Multibody reconstruction of the dynamic scene surrounding a vehicle using a wide baseline and multifocal stereo system

Size: px
Start display at page:

Download "Multibody reconstruction of the dynamic scene surrounding a vehicle using a wide baseline and multifocal stereo system"

Transcription

1 Multibody reconstruction of the dynamic scene surrounding a vehicle using a wide baseline and multifocal stereo system Laurent Mennillo 1,2, Éric Royer1, Frédéric Mondot 2, Johann Mousain 2, Michel Dhome 1 1 Pascal Institute, Clermont Auvergne University - Aubière, France 2 Technocentre RENAULT - Guyancourt, France September 24, 2017

2 Context and scientific objectives 2 L. Mennillo et al. Multibody SLAM using an heterogeneous stereo system

3 Context and scientific objectives Context Short baseline with an identical stereo pair is well studied Not the case of wide baseline and heterogeneous stereo Multi-camera system inspired by actual sensor implantation on current vehicles (frontal camera and AVM systems) Industrial approach with RENAULT Scientific objectives Develop a sparse, purely geometrical solution for multibody reconstruction on heterogeneous stereo systems acquisition in a real environment 3

4 - Overview Framework 1 Offline intrinsic and extrinsic calibration using [1] 2 Feature extraction and matching Local optimization 4

5 - Features Feature sets Each frame has a corresponding set of SIFT features f i,t i 0... m is the camera of observation t 0... n is the time of observation Two feature matching schemes between the sets f i,t and f i,t Temporal matching i = i and t t Stereo matching i i and t = t Matches between a feature x f i,t and another feature x f i,t Potential feature match p(x, x ) Final feature match m(x, x ) 5

6 - Feature extraction 1. Extracting the set of new features S1 Frame downsampling to account for the different focal lengths Frame division into blocks to ensure good spatial repartition SIFT feature detection and description for each block 2. Extracting the set of tracked features S2 Temporal tracking of previously triangulated features in f i,t 1 using the Lucas Kanade method [2] to compensate for block division SIFT description for each tracked feature 3. Merging the two sets S1 and S2 to obtain f i,t Elimination of duplicates based on pixelwise euclidean distance 6

7 - Feature matching Locality constraint Lc for temporal matching between f i,t and f i,t+1 Potential matches Features at near distance (search window) Epipolar constraint Ec for stereo matching between f i,t and f i,t Potential matches Features near epipolar lines If more than one potential match exists for a feature Retain the minimal L 2 distance between descriptors Potential matches p(x, x ) = Final match m(x, x ) 7

8 - Estimate the ego motion parameters of the multi-camera system Bundle adjustment approach as in [3] Local optimization of selected keyframes and associated 3D points 8

9 - Set of observations o X associated to the 3D point X At least a couple of associated observations (o X i,t, ox i,t ) Corresponding to either a temporal or stereo match m(x, x ) Several possible observations, in multiple frames at multiple times Determine the class C of the 3D point X from o X Static = C X = S Mobile = C X = M Outlier = C X = O 9

10 - 3D point consistency constraint Cc Reprojection error for all o X i,t ox is inferior to a threshold t Cc Static 3D points are consistent for all their observations 10

11 - Mobile 3D point detection Step 1 - Stereo match and reconstruction at time t1 11

12 - Mobile 3D point detection Step 2 - Temporal matches from t1 to t2 = Tracking 12

13 - Mobile 3D point detection Step 3 - Stereo match at time t2 13

14 - Mobile 3D point detection Consistency constraint is not satisfied for all observations of X 2 14

15 - 3D point mobility constraints Mc1, Mc2 and Mc3 Mc1 = Consistency for each individual temporality t Mc2 = At least one stereo match per temporality Mc3 = At least two temporalities per 3D point 15

16 - Trajectory consistency Filters erratic movements generated by false matches For mobile points that have been tracked at least 3 times Distance and elevation between each pair of consecutive points Angle formed by each triplet of consecutive points 16

17 - of camera poses and 3D points Unified optimization of all 3D points Static points and mobile points per temporality Minimization of the reprojection error with bundle adjustment 17

18 Experimental vehicle and sequences Motivations Specific camera configuration needed to reflect industrial trends No multifocal and wide baseline stereo datasets publicly available Experimental vehicle Multifocal and wide baseline multi camera system (3x 185, 1x 80 ) Hardware synchronization of all cameras Environment and sequences Realistic but controlled environment 8 sequences = Different road traffic scenarios at low speed 18

19 Experimental vehicle and sequences v 19 L. Mennillo et al. Multibody SLAM using an heterogeneous stereo system

20 Qualitative evaluation Limitations Qualitative evaluation Green - Static points Red - Mobile points Several mobile points tracked and reconstructed 20 L. Mennillo et al. Multibody SLAM using an heterogeneous stereo system

21 Qualitative evaluation Limitations Limitations False positives can occur due to false matches Static points on a moving object = Not tracked for 3 consecutive frames One inconsistent observation = Dismisses the point entirely 21 L. Mennillo et al. Multibody SLAM using an heterogeneous stereo system

