A Note on Spanning Trees for Network Location Problems

Size: px
Start display at page:

Download "A Note on Spanning Trees for Network Location Problems"

Transcription

1 A Note on Spanning Trees for Network Location Problems Dionisio Perez-Brito, Nenad Mladenovic and Jose A. Moreno Perez Abstract A p-facility location problems on a network N consist of locating p new facilities on N such that some function of distances among them and vertices of N is minimum. We consider a class of such problems where objective function is nondecreasing in distance. The median, the center and the centdian problems belong to this class. We prove that the optimal solution on the network and on the corresponding spanning tree are equal. Since location problems on tree network are easier to solve than on general network, we propose a descent local search heuristic that solve optimaly the problem on spanning tree in each iteration. Facility location analysis deals with the problem of locating one or several new facilities with respect to existing facilities (clients, users or demand points) in order to optimize some economic criteria (for introduction in location analysis see for example [9]). Examples of facilities are plants, warehouses, schools, hospital, administrative buildings, departure stores, waste material dumps, ambulance or fire engine depots, etc. The economic criteria is usually obtained by a objective function that decreases when the distance from the facilities to the clients decrease. Network location problems occur when new facilities are to be located on a network (see [5]). The network of interest may be a road network, an air transport network, a river network, or a network of computers. For a given network location problem, the network is represented by a graph and the new and existing facilities are often idealized as points. The demand points are generally taken to be at the vertices of the graph. A special case arises when the underlying network has a tree structure (a connected graph without a circuit). Most of the problems are easier to solve on tree than on general graph (see [12] for example. The efficiency of the algorithms is due primarily to the general convexity properties of tree networks [4]. The algorithms for tree networks may be applied to a general networks if the problem can be decomposed into subproblems on trees or if the graph has few cycles and the algorithms can be modified for nearly acyclic networks (many rural networks in a bounded region are nearly acyclic). The research has been partially supported by the DGICYT project PB C D.E.I.O.C. University of La Laguna, Tenerife, Spain G.E.R.A.D. University of Montreal. Montreal, Canada D.E.I.O.C. University of La Laguna, Tenerife, Spain 1

2 In this note we suggest a new heuristic way of solving location problems on the network that use the optimal solutions obtained in tree networks. We denote with N(V, E, l) a network with given set of vertices V = {v 1,..., v n } and set of edges E = {e 1,..., e m }, where l(e i ), i = 1,..., m is the length of each edge e i E. We say that x N if it belong to V or it lies on some edge. Let X = {x 1,..., x p } be a set of p new location points on the network N. Then the p-facility location-allocation problem we are considering is as following: min{f(x) = g(d(x)) : X N, X = p} d(x) = (d 1 (X),..., d n (X)) (1) d j (X) = d(x, v j ) = min x X d(x, v j), j = 1,..., n The distance function for location problems on networks is usually defined as the length of the shortest path between two points. Thus, d(x, v j ) is the sum of lenghts l of the edges on the shortest path between x and v j. Let us now assume that the globalizing function g used to define the objective fuction f is nondecreasing in distance, i.e., d j (X 1 ) d j (X 2 ), j = 1,..., n g(d(x 1 )) g(d(x 2 )), for all X 1, X 2 N, X 1 = X 2 = p. This assumption is natural because in most real location problems costs increase with distance. The special cases of problem (1) are p-median, p-center and p-centdian: (p-median) f(x) = g(d(x)) = n j=1 w j d j (X) (p-center) f(x) = g(d(x)) = max n j=1 w j d j (X) (p-centdian) f(x) = g(d(x)) = n j=1 w j d j (X) + max n j=1 w j d j (X) The weights w j and w j of the p-median and p-center problems respectively are associated with each vertex (user) and are given. It is obvious that all three objective functions increase if the distances d j (X) increase, i.e., they are monotonicely nondreasing and so every user vertex v j is allocated to its nearest facility point x i. If there is a tie between two or more facility points, the user vertex v j is assigned to the first in the list; i.e. if v j is asigned to x i and if d(x i, v j ) = d(x k, v j ) then i < k. Thus, the set of paths from every facility point to the user vertices assigned to it is a tree. Those trees are disjoint and the set of shortest paths from a set of facility points X to the user vertices is a spanning p-forest. Let T (X) be the set of trees obtained by joining these p trees with any p 1 edges that do not provide a cycle. Let ST (N) be the set of all spanning trees of N. For every T ST (N), let f T (.) denote the objective function of (1) when the distances are obtained from the shortest paths with edges only in T. Denote with X T the optimal solution of problem (1) in T, and with f T the corresponding minimum value (f T = f T (X T )). Theorem Let X = {x 1,..., x p} be an optimal solution of location problem (1) on the network N, where objective function f is nondecreasing in distance. Then there exists a spanning tree T of N such that optimal solution of (1) on T, X T is equal to X.

