POINT CLOUD REGISTRATION: CURRENT STATE OF THE SCIENCE. Matthew P. Tait

Size: px
Start display at page:

Download "POINT CLOUD REGISTRATION: CURRENT STATE OF THE SCIENCE. Matthew P. Tait"

Transcription

1 POINT CLOUD REGISTRATION: CURRENT STATE OF THE SCIENCE Matthew P. Tait

2 Content 1. Quality control: Analyzing the true errors in Terrestrial Laser Scanning (TLS) 2. The prospects for automatic cloud registration in engineering measurement

3 Quality control: Analyzing the true errors in Terrestrial Laser Scanning (TLS) Question. This end cap need to be located to an accuracy of 1cm (95% confidence) relative to a point 100m away. Can you prove your position is to this accuracy (whether it is or not)?

4 Quality control: Analyzing the true errors in Terrestrial Laser Scanning (TLS) Precision versus Accuracy These are only the same if all random error is correctly propagated and no biases are present

5 Quality control: Analyzing the true errors in Terrestrial Laser Scanning (TLS) Estimated Position (deterministic) Estimated Position Error True Position (never known) (Statistical) Question becomes: Does the 95% confidence error estimate cover the true position?

6 Quality control: Analyzing the true errors in Terrestrial Laser Scanning (TLS) Answer: Yes, if the error sources are correctly combined to achieve the estimated error Is this being done?

7 Error in TLS Survey Network Targets Calibration Self-calibrating bundle adjustment Atmospheric Registration TLS Modeling

8 Error in TLS Survey Network Target estimation = 1mm standard deviation 20m

9 Error in TLS Registration

10 Quality control: Analyzing the true errors in Terrestrial Laser Scanning (TLS) Estimated Position (deterministic) Estimated Position Error (Statistical) True Position (known to ±2.5mm 95% confidence) The 95% confidence ellipse does not cover the true location

11 Is Benchmarking the answer? Survey Network 1 Targets 1 Calibration 1 Atmospheric 1 Registration 1 Modeling 1 Survey Network 2 Targets 2 Calibration 2 Atmospheric 2 Registration 2 Modeling 2

12 Example of propagating errors 1/3 Errors included Survey Network Instrument errors 13 scans Riegl LMS-Z210 Derek Lichti, Stuart Gordon, and Taravudh Tipdecho. (2005). Error models and propagation in directly georeferenced TLS networks. J. of Eng. Surv.

13 Example of propagating errors 2/3

14 Example of propagating errors 3/3 90% errors < 100mm (95%) Stated precision ±50mm (95%) range observation Mostly due to beam divergence and vertical angle errors

15 Automatic cloud registration in engineering measurement Principles for fine registration ICP, Iterative Closest Point (and derivatives / extensions) Cloud 1 Cloud 2 100% correspondence of points

16 Automatic cloud registration in engineering measurement Principles of coarse registration Reducing the search space (splines, curvature changes, geometric primitives, gaussian spheres etc. etc.) Cloud 1 Cloud 2 100% correspondence of points

17 Automatic cloud registration in engineering measurement coarse registration + fine registration = automatic registration? Problem 1 To the best of the authors knowledge, a method for the registration of partially overlapping point clouds from TLS without good a priori alignment has not developed yet Kwang-Ho and Lichti. (2004). Automated registration of unorganized point clouds from terrestrial laser scanners. ISPRS Istanbul

18 Automatic cloud registration in engineering measurement coarse registration + fine registration = automatic registration? Problem 2 Matching non-rigidly-deforming clouds Problem 3 Internal quality control Gruen and Acka. (2005). Least squares 3D surface and curve matching. ISPRS Journal of Photogrammetry and Remote Sensing

19 Automatic cloud registration in engineering measurement Problem 1 Initial Orientation Disorganized data? Kwang-Ho and Lichti. (2004). Automated registration of unorganized point clouds from terrestrial laser scanners. ISPRS Istanbul

20 Automatic cloud registration in engineering measurement Problem 1 Quality of corresponding data? Dold. (2005). Extended gaussian images for the registration of terrestrial scan data. ISPRS Enschede

21 Automatic cloud registration in engineering measurement Problem 1 In engineering measurement I have: Clouds with large angular differences Clouds with relatively low # of corresponding points Tait and Fox. (2004). A comparison and full error budget analysis for close-range photogrammetry and laser scanning in industrial environments. INGEO2004

22 Automatic cloud registration in engineering measurement Problem 2 Non-rigidly deforming clouds Most matching strategies give a one-number fit estimate Large registered clouds vary in the quality of registration = Problem 3 Cloud 1 Cloud 2 100% correspondence of points

23 Automatic cloud registration in engineering measurement Solution 1 Throw computing power at it Time consuming and questionable relative accuracies over the result Solution 2 Initial orientation using primitives Propagation of point error Least Squares surface matching

24 Automatic cloud registration in engineering measurement Initial Orientation using primitives 1/2 85% industrial objects can be approximated by: Planes Spheres Cones Cylinders 95% if toroidal surfaces are included Rabbani and Van Der Heuvel. (2005). Efficient Hough transform for automatic detection of cylinders in point clouds. ISPRS Enschede.