22 and future works and dataset The method works as intended on our dataset Future works Denser matching near reconstructed mobile points Scoring method to prevent outliers arising from a single false match Working on more mobile points could help their reconstruction in non-overlapped FOV of the multi-camera system 22

23 Bibliography P. Lébraly, E. Royer, O. Ait-Aider, C. Deymier, and M. Dhome. Fast calibration of embedded non-overlapping cameras. In International Conference on Robotics and Automation, pages IEEE, B. D. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI 81, pages , San Francisco, CA, USA, Morgan Kaufmann Publishers Inc. E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd. Real time localization and 3d reconstruction. In Computer Vision and Pattern Recognition, volume 1, pages IEEE,

24 Questions? 24

25 25 L. Mennillo et al. Multibody SLAM using an heterogeneous stereo system

Real Time Localization and 3D Reconstruction

Real Time Localization and 3D Reconstruction Real Time Localization and 3D Reconstruction E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, P. Sayd LASMEA UMR 6602, Université Blaise Pascal/CNRS, 63177 Aubière Cedex, France Image and embedded computer

More information

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10 Structure from Motion CSE 152 Lecture 10 Announcements Homework 3 is due May 9, 11:59 PM Reading: Chapter 8: Structure from Motion Optional: Multiple View Geometry in Computer Vision, 2nd edition, Hartley

More information

arxiv: v1 [cs.cv] 28 Sep 2018

arxiv: v1 [cs.cv] 28 Sep 2018 Camera Pose Estimation from Sequence of Calibrated Images arxiv:1809.11066v1 [cs.cv] 28 Sep 2018 Jacek Komorowski 1 and Przemyslaw Rokita 2 1 Maria Curie-Sklodowska University, Institute of Computer Science,

More information

ORB SLAM 2 : an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras

ORB SLAM 2 : an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras ORB SLAM 2 : an OpenSource SLAM System for Monocular, Stereo and RGBD Cameras Raul urartal and Juan D. Tardos Presented by: Xiaoyu Zhou Bolun Zhang Akshaya Purohit Lenord Melvix 1 Outline Background Introduction

More information

Camera Drones Lecture 3 3D data generation

Camera Drones Lecture 3 3D data generation Camera Drones Lecture 3 3D data generation Ass.Prof. Friedrich Fraundorfer WS 2017 Outline SfM introduction SfM concept Feature matching Camera pose estimation Bundle adjustment Dense matching Data products

More information

Observations. Basic iteration Line estimated from 2 inliers

Observations. Basic iteration Line estimated from 2 inliers Line estimated from 2 inliers 3 Observations We need (in this case!) a minimum of 2 points to determine a line Given such a line l, we can determine how well any other point y fits the line l For example:

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t R 2 3,t 3 Camera 1 Camera

More information

Incremental Real-time Bundle Adjustment for Multi-camera Systems with Points at Infinity

Incremental Real-time Bundle Adjustment for Multi-camera Systems with Points at Infinity Incremental Real-time Bundle Adjustment for Multi-camera Systems with Points at Infinity Johannes Schneider, Thomas Läbe, Wolfgang Förstner 1 Department of Photogrammetry Institute of Geodesy and Geoinformation

More information

Generic and Real-Time Structure from Motion

Generic and Real-Time Structure from Motion Generic and Real-Time Structure from Motion E. Mouragnon 1,2, M. Lhuillier 1, M. Dhome 1, F. Dekeyser 2 and P. Sayd 2 1 LASMEA UMR 6602, Université Blaise Pascal/CNRS, 63177 Aubière Cedex, France 2 CEA,

More information

Application questions. Theoretical questions

Application questions. Theoretical questions The oral exam will last 30 minutes and will consist of one application question followed by two theoretical questions. Please find below a non exhaustive list of possible application questions. The list

More information

Image processing and features

Image processing and features Image processing and features Gabriele Bleser gabriele.bleser@dfki.de Thanks to Harald Wuest, Folker Wientapper and Marc Pollefeys Introduction Previous lectures: geometry Pose estimation Epipolar geometry

More information

Long-term motion estimation from images

Long-term motion estimation from images Long-term motion estimation from images Dennis Strelow 1 and Sanjiv Singh 2 1 Google, Mountain View, CA, strelow@google.com 2 Carnegie Mellon University, Pittsburgh, PA, ssingh@cmu.edu Summary. Cameras

More information

arxiv: v1 [cs.cv] 28 Sep 2018

arxiv: v1 [cs.cv] 28 Sep 2018 Extrinsic camera calibration method and its performance evaluation Jacek Komorowski 1 and Przemyslaw Rokita 2 arxiv:1809.11073v1 [cs.cv] 28 Sep 2018 1 Maria Curie Sklodowska University Lublin, Poland jacek.komorowski@gmail.com