3 Also Proof: For every X N and every T ST (N), the following holds: Taking X = X, we have Therefore X N, and T ST (N): Substituting T = T (X ), f N (X) f T (X) f N (X ) f T (X ). X N : f N (X) = f T (X) (X). f N = f T (X )(X ). f T (X )(X ) f T (X). T T (X) : T (X ) = T. Since X is an optimal solution of the p-facility location problem (1) on N then d N (X, v j ) = d T (X )(X, v j ), for all j = 1,.., n. Hence f T (X ) fn. Finally X is an optimal solution of the p-facility location problem on T as well, since f T (X ) f N (X ). Note that similar result has been derived in [3], but only for a single center problem. From last result of theorem we conclude that the problem (1) can be solved by enumerating all trees from ST (N), but this is computationally very expensive option due to the following well known fact (see [5]): given a network N with no cycles, let I be its incidence matrix with one row removed, (i.e.with n 1 independent rows), and I t be the transpose of I, then the determinant I I t gives the number of distinct spanning trees of G. If G is a complete graph of n vertices, the number of distinct spanning tree is n n 2 [1]. In general, if a network N has m edges, the number of spanning trees is of order ( ) m n 1. However, our result can be used to get some alternating local search heuristic method. We call it TreeAlt as it alternates location obtained in the tree, in each iteration. Step 1.(initialization): Let T 0 be an initial spanning tree of N. and F 0 corresponding forest obtained by deleting p 1 edges from T 0 with largest lengths. Set i 0. Step 2.(location on the tree): Let X i = XT i network T i. be the optimal p-facility location in tree Step 3.(allocation): Allocate each user to its closest facility with respect to N, to get spanning forest F i+1. Step 4.(termination): If F i+1 = F i, stop. Otherwise, let T i+1 T (X) be spanning tree obtained by adding p 1 edges to the forest with the smallest lengths that do not make a cycle. Set i i + 1 and goto Step 2.

4 In step 1 of TreeAlt algorithm, the initial spanning tree can be obtained at random by a modified version of Prim s method [10]. With this modification, the edge with minimum length is not always added to the current tree. In the second step, for example, we can apply one of the following algorithms: O(p n 2 ) algorithm for the p-median on tree [12]. O(n log 2 n) algorithm for the p-center on tree [11]. O(p n 6 ) algorithm for the p-centdian on tree [13]. In the allocation step (step 3), we use Dijkstra method [2] in order to find the shortest path between each user and its closest facility. Finally we repeat steps 2 and 3 until there is no improvement in the objective function value. Thus, our method converge to a local minimum. Heuristic TreeAlt alternates location and allocation solutions. Another method of that type is suggested in [6], where p single facility location problems are solved exactly in location step. We instead solve exactly p-facility problem on the tree. Since TreeAlt is descent local search heuristic, it can be used as a parth of some general heuristic method such as Multi Start search [8] or Variable neighbourhood search [7]. References [1] Cayley, A. Collected papers, Quart.Jl. of Mathematics, 13, Cambridge, (1897). p.26. [2] Dijkstra, E. W. A note on Two Problems in Connexion with Graphs, Numer. Math. 1 (1959) [3] Dearing, P.M., and Francis, R.L. A minimax location problem on a network, Transportation Science. 8, (1974) [4] Dearing, P.M., Francis, R.L., and Lowe, T.J. Convex location problems on tree networks, Operation Research. 24 (1976) [5] Christofides, N. Graph theory: an algorithms approach, New York: Academic Press, (1975). [6] Maranzana, F.E. On the location of supply points to minimize transportation cost. Operation Research Quartely. 12 (1964) [7] Mladenovic, N., and Hansen, P. Variable Neighbourhood Search, Les Cahiers du GERAD G (1996) (to appear in Computers and Operations Research). [8] Moreno, J.A., Mladenovic, N., and Moreno-Vega, J.M. An Statistical Analysis of Strategies for Multistart Heuristic Searches for p-facility Location-Allocation Problems, Eight Meeting of the EWG on Locational Analysis. Lambrecht, Germany. (1995). [9] Love, R.F., Morris, J.G., and Wesolowsky, G.O. Facilities Location, North-Holland. (1988).

5 [10] Prim, R. C. Shortest Connection Networks and Some Generalizations, Bell System Tech. J. 36 (1957) [11] Tamir, A., and Zemel, E. Locating centers on tree with discontinuos supply and demand regions, Mathematics of Operation Research, 7 (1982) [12] Tamir, A. An O(pn 2 ) algorithm for the p-median and related problem on tree graphs, Operation Research Letter. 19 (1996) [13] Tamir, A., Perez-Brito, D., and Moreno, J.A. A polinomial algorithm for the p-centdian problem on a tree, (Submitted to Networks).