25 Automatic cloud registration in engineering measurement Initial Orientation using primitives 1/2 Rabbani and Van Der Heuvel. (2005). Efficient Hough transform for automatic detection of cylinders in point clouds. ISPRS Enschede. The Hough transform is a technique which can be used to isolate features of a particular shape within an image.

26 Automatic cloud registration in engineering measurement Rigorous propagation of point errors Requires further work in sensor calibration and atmospheric correction This is currently being looked at by many workers in universities Models already exist that can be integrated into workflow

27 Automatic cloud registration in engineering measurement Least Squares Matching of Surfaces Propagates error properly in different parts of the cloud registration Warns if areas are poorly determined Example: 19 scans, 78 million points, reliable estimate of fit (all points involved) at 1.5cm level Acka. (2005). Co-registration of large volume laser scanner point clouds: The Pichango Alto (Peru) data set. Internal Technical Report. ETH Zurich

28 Automatic cloud registration in engineering measurement Quoted advantages of cloud-cloud registration Reduction in survey time But, unlikely to use it to cross a process plant Better than targets Targets are scanned at very high redundancy which calculates a reliable mean despite higher errors due to high incidence angle Uses all the geometrical information in the cloud This is only valid when that information has reliable errors attached to it.

29 In Summary: Automatic cloud registration in engineering measurement is: Probably possible with current tools Requires integration of tools and processes Not the be-all and end-all of scanning registration Not a replacement for proper error propagation

30 Geomatics Engineering at the University of Calgary 19 professors 50 undergraduate students per year 80 graduate students $4.5 research a year (Canadian) The University (of Calgary) has arguably the most well focused and dynamic department of Geomatics Engineering anywhere in the world." Stephen Booth, Editor, Surveying World

Matthew TAIT, Ryan FOX and William F. TESKEY, Canada. Key words: Error Budget Assessment, Laser Scanning, Photogrammetry, CAD Modelling

Matthew TAIT, Ryan FOX and William F. TESKEY, Canada. Key words: Error Budget Assessment, Laser Scanning, Photogrammetry, CAD Modelling A Comparison and Full Error Budget Analysis for Close Range Photogrammetry and 3D Terrestrial Laser Scanning with Rigorous Ground Control in an Industrial Setting Matthew TAIT, Ryan FOX and William F.

More information

A Comparison of Laser Scanners for Mobile Mapping Applications

A Comparison of Laser Scanners for Mobile Mapping Applications A Comparison of Laser Scanners for Mobile Mapping Applications Craig Glennie 1, Jerry Dueitt 2 1 Department of Civil & Environmental Engineering The University of Houston 3605 Cullen Boulevard, Room 2008

More information

TERRESTRIAL LASER SCANNING FOR DEFORMATION ANALYSIS

TERRESTRIAL LASER SCANNING FOR DEFORMATION ANALYSIS THALES Project No. 65/1318 TERRESTRIAL LASER SCANNING FOR DEFORMATION ANALYSIS Research Team Maria Tsakiri, Lecturer, NTUA, Greece Artemis Valani, PhD Student, NTUA, Greece 1. INTRODUCTION In this project,

More information

EXTENDED GAUSSIAN IMAGES FOR THE REGISTRATION OF TERRESTRIAL SCAN DATA

EXTENDED GAUSSIAN IMAGES FOR THE REGISTRATION OF TERRESTRIAL SCAN DATA ISPRS WG III/3, III/4, V/3 Workshop "Laser scanning 2005", Enschede, the Netherlands, September 2-4, 2005 EXTENDED GAUSSIAN IMAGES FOR THE REGISTRATION OF TERRESTRIAL SCAN DATA Christoph Dold Institute

More information

Rigorous Scan Data Adjustment for kinematic LIDAR systems

Rigorous Scan Data Adjustment for kinematic LIDAR systems Rigorous Scan Data Adjustment for kinematic LIDAR systems Paul Swatschina Riegl Laser Measurement Systems ELMF Amsterdam, The Netherlands 13 November 2013 www.riegl.com Contents why kinematic scan data