More information

Structure from Motion

Structure from Motion Structure from Motion Outline Bundle Adjustment Ambguities in Reconstruction Affine Factorization Extensions Structure from motion Recover both 3D scene geoemetry and camera positions SLAM: Simultaneous

More information

Step-by-Step Model Buidling

Step-by-Step Model Buidling Step-by-Step Model Buidling Review Feature selection Feature selection Feature correspondence Camera Calibration Euclidean Reconstruction Landing Augmented Reality Vision Based Control Sparse Structure

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t 2 R 3,t 3 Camera 1 Camera

More information

Overview. Related Work Tensor Voting in 2-D Tensor Voting in 3-D Tensor Voting in N-D Application to Vision Problems Stereo Visual Motion

Overview. Related Work Tensor Voting in 2-D Tensor Voting in 3-D Tensor Voting in N-D Application to Vision Problems Stereo Visual Motion Overview Related Work Tensor Voting in 2-D Tensor Voting in 3-D Tensor Voting in N-D Application to Vision Problems Stereo Visual Motion Binary-Space-Partitioned Images 3-D Surface Extraction from Medical

More information

A Systems View of Large- Scale 3D Reconstruction

A Systems View of Large- Scale 3D Reconstruction Lecture 23: A Systems View of Large- Scale 3D Reconstruction Visual Computing Systems Goals and motivation Construct a detailed 3D model of the world from unstructured photographs (e.g., Flickr, Facebook)

More information

Estimating Geospatial Trajectory of a Moving Camera

Estimating Geospatial Trajectory of a Moving Camera Estimating Geospatial Trajectory of a Moving Camera Asaad Hakeem 1, Roberto Vezzani 2, Mubarak Shah 1, Rita Cucchiara 2 1 School of Electrical Engineering and Computer Science, University of Central Florida,

More information

CS 532: 3D Computer Vision 7 th Set of Notes

CS 532: 3D Computer Vision 7 th Set of Notes 1 CS 532: 3D Computer Vision 7 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Logistics No class on October

More information

3D Modeling using multiple images Exam January 2008

3D Modeling using multiple images Exam January 2008 3D Modeling using multiple images Exam January 2008 All documents are allowed. Answers should be justified. The different sections below are independant. 1 3D Reconstruction A Robust Approche Consider

More information

Monocular Visual-Inertial SLAM. Shaojie Shen Assistant Professor, HKUST Director, HKUST-DJI Joint Innovation Laboratory

Monocular Visual-Inertial SLAM. Shaojie Shen Assistant Professor, HKUST Director, HKUST-DJI Joint Innovation Laboratory Monocular Visual-Inertial SLAM Shaojie Shen Assistant Professor, HKUST Director, HKUST-DJI Joint Innovation Laboratory Why Monocular? Minimum structural requirements Widely available sensors Applications:

More information

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm Computer Vision Group Prof. Daniel Cremers Dense Tracking and Mapping for Autonomous Quadrocopters Jürgen Sturm Joint work with Frank Steinbrücker, Jakob Engel, Christian Kerl, Erik Bylow, and Daniel Cremers

More information

Calibration of Non-Overlapping Cameras - Application to Vision-Based Robotics

Calibration of Non-Overlapping Cameras - Application to Vision-Based Robotics LÉBRALY et al.: CALIBRATION OF NON-OVERLAPPING CAMERAS 1 Calibration of Non-Overlapping Cameras - Application to Vision-Based Robotics Pierre Lébraly 13 Pierre.LEBRALY@lasmea.univ-bpclermont.fr Omar Ait-Aider

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

Stereo Visual Odometry for Pipe Mapping

Stereo Visual Odometry for Pipe Mapping Stereo Visual Odometry for Pipe Mapping Peter Hansen, Hatem Alismail, Brett Browning and Peter Rander Abstract Pipe inspection is a critical activity in gas production facilities and many other industries.

More information

Motion Capture using Body Mounted Cameras in an Unknown Environment

Motion Capture using Body Mounted Cameras in an Unknown Environment Motion Capture using Body Mounted Cameras in an Unknown Environment Nam Vo Taeyoung Kim Siddharth Choudhary 1. The Problem Motion capture has been recently used to provide much of character motion in several

More information

Weighted Local Bundle Adjustment and Application to Odometry and Visual SLAM Fusion

Weighted Local Bundle Adjustment and Application to Odometry and Visual SLAM Fusion EUDES,NAUDET,LHUILLIER,DHOME: WEIGHTED LBA & ODOMETRY FUSION 1 Weighted Local Bundle Adjustment and Application to Odometry and Visual SLAM Fusion Alexandre Eudes 12 alexandre.eudes@lasmea.univ-bpclermont.fr

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION Table of Contents Page No. 1 INTRODUCTION 1.1 Problem overview 2 1.2 Research objective 3 1.3 Thesis outline 7 2 1. INTRODUCTION 1.1 PROBLEM OVERVIEW The process of mapping and

More information

Improving Initial Estimations for Structure from Motion Methods

Improving Initial Estimations for Structure from Motion Methods Improving Initial Estimations for Structure from Motion Methods University of Bonn Outline Motivation Computer-Vision Basics Stereo Vision Bundle Adjustment Feature Matching Global Initial Estimation Component