Subdivisions of Graphs: A Generalization of Paths and Cycles

Subdivisions of Graphs: A Generalization of Paths and Cycles Subdivisions of Graphs: A Generalization of Paths and Cycles Ch. Sobhan Babu and Ajit A. Diwan Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076,

More information

22 Elementary Graph Algorithms. There are two standard ways to represent a

22 Elementary Graph Algorithms. There are two standard ways to represent a VI Graph Algorithms Elementary Graph Algorithms Minimum Spanning Trees Single-Source Shortest Paths All-Pairs Shortest Paths 22 Elementary Graph Algorithms There are two standard ways to represent a graph

More information

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE Professor Kindred Math 104, Graph Theory Homework 3 Solutions February 14, 2013 Introduction to Graph Theory, West Section 2.1: 37, 62 Section 2.2: 6, 7, 15 Section 2.3: 7, 10, 14 DO NOT RE-DISTRIBUTE

More information

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1 Graph fundamentals Bipartite graph characterization Lemma. If a graph contains an odd closed walk, then it contains an odd cycle. Proof strategy: Consider a shortest closed odd walk W. If W is not a cycle,

More information

22 Elementary Graph Algorithms. There are two standard ways to represent a

22 Elementary Graph Algorithms. There are two standard ways to represent a VI Graph Algorithms Elementary Graph Algorithms Minimum Spanning Trees Single-Source Shortest Paths All-Pairs Shortest Paths 22 Elementary Graph Algorithms There are two standard ways to represent a graph

More information

Discrete Mathematics, Spring 2004 Homework 8 Sample Solutions

Discrete Mathematics, Spring 2004 Homework 8 Sample Solutions Discrete Mathematics, Spring 4 Homework 8 Sample Solutions 6.4 #. Find the length of a shortest path and a shortest path between the vertices h and d in the following graph: b c d a 7 6 7 4 f 4 6 e g 4

More information

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved.

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved. Chapter 9 Greedy Technique Copyright 2007 Pearson Addison-Wesley. All rights reserved. Greedy Technique Constructs a solution to an optimization problem piece by piece through a sequence of choices that

More information

Topic 10 Part 2 [474 marks]

Topic 10 Part 2 [474 marks] Topic Part 2 [474 marks] The complete graph H has the following cost adjacency matrix Consider the travelling salesman problem for H a By first finding a minimum spanning tree on the subgraph of H formed

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 6 Basic concepts and definitions of graph theory By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs

The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs Frankie Smith Nebraska Wesleyan University fsmith@nebrwesleyan.edu May 11, 2015 Abstract We will look at how to represent

More information

Two Characterizations of Hypercubes

Two Characterizations of Hypercubes Two Characterizations of Hypercubes Juhani Nieminen, Matti Peltola and Pasi Ruotsalainen Department of Mathematics, University of Oulu University of Oulu, Faculty of Technology, Mathematics Division, P.O.

More information

6. Concluding Remarks

6. Concluding Remarks [8] K. J. Supowit, The relative neighborhood graph with an application to minimum spanning trees, Tech. Rept., Department of Computer Science, University of Illinois, Urbana-Champaign, August 1980, also

More information

Bi-criteria single facility location problem with limited distances

Bi-criteria single facility location problem with limited distances University of East Anglia From the SelectedWorks of Amin Vafadarnikjoo Winter February 18, 2009 Bi-criteria single facility location problem with limited distances Ali Shahabi, Mazandaran University of

More information

Minimum spanning trees

Minimum spanning trees Carlos Moreno cmoreno @ uwaterloo.ca EI-3 https://ece.uwaterloo.ca/~cmoreno/ece5 Standard reminder to set phones to silent/vibrate mode, please! During today's lesson: Introduce the notion of spanning

More information

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

Decreasing a key FIB-HEAP-DECREASE-KEY(,, ) 3.. NIL. 2. error new key is greater than current key 6. CASCADING-CUT(, )

Decreasing a key FIB-HEAP-DECREASE-KEY(,, ) 3.. NIL. 2. error new key is greater than current key 6. CASCADING-CUT(, ) Decreasing a key FIB-HEAP-DECREASE-KEY(,, ) 1. if >. 2. error new key is greater than current key 3.. 4.. 5. if NIL and.

More information

CS 6783 (Applied Algorithms) Lecture 5

CS 6783 (Applied Algorithms) Lecture 5 CS 6783 (Applied Algorithms) Lecture 5 Antonina Kolokolova January 19, 2012 1 Minimum Spanning Trees An undirected graph G is a pair (V, E); V is a set (of vertices or nodes); E is a set of (undirected)

More information

CSE 417 Branch & Bound (pt 4) Branch & Bound

CSE 417 Branch & Bound (pt 4) Branch & Bound CSE 417 Branch & Bound (pt 4) Branch & Bound Reminders > HW8 due today > HW9 will be posted tomorrow start early program will be slow, so debugging will be slow... Review of previous lectures > Complexity

More information

The strong chromatic number of a graph

The strong chromatic number of a graph The strong chromatic number of a graph Noga Alon Abstract It is shown that there is an absolute constant c with the following property: For any two graphs G 1 = (V, E 1 ) and G 2 = (V, E 2 ) on the same

More information

Counting the number of spanning tree. Pied Piper Department of Computer Science and Engineering Shanghai Jiao Tong University

Counting the number of spanning tree. Pied Piper Department of Computer Science and Engineering Shanghai Jiao Tong University Counting the number of spanning tree Pied Piper Department of Computer Science and Engineering Shanghai Jiao Tong University 目录 Contents 1 Complete Graph 2 Proof of the Lemma 3 Arbitrary Graph 4 Proof

More information

Facility Location and Strategic Supply Chain Management

Facility Location and Strategic Supply Chain Management Structure I. Location Concepts II. Location Theory Chapter 3 Continuous Location Problems Chapter 4 Location Problems on Networks Chapter 5 Discrete Location Problems Chapter 6 - Territory Design III.