More information

RANSAC APPROACH FOR AUTOMATED REGISTRATION OF TERRESTRIAL LASER SCANS USING LINEAR FEATURES

RANSAC APPROACH FOR AUTOMATED REGISTRATION OF TERRESTRIAL LASER SCANS USING LINEAR FEATURES RANSAC APPROACH FOR AUTOMATED REGISTRATION OF TERRESTRIAL LASER SCANS USING LINEAR FEATURES K. AL-Durgham, A. Habib, E. Kwak Department of Geomatics Engineering, University of Calgary, Calgary, Alberta,

More information

Building a 3D reference model for canal tunnel surveying using SONAR and LASER scanning

Building a 3D reference model for canal tunnel surveying using SONAR and LASER scanning ISPRS / CIPA Workshop «UNDERWATER 3D RECORDING & MODELING» 16 17 April 2015 Piano di Sorrento (Napoli), Italy Building a 3D reference model for canal tunnel surveying using SONAR and LASER scanning E.

More information

Object Extraction from Terrestrial Laser Scanning Data

Object Extraction from Terrestrial Laser Scanning Data Reem ZEIBAK and Sagi FILIN, Israel Key words: Terrestrial Laser scanning, Object extraction, Segmentation SUMMARY Terrestrial laser scanning emerges as a leading technology for direct 3D documentation

More information

Intensity Augmented ICP for Registration of Laser Scanner Point Clouds

Intensity Augmented ICP for Registration of Laser Scanner Point Clouds Intensity Augmented ICP for Registration of Laser Scanner Point Clouds Bharat Lohani* and Sandeep Sashidharan *Department of Civil Engineering, IIT Kanpur Email: blohani@iitk.ac.in. Abstract While using

More information

3D MODELING OF CLOSE-RANGE OBJECTS: PHOTOGRAMMETRY OR LASER SCANNING?

3D MODELING OF CLOSE-RANGE OBJECTS: PHOTOGRAMMETRY OR LASER SCANNING? 3D MODELING OF CLOSE-RANGE OBJECTS: PHOTOGRAMMETRY OR LASER SCANNING? F. Remondino 1 A. Guarnieri 2 A. Vettore 2 1 Institute of Geodesy and Photogrammetry ETH Hönggerberg - Zurich, Switzerland e-mail:

More information

TLS Parameters, Workflows and Field Methods

TLS Parameters, Workflows and Field Methods TLS Parameters, Workflows and Field Methods Marianne Okal, UNAVCO GSA, September 23 rd, 2016 How a Lidar instrument works (Recap) Transmits laser signals and measures the reflected light to create 3D point

More information

Association-Matrix-Based Sample Consensus Approach for Automated Registration of Terrestrial Laser Scans Using Linear Features

Association-Matrix-Based Sample Consensus Approach for Automated Registration of Terrestrial Laser Scans Using Linear Features Association-Matrix-Based Sample Consensus Approach for Automated Registration of Terrestrial Laser Scans Using Linear Features Kaleel Al-Durgham and Ayman Habib Abstract This paper presents an approach

More information

Improvement in measurement accuracy for hybrid scanner

Improvement in measurement accuracy for hybrid scanner IOP Conference Series: Earth and Environmental Science OPEN ACCESS Improvement in measurement accuracy for hybrid scanner To cite this article: M A Abbas et al 2014 IOP Conf. Ser.: Earth Environ. Sci.

More information

TLS Parameters, Workflows and Field Methods

TLS Parameters, Workflows and Field Methods TLS Parameters, Workflows and Field Methods Marianne Okal, UNAVCO June 20 th, 2014 How a Lidar instrument works (Recap) Transmits laser signals and measures the reflected light to create 3D point clouds.

More information

TLS DEFORMATION MEASUREMENT USING LS3D SURFACE AND CURVE MATCHING

TLS DEFORMATION MEASUREMENT USING LS3D SURFACE AND CURVE MATCHING TLS DEFORMATION MEASUREMENT USING LS3D SURFACE AND CURVE MATCHING O. Monserrat, M. Crosetto, B. Pucci Institute of Geomatics, Castelldefels, Barcelona, Spain, (oriol.monserrat, michele.crosetto, barbara.pucci)@ideg.es

More information

TLS Parameters, Workflows and Field Methods

TLS Parameters, Workflows and Field Methods TLS Parameters, Workflows and Field Methods Marianne Okal, UNAVCO GSA, October 20 th, 2017 How a Lidar instrument works (Recap) Transmits laser signals and measures the reflected light to create 3D point