More information

A GEOMETRIC SEGMENTATION APPROACH FOR THE 3D RECONSTRUCTION OF DYNAMIC SCENES IN 2D VIDEO SEQUENCES

A GEOMETRIC SEGMENTATION APPROACH FOR THE 3D RECONSTRUCTION OF DYNAMIC SCENES IN 2D VIDEO SEQUENCES A GEOMETRIC SEGMENTATION APPROACH FOR THE 3D RECONSTRUCTION OF DYNAMIC SCENES IN 2D VIDEO SEQUENCES Sebastian Knorr, Evren mre, A. Aydın Alatan, and Thomas Sikora Communication Systems Group Technische

More information

Stereo and Epipolar geometry

Stereo and Epipolar geometry Previously Image Primitives (feature points, lines, contours) Today: Stereo and Epipolar geometry How to match primitives between two (multiple) views) Goals: 3D reconstruction, recognition Jana Kosecka

More information

Live Metric 3D Reconstruction on Mobile Phones ICCV 2013

Live Metric 3D Reconstruction on Mobile Phones ICCV 2013 Live Metric 3D Reconstruction on Mobile Phones ICCV 2013 Main Contents 1. Target & Related Work 2. Main Features of This System 3. System Overview & Workflow 4. Detail of This System 5. Experiments 6.

More information

CMU Facilities. Motion Capture Lab. Panoptic Studio

CMU Facilities. Motion Capture Lab. Panoptic Studio CMU Facilities Motion Capture Lab The 1700 square foot Motion Capture Lab provides a resource for behavior capture of humans as well as measuring and controlling robot behavior in real time. It includes

More information

Accurate Motion Estimation and High-Precision 3D Reconstruction by Sensor Fusion

Accurate Motion Estimation and High-Precision 3D Reconstruction by Sensor Fusion 007 IEEE International Conference on Robotics and Automation Roma, Italy, 0-4 April 007 FrE5. Accurate Motion Estimation and High-Precision D Reconstruction by Sensor Fusion Yunsu Bok, Youngbae Hwang,

More information

Visual Odometry for Non-Overlapping Views Using Second-Order Cone Programming

Visual Odometry for Non-Overlapping Views Using Second-Order Cone Programming Visual Odometry for Non-Overlapping Views Using Second-Order Cone Programming Jae-Hak Kim 1, Richard Hartley 1, Jan-Michael Frahm 2 and Marc Pollefeys 2 1 Research School of Information Sciences and Engineering

More information

Stereoscopic Vision System for reconstruction of 3D objects

Stereoscopic Vision System for reconstruction of 3D objects Stereoscopic Vision System for reconstruction of 3D objects Robinson Jimenez-Moreno Professor, Department of Mechatronics Engineering, Nueva Granada Military University, Bogotá, Colombia. Javier O. Pinzón-Arenas

More information

Monocular Visual Odometry

Monocular Visual Odometry Elective in Robotics coordinator: Prof. Giuseppe Oriolo Monocular Visual Odometry (slides prepared by Luca Ricci) Monocular vs. Stereo: eamples from Nature Predator Predators eyes face forward. The field

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

EECS 442: Final Project

EECS 442: Final Project EECS 442: Final Project Structure From Motion Kevin Choi Robotics Ismail El Houcheimi Robotics Yih-Jye Jeffrey Hsu Robotics Abstract In this paper, we summarize the method, and results of our projective

More information

Master Automática y Robótica. Técnicas Avanzadas de Vision: Visual Odometry. by Pascual Campoy Computer Vision Group

Master Automática y Robótica. Técnicas Avanzadas de Vision: Visual Odometry. by Pascual Campoy Computer Vision Group Master Automática y Robótica Técnicas Avanzadas de Vision: by Pascual Campoy Computer Vision Group www.vision4uav.eu Centro de Automá

More information

EASY PROJECTOR AND MONOCHROME CAMERA CALIBRATION METHOD USING PLANE BOARD WITH MULTIPLE ENCODED MARKERS

EASY PROJECTOR AND MONOCHROME CAMERA CALIBRATION METHOD USING PLANE BOARD WITH MULTIPLE ENCODED MARKERS EASY PROJECTOR AND MONOCHROME CAMERA CALIBRATION METHOD USING PLANE BOARD WITH MULTIPLE ENCODED MARKERS Tatsuya Hanayama 1 Shota Kiyota 1 Ryo Furukawa 3 Hiroshi Kawasaki 1 1 Faculty of Engineering, Kagoshima

More information

Estimation of Camera Positions over Long Image Sequences

Estimation of Camera Positions over Long Image Sequences Estimation of Camera Positions over Long Image Sequences Ming Yan, Robert Laganière, Gerhard Roth VIVA Research lab, School of Information Technology and Engineering University of Ottawa Ottawa, Ontario,