More information

Graphs. Pseudograph: multiple edges and loops allowed

Graphs. Pseudograph: multiple edges and loops allowed Graphs G = (V, E) V - set of vertices, E - set of edges Undirected graphs Simple graph: V - nonempty set of vertices, E - set of unordered pairs of distinct vertices (no multiple edges or loops) Multigraph:

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures 3 Definitions an undirected graph G = (V, E) is a

More information

Math 485, Graph Theory: Homework #3

Math 485, Graph Theory: Homework #3 Math 485, Graph Theory: Homework #3 Stephen G Simpson Due Monday, October 26, 2009 The assignment consists of Exercises 2129, 2135, 2137, 2218, 238, 2310, 2313, 2314, 2315 in the West textbook, plus the

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures Chapter 9 Graph s 2 Definitions Definitions an undirected graph is a finite set

More information

Trees Rooted Trees Spanning trees and Shortest Paths. 12. Graphs and Trees 2. Aaron Tan November 2017

Trees Rooted Trees Spanning trees and Shortest Paths. 12. Graphs and Trees 2. Aaron Tan November 2017 12. Graphs and Trees 2 Aaron Tan 6 10 November 2017 1 10.5 Trees 2 Definition Definition Definition: Tree A graph is said to be circuit-free if, and only if, it has no circuits. A graph is called a tree

More information

Travelling Salesman Problem. Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij

Travelling Salesman Problem. Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij Travelling Salesman Problem Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij 1 Contents TSP and its applications Heuristics and approximation algorithms Construction heuristics,

More information

A Linear Time Algorithm for the Minimum Spanning Tree Problem. on a Planar Graph. Tomomi MATSUI. (January 1994 )

A Linear Time Algorithm for the Minimum Spanning Tree Problem. on a Planar Graph. Tomomi MATSUI. (January 1994 ) A Linear Time Algorithm for the Minimum Spanning Tree Problem on a Planar Graph Tomomi MATSUI (January 994 ) Department of Mathematical Engineering and Information Physics Faculty of Engineering, University

More information

Introduction to Mathematical Programming IE406. Lecture 16. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 16. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 16 Dr. Ted Ralphs IE406 Lecture 16 1 Reading for This Lecture Bertsimas 7.1-7.3 IE406 Lecture 16 2 Network Flow Problems Networks are used to model

More information

Network Improvement for Equilibrium Routing

Network Improvement for Equilibrium Routing Network Improvement for Equilibrium Routing UMANG BHASKAR University of Waterloo and KATRINA LIGETT California Institute of Technology Routing games are frequently used to model the behavior of traffic

More information

val(y, I) α (9.0.2) α (9.0.3)

val(y, I) α (9.0.2) α (9.0.3) CS787: Advanced Algorithms Lecture 9: Approximation Algorithms In this lecture we will discuss some NP-complete optimization problems and give algorithms for solving them that produce a nearly optimal,

More information

USING INJECTION POINTS IN REFORMULATION LOCAL SEARCH FOR SOLVING CONTINUOUS LOCATION PROBLEMS

USING INJECTION POINTS IN REFORMULATION LOCAL SEARCH FOR SOLVING CONTINUOUS LOCATION PROBLEMS Yugoslav Journal of Operations Research 27 (2017), Number 3, 291 300 DOI: 10.2298/YJOR160517018B USING INJECTION POINTS IN REFORMULATION LOCAL SEARCH FOR SOLVING CONTINUOUS LOCATION PROBLEMS Jack BRIMBERG

More information

Solving the p-center Problem with Tabu Search and Variable Neighborhood Search

Solving the p-center Problem with Tabu Search and Variable Neighborhood Search Solving the p-center Problem with Tabu Search and Variable Neighborhood Search Nenad Mladenović Service de Mathématiques de la Gestion, Université Libre de Bruxelles, Brussels, Belgium; GERAD and HEC Montréal,

More information

DESIGN AND ANALYSIS OF ALGORITHMS GREEDY METHOD

DESIGN AND ANALYSIS OF ALGORITHMS GREEDY METHOD 1 DESIGN AND ANALYSIS OF ALGORITHMS UNIT II Objectives GREEDY METHOD Explain and detail about greedy method Explain the concept of knapsack problem and solve the problems in knapsack Discuss the applications

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Notes for Recitation 9

Notes for Recitation 9 6.042/18.062J Mathematics for Computer Science October 8, 2010 Tom Leighton and Marten van Dijk Notes for Recitation 9 1 Traveling Salesperson Problem Now we re going to talk about a famous optimization

More information

Minimum Spanning Tree

Minimum Spanning Tree Minimum Spanning Tree 1 Minimum Spanning Tree G=(V,E) is an undirected graph, where V is a set of nodes and E is a set of possible interconnections between pairs of nodes. For each edge (u,v) in E, we

More information

Chapter 3 Trees. Theorem A graph T is a tree if, and only if, every two distinct vertices of T are joined by a unique path.

