serve very nicely as blending functions. We have noted that a degree n Bézier curve always begins at P 0 and

More information

CSE 167: Introduction to Computer Graphics Lecture 12: Bézier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013

CSE 167: Introduction to Computer Graphics Lecture 12: Bézier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 CSE 167: Introduction to Computer Graphics Lecture 12: Bézier Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Homework assignment 5 due tomorrow, Nov

More information

Advanced Modeling 2. Katja Bühler, Andrej Varchola, Eduard Gröller. March 24, x(t) z(t)

Advanced Modeling 2. Katja Bühler, Andrej Varchola, Eduard Gröller. March 24, x(t) z(t) Advanced Modeling 2 Katja Bühler, Andrej Varchola, Eduard Gröller March 24, 2014 1 Parametric Representations A parametric curve in E 3 is given by x(t) c : c(t) = y(t) ; t I = [a, b] R z(t) where x(t),

More information

Shape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include

Shape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include Shape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include motion, behavior Graphics is a form of simulation and

More information

Game Mathematics. (12 Week Lesson Plan)

Game Mathematics. (12 Week Lesson Plan) Game Mathematics (12 Week Lesson Plan) Lesson 1: Set Theory Textbook: Chapter One (pgs. 1 15) We begin the course by introducing the student to a new vocabulary and set of rules that will be foundational

More information

Design, Computation and Computer Controlled Devices

Design, Computation and Computer Controlled Devices 4.212 Design Fabrication Design, Computation and Computer Controlled Devices Prof. Larry Sass Department of Architecture and Planning MIT LECTURE #4 [1] Designing with Paper [2] Surface Representation

More information

Curves and Surfaces Computer Graphics I Lecture 10

Curves and Surfaces Computer Graphics I Lecture 10 15-462 Computer Graphics I Lecture 10 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] September 30, 2003 Doug James Carnegie

More information

Approximation of 3D-Parametric Functions by Bicubic B-spline Functions

Approximation of 3D-Parametric Functions by Bicubic B-spline Functions International Journal of Mathematical Modelling & Computations Vol. 02, No. 03, 2012, 211-220 Approximation of 3D-Parametric Functions by Bicubic B-spline Functions M. Amirfakhrian a, a Department of Mathematics,

More information

CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements Project 3 due tomorrow Midterm 2 next

More information

Computer Graphics Introduction. Taku Komura

Computer Graphics Introduction. Taku Komura Computer Graphics Introduction Taku Komura What s this course all about? We will cover Graphics programming and algorithms Graphics data structures Applied geometry, modeling and rendering Not covering

More information

Curves & Surfaces. MIT EECS 6.837, Durand and Cutler

Curves & Surfaces. MIT EECS 6.837, Durand and Cutler Curves & Surfaces Schedule Sunday October 5 th, * 3-5 PM * Review Session for Quiz 1 Extra Office Hours on Monday Tuesday October 7 th : Quiz 1: In class 1 hand-written 8.5x11 sheet of notes allowed Wednesday

More information

Introduction to Computer Graphics 7. Shading

Introduction to Computer Graphics 7. Shading Introduction to Computer Graphics 7. Shading National Chiao Tung Univ, Taiwan By: I-Chen Lin, Assistant Professor Textbook: Hearn and Baker, Computer Graphics, 3rd Ed., Prentice Hall Ref: E.Angel, Interactive

More information

Computer Graphics Solved MCQs -Part 2 MCQs Questions

Computer Graphics Solved MCQs -Part 2 MCQs Questions http://itbookshub.com/ Computer Graphics Solved MCQs -Part 2 MCQs Multiple Choice Questions Computer Graphics Solved MCQs -Part 2 Two consecutive scaling transformation s1 and s2 are Additive Multiplicative

More information

Computer Graphics CS 543 Lecture 13a Curves, Tesselation/Geometry Shaders & Level of Detail

Computer Graphics CS 543 Lecture 13a Curves, Tesselation/Geometry Shaders & Level of Detail Computer Graphics CS 54 Lecture 1a Curves, Tesselation/Geometry Shaders & Level of Detail Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) So Far Dealt with straight lines

More information

Further Graphics. Bezier Curves and Surfaces. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd

Further Graphics. Bezier Curves and Surfaces. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd Further Graphics Bezier Curves and Surfaces Alex Benton, University of Cambridge alex@bentonian.com 1 Supported in part by Google UK, Ltd CAD, CAM, and a new motivation: shiny things Expensive products

More information

CS-184: Computer Graphics. Today

CS-184: Computer Graphics. Today CS-84: Computer Graphics Lecture #5: Curves and Surfaces Prof. James O Brien University of California, Berkeley V25F-5-. Today General curve and surface representations Splines and other polynomial bases

More information

Curves and Surfaces Computer Graphics I Lecture 9

Curves and Surfaces Computer Graphics I Lecture 9 15-462 Computer Graphics I Lecture 9 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] February 19, 2002 Frank Pfenning Carnegie

More information

Intro to Curves Week 4, Lecture 7

Intro to Curves Week 4, Lecture 7 CS 430/536 Computer Graphics I Intro to Curves Week 4, Lecture 7 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University

More information