More information

Camera Calibration for a Robust Omni-directional Photogrammetry System

Camera Calibration for a Robust Omni-directional Photogrammetry System Camera Calibration for a Robust Omni-directional Photogrammetry System Fuad Khan 1, Michael Chapman 2, Jonathan Li 3 1 Immersive Media Corporation Calgary, Alberta, Canada 2 Ryerson University Toronto,

More information

Augmented Reality, Advanced SLAM, Applications

Augmented Reality, Advanced SLAM, Applications Augmented Reality, Advanced SLAM, Applications Prof. Didier Stricker & Dr. Alain Pagani alain.pagani@dfki.de Lecture 3D Computer Vision AR, SLAM, Applications 1 Introduction Previous lectures: Basics (camera,

More information

CS664 Lecture #19: Layers, RANSAC, panoramas, epipolar geometry

CS664 Lecture #19: Layers, RANSAC, panoramas, epipolar geometry CS664 Lecture #19: Layers, RANSAC, panoramas, epipolar geometry Some material taken from: David Lowe, UBC Jiri Matas, CMP Prague http://cmp.felk.cvut.cz/~matas/papers/presentations/matas_beyondransac_cvprac05.ppt

More information

Generalized Detection and Merging of Loop Closures for Video Sequences

Generalized Detection and Merging of Loop Closures for Video Sequences Generalized Detection and Merging of Loop Closures for Video Sequences Manfred Klopschitz 1, Christopher Zach 2, Arnold Irschara 1, Dieter Schmalstieg 1 1 Graz University of Technology {klopschitz,irschara,schmalstieg}@icg.tugraz.at

More information

Towards Geographical Referencing of Monocular SLAM Reconstruction Using 3D City Models: Application to Real-Time Accurate Vision-Based Localization

Towards Geographical Referencing of Monocular SLAM Reconstruction Using 3D City Models: Application to Real-Time Accurate Vision-Based Localization Towards Geographical Referencing of Monocular SLAM Reconstruction Using 3D City Models: Application to Real-Time Accurate Vision-Based Localization Pierre Lothe, Steve Bourgeois, Fabien Dekeyser CEA, LIST,

More information

3D Environment Measurement Using Binocular Stereo and Motion Stereo by Mobile Robot with Omnidirectional Stereo Camera

3D Environment Measurement Using Binocular Stereo and Motion Stereo by Mobile Robot with Omnidirectional Stereo Camera 3D Environment Measurement Using Binocular Stereo and Motion Stereo by Mobile Robot with Omnidirectional Stereo Camera Shinichi GOTO Department of Mechanical Engineering Shizuoka University 3-5-1 Johoku,

More information

BIL Computer Vision Apr 16, 2014

BIL Computer Vision Apr 16, 2014 BIL 719 - Computer Vision Apr 16, 2014 Binocular Stereo (cont d.), Structure from Motion Aykut Erdem Dept. of Computer Engineering Hacettepe University Slide credit: S. Lazebnik Basic stereo matching algorithm

More information

3D Modeling from Range Images

3D Modeling from Range Images 1 3D Modeling from Range Images A Comprehensive System for 3D Modeling from Range Images Acquired from a 3D ToF Sensor Dipl.-Inf. March 22th, 2007 Sensor and Motivation 2 3D sensor PMD 1k-S time-of-flight

More information

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University.

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University. 3D Computer Vision Structured Light II Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Introduction

More information

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching Stereo Matching Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix

More information

Planetary Rover Absolute Localization by Combining Visual Odometry with Orbital Image Measurements

Planetary Rover Absolute Localization by Combining Visual Odometry with Orbital Image Measurements Planetary Rover Absolute Localization by Combining Visual Odometry with Orbital Image Measurements M. Lourakis and E. Hourdakis Institute of Computer Science Foundation for Research and Technology Hellas

More information

Direct Methods in Visual Odometry

Direct Methods in Visual Odometry Direct Methods in Visual Odometry July 24, 2017 Direct Methods in Visual Odometry July 24, 2017 1 / 47 Motivation for using Visual Odometry Wheel odometry is affected by wheel slip More accurate compared

More information

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Carsten Rother 09/12/2013 Computer Vision I: Multi-View 3D reconstruction Roadmap this lecture Computer Vision I: Multi-View

More information

Using temporal seeding to constrain the disparity search range in stereo matching

Using temporal seeding to constrain the disparity search range in stereo matching Using temporal seeding to constrain the disparity search range in stereo matching Thulani Ndhlovu Mobile Intelligent Autonomous Systems CSIR South Africa Email: tndhlovu@csir.co.za Fred Nicolls Department

More information

TRAFFIC LIGHTS DETECTION IN ADVERSE CONDITIONS USING COLOR, SYMMETRY AND SPATIOTEMPORAL INFORMATION

TRAFFIC LIGHTS DETECTION IN ADVERSE CONDITIONS USING COLOR, SYMMETRY AND SPATIOTEMPORAL INFORMATION International Conference on Computer Vision Theory and Applications VISAPP 2012 Rome, Italy TRAFFIC LIGHTS DETECTION IN ADVERSE CONDITIONS USING COLOR, SYMMETRY AND SPATIOTEMPORAL INFORMATION George Siogkas