Chapter 3 Trees. Theorem A graph T is a tree if, and only if, every two distinct vertices of T are joined by a unique path. Chapter 3 Trees Section 3. Fundamental Properties of Trees Suppose your city is planning to construct a rapid rail system. They want to construct the most economical system possible that will meet the

More information

Graph Theory. Part of Texas Counties.

Graph Theory. Part of Texas Counties. Graph Theory Part of Texas Counties. We would like to visit each of the above counties, crossing each county only once, starting from Harris county. Is this possible? This problem can be modeled as a graph.

More information

Definition: A graph G = (V, E) is called a tree if G is connected and acyclic. The following theorem captures many important facts about trees.

Definition: A graph G = (V, E) is called a tree if G is connected and acyclic. The following theorem captures many important facts about trees. Tree 1. Trees and their Properties. Spanning trees 3. Minimum Spanning Trees 4. Applications of Minimum Spanning Trees 5. Minimum Spanning Tree Algorithms 1.1 Properties of Trees: Definition: A graph G

More information

Complexity Results on Graphs with Few Cliques

Complexity Results on Graphs with Few Cliques Discrete Mathematics and Theoretical Computer Science DMTCS vol. 9, 2007, 127 136 Complexity Results on Graphs with Few Cliques Bill Rosgen 1 and Lorna Stewart 2 1 Institute for Quantum Computing and School

More information

Solving problems on graph algorithms

Solving problems on graph algorithms Solving problems on graph algorithms Workshop Organized by: ACM Unit, Indian Statistical Institute, Kolkata. Tutorial-3 Date: 06.07.2017 Let G = (V, E) be an undirected graph. For a vertex v V, G {v} is

More information

Solving NP-hard Problems on Special Instances

Solving NP-hard Problems on Special Instances Solving NP-hard Problems on Special Instances Solve it in poly- time I can t You can assume the input is xxxxx No Problem, here is a poly-time algorithm 1 Solving NP-hard Problems on Special Instances

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 3 Definitions an undirected graph G = (V, E)

More information

Minimum spanning trees

Minimum spanning trees Minimum spanning trees [We re following the book very closely.] One of the most famous greedy algorithms (actually rather family of greedy algorithms). Given undirected graph G = (V, E), connected Weight

More information

Spanning trees and orientations of graphs

Spanning trees and orientations of graphs Journal of Combinatorics Volume 1, Number 2, 101 111, 2010 Spanning trees and orientations of graphs Carsten Thomassen A conjecture of Merino and Welsh says that the number of spanning trees τ(g) of a

More information

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions Introduction Chapter 9 Graph Algorithms graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 2 Definitions an undirected graph G = (V, E) is

More information

Characterizations of Trees

Characterizations of Trees Characterizations of Trees Lemma Every tree with at least two vertices has at least two leaves. Proof. 1. A connected graph with at least two vertices has an edge. 2. In an acyclic graph, an end point

More information

MT365 Examination 2007 Part 1. Q1 (a) (b) (c) A

MT365 Examination 2007 Part 1. Q1 (a) (b) (c) A MT6 Examination Part Solutions Q (a) (b) (c) F F F E E E G G G G is both Eulerian and Hamiltonian EF is both an Eulerian trail and a Hamiltonian cycle. G is Hamiltonian but not Eulerian and EF is a Hamiltonian

More information

Chapter 2 Graphs. 2.1 Definition of Graphs

Chapter 2 Graphs. 2.1 Definition of Graphs Chapter 2 Graphs Abstract Graphs are discrete structures that consist of vertices and edges connecting some of these vertices. Graphs have many applications in Mathematics, Computer Science, Engineering,

More information

Minimum-Spanning-Tree problem. Minimum Spanning Trees (Forests) Minimum-Spanning-Tree problem

Minimum-Spanning-Tree problem. Minimum Spanning Trees (Forests) Minimum-Spanning-Tree problem Minimum Spanning Trees (Forests) Given an undirected graph G=(V,E) with each edge e having a weight w(e) : Find a subgraph T of G of minimum total weight s.t. every pair of vertices connected in G are

More information

Dist(Vertex u, Vertex v, Graph preprocessed) return u.dist v.dist

Dist(Vertex u, Vertex v, Graph preprocessed) return u.dist v.dist Design and Analysis of Algorithms 5th September, 2016 Practice Sheet 3 Solutions Sushant Agarwal Solutions 1. Given an edge-weighted undirected connected chain-graph G = (V, E), all vertices having degree

More information

On Covering a Graph Optimally with Induced Subgraphs

On Covering a Graph Optimally with Induced Subgraphs On Covering a Graph Optimally with Induced Subgraphs Shripad Thite April 1, 006 Abstract We consider the problem of covering a graph with a given number of induced subgraphs so that the maximum number

More information

Metric Dimension in Fuzzy Graphs. A Novel Approach

Metric Dimension in Fuzzy Graphs. A Novel Approach Applied Mathematical Sciences, Vol. 6, 2012, no. 106, 5273-5283 Metric Dimension in Fuzzy Graphs A Novel Approach B. Praba 1, P. Venugopal 1 and * N. Padmapriya 1 1 Department of Mathematics SSN College