More information

Aircraft Tracking Based on KLT Feature Tracker and Image Modeling

Aircraft Tracking Based on KLT Feature Tracker and Image Modeling Aircraft Tracking Based on KLT Feature Tracker and Image Modeling Khawar Ali, Shoab A. Khan, and Usman Akram Computer Engineering Department, College of Electrical & Mechanical Engineering, National University

More information

Hybrid Image Registration of Endoscopic Robotic Capsule (ERC) Images Using Vision-Inertial Sensors Fusion

Hybrid Image Registration of Endoscopic Robotic Capsule (ERC) Images Using Vision-Inertial Sensors Fusion Hybrid Image Registration of Endoscopic Robotic Capsule (ERC) Images Using Vision-Inertial Sensors Fusion Yasmeen Abu-Kheil 1(B), Lakmal Seneviratne 1, and Jorge Dias 1,2 1 Khalifa University of Science

More information

Independently Moving Objects Detection based on Stereo Visual Odometry

Independently Moving Objects Detection based on Stereo Visual Odometry Independently Moving Objects Detection based on Stereo Visual Odometry Abaabu Amina Instituto Superior Técnico, Lisbon, Portugal ist179454@mail.ist.utl.pt Abstract In this project we propose an approach

More information

Outlier rejection for cameras on intelligent vehicles

Outlier rejection for cameras on intelligent vehicles Available online at www.sciencedirect.com Pattern Recognition Letters 29 (28) 828 84 www.elsevier.com/locate/patrec Outlier rejection for cameras on intelligent vehicles Jae Kyu Suhr a, Ho Gi Jung a,b,

More information

LUMS Mine Detector Project

LUMS Mine Detector Project LUMS Mine Detector Project Using visual information to control a robot (Hutchinson et al. 1996). Vision may or may not be used in the feedback loop. Visual (image based) features such as points, lines

More information

Incremental Line-based 3D Reconstruction using Geometric Constraints

Incremental Line-based 3D Reconstruction using Geometric Constraints HOFER ET AL.: INCREMENTAL LINE-BASED 3D RECONSTRUCTION 1 Incremental Line-based 3D Reconstruction using Geometric Constraints Manuel Hofer hofer@icg.tugraz.at Andreas Wendel wendel@icg.tugraz.at Horst

More information

Summarization of Egocentric Moving Videos for Generating Walking Route Guidance

Summarization of Egocentric Moving Videos for Generating Walking Route Guidance Summarization of Egocentric Moving Videos for Generating Walking Route Guidance Masaya Okamoto and Keiji Yanai Department of Informatics, The University of Electro-Communications 1-5-1 Chofugaoka, Chofu-shi,

More information

Image Augmented Laser Scan Matching for Indoor Localization

Image Augmented Laser Scan Matching for Indoor Localization Image Augmented Laser Scan Matching for Indoor Localization Nikhil Naikal Avideh Zakhor John Kua Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2009-35

More information

3D Models from Extended Uncalibrated Video Sequences: Addressing Key-frame Selection and Projective Drift

3D Models from Extended Uncalibrated Video Sequences: Addressing Key-frame Selection and Projective Drift 3D Models from Extended Uncalibrated Video Sequences: Addressing Key-frame Selection and Projective Drift Jason Repko Department of Computer Science University of North Carolina at Chapel Hill repko@csuncedu

More information

Calibration of a Different Field-of-view Stereo Camera System using an Embedded Checkerboard Pattern

Calibration of a Different Field-of-view Stereo Camera System using an Embedded Checkerboard Pattern Calibration of a Different Field-of-view Stereo Camera System using an Embedded Checkerboard Pattern Pathum Rathnayaka, Seung-Hae Baek and Soon-Yong Park School of Computer Science and Engineering, Kyungpook

More information

Augmenting Reality, Naturally:

Augmenting Reality, Naturally: Augmenting Reality, Naturally: Scene Modelling, Recognition and Tracking with Invariant Image Features by Iryna Gordon in collaboration with David G. Lowe Laboratory for Computational Intelligence Department

More information

Detection and Tracking of Moving Objects Using 2.5D Motion Grids

Detection and Tracking of Moving Objects Using 2.5D Motion Grids Detection and Tracking of Moving Objects Using 2.5D Motion Grids Alireza Asvadi, Paulo Peixoto and Urbano Nunes Institute of Systems and Robotics, University of Coimbra September 2015 1 Outline: Introduction

More information

Monocular Vision for Mobile Robot Localization and Autonomous Navigation

Monocular Vision for Mobile Robot Localization and Autonomous Navigation International Journal of Computer Vision 74(3), 237 260, 2007 c 2007 Springer Science + Business Media, LLC. Manufactured in the United States. DOI: 10.1007/s11263-006-0023-y Monocular Vision for Mobile