More information

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60 CPS 102: Discrete Mathematics Instructor: Bruce Maggs Quiz 3 Date: Wednesday November 30, 2011 NAME: Prob # Score Max Score 1 10 2 10 3 10 4 10 5 10 6 10 Total 60 1 Problem 1 [10 points] Find a minimum-cost

More information

Traveling Salesman Problem. Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij

Traveling Salesman Problem. Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij Traveling Salesman Problem Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij 1 Contents TSP and its applications Heuristics and approximation algorithms Construction heuristics,

More information

Advanced Algorithms Class Notes for Monday, October 23, 2012 Min Ye, Mingfu Shao, and Bernard Moret

Advanced Algorithms Class Notes for Monday, October 23, 2012 Min Ye, Mingfu Shao, and Bernard Moret Advanced Algorithms Class Notes for Monday, October 23, 2012 Min Ye, Mingfu Shao, and Bernard Moret Greedy Algorithms (continued) The best known application where the greedy algorithm is optimal is surely

More information

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition.

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition. 18.433 Combinatorial Optimization Matching Algorithms September 9,14,16 Lecturer: Santosh Vempala Given a graph G = (V, E), a matching M is a set of edges with the property that no two of the edges have

More information

4 Basics of Trees. Petr Hliněný, FI MU Brno 1 FI: MA010: Trees and Forests

4 Basics of Trees. Petr Hliněný, FI MU Brno 1 FI: MA010: Trees and Forests 4 Basics of Trees Trees, actually acyclic connected simple graphs, are among the simplest graph classes. Despite their simplicity, they still have rich structure and many useful application, such as in

More information

1 Minimum Spanning Trees (MST) b 2 3 a. 10 e h. j m

1 Minimum Spanning Trees (MST) b 2 3 a. 10 e h. j m Minimum Spanning Trees (MST) 8 0 e 7 b 3 a 5 d 9 h i g c 8 7 6 3 f j 9 6 k l 5 m A graph H(U,F) is a subgraph of G(V,E) if U V and F E. A subgraph H(U,F) is called spanning if U = V. Let G be a graph with

More information

Vertex-Colouring Edge-Weightings

Vertex-Colouring Edge-Weightings Vertex-Colouring Edge-Weightings L. Addario-Berry a, K. Dalal a, C. McDiarmid b, B. A. Reed a and A. Thomason c a School of Computer Science, McGill University, University St. Montreal, QC, H3A A7, Canada

More information

managing an evolving set of connected components implementing a Union-Find data structure implementing Kruskal s algorithm

managing an evolving set of connected components implementing a Union-Find data structure implementing Kruskal s algorithm Spanning Trees 1 Spanning Trees the minimum spanning tree problem three greedy algorithms analysis of the algorithms 2 The Union-Find Data Structure managing an evolving set of connected components implementing

More information

Single Source Shortest Path

Single Source Shortest Path Single Source Shortest Path A directed graph G = (V, E) and a pair of nodes s, d is given. The edges have a real-valued weight W i. This time we are looking for the weight and the shortest path from s

More information

A note on Prüfer-like coding and counting forests of uniform hypertrees

A note on Prüfer-like coding and counting forests of uniform hypertrees A note on Prüfer-like coding and counting forests of uniform hypertrees Christian Lavault Abstract The present note is designing encoding and decoding algorithms for a forest of rooted uniform hypertrees

More information

5.1 Min-Max Theorem for General Matching

5.1 Min-Max Theorem for General Matching CSC5160: Combinatorial Optimization and Approximation Algorithms Topic: General Matching Date: 4/01/008 Lecturer: Lap Chi Lau Scribe: Jennifer X.M. WU In this lecture, we discuss matchings in general graph.

More information

We have already seen the transportation problem and the assignment problem. Let us take the transportation problem, first.

We have already seen the transportation problem and the assignment problem. Let us take the transportation problem, first. Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 19 Network Models In this lecture, we will discuss network models. (Refer

More information

LATIN SQUARES AND TRANSVERSAL DESIGNS

LATIN SQUARES AND TRANSVERSAL DESIGNS LATIN SQUARES AND TRANSVERSAL DESIGNS *Shirin Babaei Department of Mathematics, University of Zanjan, Zanjan, Iran *Author for Correspondence ABSTRACT We employ a new construction to show that if and if

More information

AN ALGORITHM WHICH GENERATES THE HAMILTONIAN CIRCUITS OF A CUBIC PLANAR MAP

AN ALGORITHM WHICH GENERATES THE HAMILTONIAN CIRCUITS OF A CUBIC PLANAR MAP AN ALGORITHM WHICH GENERATES THE HAMILTONIAN CIRCUITS OF A CUBIC PLANAR MAP W. L. PRICE ABSTRACT The paper describes an algorithm which generates those Hamiltonian circuits of a given cubic planar map

More information

CS261: A Second Course in Algorithms Lecture #16: The Traveling Salesman Problem

CS261: A Second Course in Algorithms Lecture #16: The Traveling Salesman Problem CS61: A Second Course in Algorithms Lecture #16: The Traveling Salesman Problem Tim Roughgarden February 5, 016 1 The Traveling Salesman Problem (TSP) In this lecture we study a famous computational problem,