More information

Topics to be Covered in the Rest of the Semester. CSci 4968 and 6270 Computational Vision Lecture 15 Overview of Remainder of the Semester

Topics to be Covered in the Rest of the Semester. CSci 4968 and 6270 Computational Vision Lecture 15 Overview of Remainder of the Semester Topics to be Covered in the Rest of the Semester CSci 4968 and 6270 Computational Vision Lecture 15 Overview of Remainder of the Semester Charles Stewart Department of Computer Science Rensselaer Polytechnic

More information

Egomotion Estimation by Point-Cloud Back-Mapping

Egomotion Estimation by Point-Cloud Back-Mapping Egomotion Estimation by Point-Cloud Back-Mapping Haokun Geng, Radu Nicolescu, and Reinhard Klette Department of Computer Science, University of Auckland, New Zealand hgen001@aucklanduni.ac.nz Abstract.

More information

This is the author s version of a work that was submitted/accepted for publication in the following source:

This is the author s version of a work that was submitted/accepted for publication in the following source: This is the author s version of a work that was submitted/accepted for publication in the following source: Warren, Michael, McKinnon, David, & Upcroft, Ben (213) Online calibration of stereo rigs for

More information

Fundamental matrix. Let p be a point in left image, p in right image. Epipolar relation. Epipolar mapping described by a 3x3 matrix F

Fundamental matrix. Let p be a point in left image, p in right image. Epipolar relation. Epipolar mapping described by a 3x3 matrix F Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix F Fundamental

More information

Computational Optical Imaging - Optique Numerique. -- Single and Multiple View Geometry, Stereo matching --

Computational Optical Imaging - Optique Numerique. -- Single and Multiple View Geometry, Stereo matching -- Computational Optical Imaging - Optique Numerique -- Single and Multiple View Geometry, Stereo matching -- Autumn 2015 Ivo Ihrke with slides by Thorsten Thormaehlen Reminder: Feature Detection and Matching

More information

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006,

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, School of Computer Science and Communication, KTH Danica Kragic EXAM SOLUTIONS Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, 14.00 19.00 Grade table 0-25 U 26-35 3 36-45

More information

Estimation of Camera Motion with Feature Flow Model for 3D Environment Modeling by Using Omni-Directional Camera

Estimation of Camera Motion with Feature Flow Model for 3D Environment Modeling by Using Omni-Directional Camera Estimation of Camera Motion with Feature Flow Model for 3D Environment Modeling by Using Omni-Directional Camera Ryosuke Kawanishi, Atsushi Yamashita and Toru Kaneko Abstract Map information is important

More information

Outdoor autonomous navigation using monocular vision

Outdoor autonomous navigation using monocular vision Outdoor autonomous navigation using monocular vision Eric Royer, Jonathan Bom, Michel Dhome, Benoit Thuilot, Maxime Lhuillier and François Marmoiton LASMEA UMR6602 CNRS and Blaise Pascal University 24

More information

Synchronized Ego-Motion Recovery of Two Face-to-Face Cameras

Synchronized Ego-Motion Recovery of Two Face-to-Face Cameras Synchronized Ego-Motion Recovery of Two Face-to-Face Cameras Jinshi Cui, Yasushi Yagi, Hongbin Zha, Yasuhiro Mukaigawa, and Kazuaki Kondo State Key Lab on Machine Perception, Peking University, China {cjs,zha}@cis.pku.edu.cn

More information

Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition. Motion Tracking. CS4243 Motion Tracking 1

Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition. Motion Tracking. CS4243 Motion Tracking 1 Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition Motion Tracking CS4243 Motion Tracking 1 Changes are everywhere! CS4243 Motion Tracking 2 Illumination change CS4243 Motion Tracking 3 Shape

More information

Structure from Motion

Structure from Motion 11/18/11 Structure from Motion Computer Vision CS 143, Brown James Hays Many slides adapted from Derek Hoiem, Lana Lazebnik, Silvio Saverese, Steve Seitz, and Martial Hebert This class: structure from

More information

From Orientation to Functional Modeling for Terrestrial and UAV Images

From Orientation to Functional Modeling for Terrestrial and UAV Images From Orientation to Functional Modeling for Terrestrial and UAV Images Helmut Mayer 1 Andreas Kuhn 1, Mario Michelini 1, William Nguatem 1, Martin Drauschke 2 and Heiko Hirschmüller 2 1 Visual Computing,

More information

Davide Scaramuzza. University of Zurich

Davide Scaramuzza. University of Zurich Davide Scaramuzza University of Zurich Robotics and Perception Group http://rpg.ifi.uzh.ch/ Scaramuzza, D., Fraundorfer, F., Visual Odometry: Part I - The First 30 Years and Fundamentals, IEEE Robotics

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics 13.01.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar in the summer semester

More information

Research on an Adaptive Terrain Reconstruction of Sequence Images in Deep Space Exploration