More information

Institute of Operating Systems and Computer Networks Algorithms Group. Network Algorithms. Tutorial 4: Matching and other stuff

Institute of Operating Systems and Computer Networks Algorithms Group. Network Algorithms. Tutorial 4: Matching and other stuff Institute of Operating Systems and Computer Networks Algorithms Group Network Algorithms Tutorial 4: Matching and other stuff Christian Rieck Matching 2 Matching A matching M in a graph is a set of pairwise

More information

Bounds on distances for spanning trees of graphs. Mr Mthobisi Luca Ntuli

Bounds on distances for spanning trees of graphs. Mr Mthobisi Luca Ntuli Bounds on distances for spanning trees of graphs Mr Mthobisi Luca Ntuli March 8, 2018 To Mphemba Legacy iii Acknowledgments I would like to thank my supervisors, Dr MJ Morgan and Prof S Mukwembi. It

More information

Theory of Computing. Lecture 10 MAS 714 Hartmut Klauck

Theory of Computing. Lecture 10 MAS 714 Hartmut Klauck Theory of Computing Lecture 10 MAS 714 Hartmut Klauck Seven Bridges of Königsberg Can one take a walk that crosses each bridge exactly once? Seven Bridges of Königsberg Model as a graph Is there a path

More information

Acyclic Subgraphs of Planar Digraphs

Acyclic Subgraphs of Planar Digraphs Acyclic Subgraphs of Planar Digraphs Noah Golowich Research Science Institute Department of Mathematics Massachusetts Institute of Technology Cambridge, Massachusetts, U.S.A. ngolowich@college.harvard.edu

More information

arxiv: v2 [math.co] 13 Aug 2013

arxiv: v2 [math.co] 13 Aug 2013 Orthogonality and minimality in the homology of locally finite graphs Reinhard Diestel Julian Pott arxiv:1307.0728v2 [math.co] 13 Aug 2013 August 14, 2013 Abstract Given a finite set E, a subset D E (viewed

More information

Bottleneck Steiner Tree with Bounded Number of Steiner Vertices

Bottleneck Steiner Tree with Bounded Number of Steiner Vertices Bottleneck Steiner Tree with Bounded Number of Steiner Vertices A. Karim Abu-Affash Paz Carmi Matthew J. Katz June 18, 2011 Abstract Given a complete graph G = (V, E), where each vertex is labeled either

More information

The Geometry of Carpentry and Joinery

The Geometry of Carpentry and Joinery The Geometry of Carpentry and Joinery Pat Morin and Jason Morrison School of Computer Science, Carleton University, 115 Colonel By Drive Ottawa, Ontario, CANADA K1S 5B6 Abstract In this paper we propose

More information

K 4 C 5. Figure 4.5: Some well known family of graphs

K 4 C 5. Figure 4.5: Some well known family of graphs 08 CHAPTER. TOPICS IN CLASSICAL GRAPH THEORY K, K K K, K K, K K, K C C C C 6 6 P P P P P. Graph Operations Figure.: Some well known family of graphs A graph Y = (V,E ) is said to be a subgraph of a graph

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 22.1 Introduction We spent the last two lectures proving that for certain problems, we can

More information

1. The following graph is not Eulerian. Make it into an Eulerian graph by adding as few edges as possible.

1. The following graph is not Eulerian. Make it into an Eulerian graph by adding as few edges as possible. 1. The following graph is not Eulerian. Make it into an Eulerian graph by adding as few edges as possible. A graph is Eulerian if it has an Eulerian circuit, which occurs if the graph is connected and

More information

Multiple Vertex Coverings by Cliques

Multiple Vertex Coverings by Cliques Multiple Vertex Coverings by Cliques Wayne Goddard Department of Computer Science University of Natal Durban, 4041 South Africa Michael A. Henning Department of Mathematics University of Natal Private

More information

N=9. s 2 (2) (3) (0)

N=9. s 2 (2) (3) (0) An Algorithm for the -Median Problem on Two-Dimensional Meshes F.C.M. Lau y P.K.W. Cheng S.S.H. Tse Department of Computer Science and Information Systems The University of Hong Kong, Hong Kong October

More information

Edge-Disjoint Cycles in Regular Directed Graphs

Edge-Disjoint Cycles in Regular Directed Graphs Edge-Disjoint Cycles in Regular Directed Graphs Noga Alon Colin McDiarmid Michael Molloy February 22, 2002 Abstract We prove that any k-regular directed graph with no parallel edges contains a collection

More information

How does the use of different road networks effect the optimal

How does the use of different road networks effect the optimal Working papers in transport, tourism, information technology and microdata analysis How does the use of different road networks effect the optimal location of facilities in rural areas? Ev. underrubrik

More information

Disjoint directed cycles

Disjoint directed cycles Disjoint directed cycles Noga Alon Abstract It is shown that there exists a positive ɛ so that for any integer k, every directed graph with minimum outdegree at least k contains at least ɛk vertex disjoint

More information

Characterization of Super Strongly Perfect Graphs in Chordal and Strongly Chordal Graphs

Characterization of Super Strongly Perfect Graphs in Chordal and Strongly Chordal Graphs ISSN 0975-3303 Mapana J Sci, 11, 4(2012), 121-131 https://doi.org/10.12725/mjs.23.10 Characterization of Super Strongly Perfect Graphs in Chordal and Strongly Chordal Graphs R Mary Jeya Jothi * and A Amutha

More information

On the Convexity Number of Graphs

On the Convexity Number of Graphs On the Convexity Number of Graphs Mitre C. Dourado 1, Fábio Protti, Dieter Rautenbach 3, and Jayme L. Szwarcfiter 4 1 ICE, Universidade Federal Rural do Rio de Janeiro and NCE - UFRJ, Brazil, email: mitre@nce.ufrj.br

More information

Discrete mathematics , Fall Instructor: prof. János Pach

Discrete mathematics , Fall Instructor: prof. János Pach Discrete mathematics 2016-2017, Fall Instructor: prof. János Pach - covered material - Lecture 1. Counting problems To read: [Lov]: 1.2. Sets, 1.3. Number of subsets, 1.5. Sequences, 1.6. Permutations,

More information

Binding Number of Some Special Classes of Trees

Binding Number of Some Special Classes of Trees International J.Math. Combin. Vol.(206), 76-8 Binding Number of Some Special Classes of Trees B.Chaluvaraju, H.S.Boregowda 2 and S.Kumbinarsaiah 3 Department of Mathematics, Bangalore University, Janana

More information

On vertex types of graphs

On vertex types of graphs On vertex types of graphs arxiv:1705.09540v1 [math.co] 26 May 2017 Pu Qiao, Xingzhi Zhan Department of Mathematics, East China Normal University, Shanghai 200241, China Abstract The vertices of a graph

More information

An Optimal Algorithm for the Euclidean Bottleneck Full Steiner Tree Problem

An Optimal Algorithm for the Euclidean Bottleneck Full Steiner Tree Problem An Optimal Algorithm for the Euclidean Bottleneck Full Steiner Tree Problem Ahmad Biniaz Anil Maheshwari Michiel Smid September 30, 2013 Abstract Let P and S be two disjoint sets of n and m points in the

More information

Ma/CS 6b Class 13: Counting Spanning Trees

Ma/CS 6b Class 13: Counting Spanning Trees Ma/CS 6b Class 13: Counting Spanning Trees By Adam Sheffer Reminder: Spanning Trees A spanning tree is a tree that contains all of the vertices of the graph. A graph can contain many distinct spanning

More information

On vertex-coloring edge-weighting of graphs

On vertex-coloring edge-weighting of graphs Front. Math. China DOI 10.1007/s11464-009-0014-8 On vertex-coloring edge-weighting of graphs Hongliang LU 1, Xu YANG 1, Qinglin YU 1,2 1 Center for Combinatorics, Key Laboratory of Pure Mathematics and

More information

Module 2: NETWORKS AND DECISION MATHEMATICS

Module 2: NETWORKS AND DECISION MATHEMATICS Further Mathematics 2017 Module 2: NETWORKS AND DECISION MATHEMATICS Chapter 9 Undirected Graphs and Networks Key knowledge the conventions, terminology, properties and types of graphs; edge, face, loop,

More information

Optimal tour along pubs in the UK

Optimal tour along pubs in the UK 1 From Facebook Optimal tour along 24727 pubs in the UK Road distance (by google maps) see also http://www.math.uwaterloo.ca/tsp/pubs/index.html (part of TSP homepage http://www.math.uwaterloo.ca/tsp/

More information

arxiv: v1 [cs.dm] 10 Sep 2018

arxiv: v1 [cs.dm] 10 Sep 2018 Minimum Eccentric Connectivity Index for Graphs with Fixed Order and Fixed Number of Pending Vertices Gauvain Devillez 1, Alain Hertz 2, Hadrien Mélot 1, Pierre Hauweele 1 1 Computer Science Department

More information

Week 11: Minimum Spanning trees

Week 11: Minimum Spanning trees Week 11: Minimum Spanning trees Agenda: Minimum Spanning Trees Prim s Algorithm Reading: Textbook : 61-7 1 Week 11: Minimum Spanning trees Minimum spanning tree (MST) problem: Input: edge-weighted (simple,

More information

Approximation Algorithms

Approximation Algorithms Chapter 8 Approximation Algorithms Algorithm Theory WS 2016/17 Fabian Kuhn Approximation Algorithms Optimization appears everywhere in computer science We have seen many examples, e.g.: scheduling jobs

More information

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9.

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9. II.4 Surface Simplification 37 II.4 Surface Simplification In applications it is often necessary to simplify the data or its representation. One reason is measurement noise, which we would like to eliminate,

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 17. PATH ANALYSIS AND NETWORK APPLICATIONS 17.1 Path Analysis 17.1.1 Source Raster 17.1.2 Cost Raster Box 17.1 Cost Raster for a Site Analysis of Pipelines 17.1.3 Cost Distance Measures 17.1.4

More information