Research on an Adaptive Terrain Reconstruction of Sequence Images in Deep Space Exploration , pp.33-41 http://dx.doi.org/10.14257/astl.2014.52.07 Research on an Adaptive Terrain Reconstruction of Sequence Images in Deep Space Exploration Wang Wei, Zhao Wenbin, Zhao Zhengxu School of Information

More information

Accurate Quadrifocal Tracking for Robust 3D Visual Odometry

Accurate Quadrifocal Tracking for Robust 3D Visual Odometry 007 IEEE International Conference on Robotics and Automation Roma, Italy, 10-14 April 007 WeA. Accurate Quadrifocal Tracking for Robust 3D Visual Odometry A.I. Comport, E. Malis and P. Rives Abstract This

More information

AUTOMATIC VELOCITY ESTIMATION OF TARGETS IN DYNAMIC STEREO

AUTOMATIC VELOCITY ESTIMATION OF TARGETS IN DYNAMIC STEREO In: Stilla U et al (Eds) PIA07. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36 (3/W49B) AUTOMATIC VELOCITY ESTIMATION OF TARGETS IN DYNAMIC STEREO Norbert

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Announcements Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics Seminar in the summer semester Current Topics in Computer Vision and Machine Learning Block seminar, presentations in 1 st week

More information

Robot localization method based on visual features and their geometric relationship

Robot localization method based on visual features and their geometric relationship , pp.46-50 http://dx.doi.org/10.14257/astl.2015.85.11 Robot localization method based on visual features and their geometric relationship Sangyun Lee 1, Changkyung Eem 2, and Hyunki Hong 3 1 Department

More information

3D object recognition used by team robotto

3D object recognition used by team robotto 3D object recognition used by team robotto Workshop Juliane Hoebel February 1, 2016 Faculty of Computer Science, Otto-von-Guericke University Magdeburg Content 1. Introduction 2. Depth sensor 3. 3D object

More information

Accurate 3D Face and Body Modeling from a Single Fixed Kinect

Accurate 3D Face and Body Modeling from a Single Fixed Kinect Accurate 3D Face and Body Modeling from a Single Fixed Kinect Ruizhe Wang*, Matthias Hernandez*, Jongmoo Choi, Gérard Medioni Computer Vision Lab, IRIS University of Southern California Abstract In this

More information

Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features

Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features Stephen Se, David Lowe, Jim Little Department of Computer Science University of British Columbia Presented by Adam Bickett

More information

Transactions on Information and Communications Technologies vol 16, 1996 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 16, 1996 WIT Press,   ISSN ransactions on Information and Communications echnologies vol 6, 996 WI Press, www.witpress.com, ISSN 743-357 Obstacle detection using stereo without correspondence L. X. Zhou & W. K. Gu Institute of Information

More information

Semi-Dense Direct SLAM

Semi-Dense Direct SLAM Computer Vision Group Technical University of Munich Jakob Engel Jakob Engel, Daniel Cremers David Caruso, Thomas Schöps, Lukas von Stumberg, Vladyslav Usenko, Jörg Stückler, Jürgen Sturm Technical University

More information

Feature Trajectory Retrieval with Application to Accurate Structure and Motion Recovery

Feature Trajectory Retrieval with Application to Accurate Structure and Motion Recovery Feature Trajectory Retrieval with Application to Accurate Structure and Motion Recovery Kai Cordes, Oliver M uller, Bodo Rosenhahn, J orn Ostermann Institut f ur Informationsverarbeitung Leibniz Universit

More information

Motion Tracking and Event Understanding in Video Sequences

Motion Tracking and Event Understanding in Video Sequences Motion Tracking and Event Understanding in Video Sequences Isaac Cohen Elaine Kang, Jinman Kang Institute for Robotics and Intelligent Systems University of Southern California Los Angeles, CA Objectives!

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry Martin Quinn with a lot of slides stolen from Steve Seitz and Jianbo Shi 15-463: Computational Photography Alexei Efros, CMU, Fall 2007 Our Goal The Plenoptic Function P(θ,φ,λ,t,V

More information

Dealing with Scale. Stephan Weiss Computer Vision Group NASA-JPL / CalTech

Dealing with Scale. Stephan Weiss Computer Vision Group NASA-JPL / CalTech Dealing with Scale Stephan Weiss Computer Vision Group NASA-JPL / CalTech Stephan.Weiss@ieee.org (c) 2013. Government sponsorship acknowledged. Outline Why care about size? The IMU as scale provider: The

More information

IMPACT OF SUBPIXEL PARADIGM ON DETERMINATION OF 3D POSITION FROM 2D IMAGE PAIR Lukas Sroba, Rudolf Ravas

IMPACT OF SUBPIXEL PARADIGM ON DETERMINATION OF 3D POSITION FROM 2D IMAGE PAIR Lukas Sroba, Rudolf Ravas 162 International Journal "Information Content and Processing", Volume 1, Number 2, 2014 IMPACT OF SUBPIXEL PARADIGM ON DETERMINATION OF 3D POSITION FROM 2D IMAGE PAIR Lukas Sroba, Rudolf Ravas Abstract:

More information