More information

SEMANTIC FEATURE BASED REGISTRATION OF TERRESTRIAL POINT CLOUDS

SEMANTIC FEATURE BASED REGISTRATION OF TERRESTRIAL POINT CLOUDS SEMANTIC FEATURE BASED REGISTRATION OF TERRESTRIAL POINT CLOUDS A. Thapa*, S. Pu, M. Gerke International Institute for Geo-Information Science and Earth Observation (ITC), Hengelosestraat 99, P.O.Box 6,

More information

AUTOMATIC ORIENTATION AND MERGING OF LASER SCANNER ACQUISITIONS THROUGH VOLUMETRIC TARGETS: PROCEDURE DESCRIPTION AND TEST RESULTS

AUTOMATIC ORIENTATION AND MERGING OF LASER SCANNER ACQUISITIONS THROUGH VOLUMETRIC TARGETS: PROCEDURE DESCRIPTION AND TEST RESULTS AUTOMATIC ORIENTATION AND MERGING OF LASER SCANNER ACQUISITIONS THROUGH VOLUMETRIC TARGETS: PROCEDURE DESCRIPTION AND TEST RESULTS G.Artese a, V.Achilli b, G.Salemi b, A.Trecroci a a Dept. of Land Planning,

More information

Fusion of laser scanning and Photogrammetric data for the documentation and VR visualization of an archaeological tomb complex

Fusion of laser scanning and Photogrammetric data for the documentation and VR visualization of an archaeological tomb complex Presented at the FIG Congress 2018, May 6-11, 2018 in Istanbul, Turkey Fusion of laser scanning and Photogrammetric data for the documentation and VR visualization of an archaeological tomb complex E.

More information

TERRESTRIAL LASER SCANNER DATA PROCESSING

TERRESTRIAL LASER SCANNER DATA PROCESSING TERRESTRIAL LASER SCANNER DATA PROCESSING L. Bornaz (*), F. Rinaudo (*) (*) Politecnico di Torino - Dipartimento di Georisorse e Territorio C.so Duca degli Abruzzi, 24 10129 Torino Tel. +39.011.564.7687

More information

STRUCTURAL DEFORMATION MEASUREMENT USING TERRESTRIAL LASER SCANNERS

STRUCTURAL DEFORMATION MEASUREMENT USING TERRESTRIAL LASER SCANNERS Proceedings, 11 th FIG Symposium on Deformation Measurements, Santorini, Greece, 2003. STRUCTURAL DEFORMATION MEASUREMENT USING TERRESTRIAL LASER SCANNERS Stuart Gordon, Derek Lichti, Mike Stewart and

More information

An Undergraduate Project with Terrestrial Laser Scanner for Purpose of Architectural Survey

An Undergraduate Project with Terrestrial Laser Scanner for Purpose of Architectural Survey Theory and Application of Laser Scanning ISPRS Summer School 2007 Ljubljana,Slovenia An Undergraduate Project with Terrestrial Laser Scanner for Purpose of Architectural Survey Cemal Özgür KIVILCIM ISPRS

More information

DEFORMATION DETECTION IN PIPING INSTALLATIONS USING PROFILING TECHNIQUES

DEFORMATION DETECTION IN PIPING INSTALLATIONS USING PROFILING TECHNIQUES DEFORMATION DETECTION IN PIPING INSTALLATIONS USING PROFILING TECHNIQUES W. T. Mapurisa a, G. Sithole b a South African National Space Agency, Pretoria, South Africa willmapurisa@sansa.org.za b Dept. of

More information

SOLUTION FREQUENCY-BASED PROCEDURE FOR AUTOMATED REGISTRATION OF TERRESTRIAL LASER SCANS USING LINEAR FEATURES INTRODUCTION

SOLUTION FREQUENCY-BASED PROCEDURE FOR AUTOMATED REGISTRATION OF TERRESTRIAL LASER SCANS USING LINEAR FEATURES INTRODUCTION SOLUTION FREQUENCY-BASED PROCEDURE FOR AUTOMATED REGISTRATION OF TERRESTRIAL LASER SCANS USING LINEAR FEATURES ABSTRACT Kaleel Al-Durgham, Ayman Habib, Mehdi Mazaheri Department of Geomatics Engineering,

More information

Error budget of terrestrial laser scanning: influence of the incidence angle on the scan quality

Error budget of terrestrial laser scanning: influence of the incidence angle on the scan quality Abstract Error budget of terrestrial laser scanning: influence of the incidence angle on the scan quality Sylvie Soudarissanane, Jane van Ree, Alexander Bucksch and Roderik Lindenbergh. Delft Institute

More information

DETECTION AND ROBUST ESTIMATION OF CYLINDER FEATURES IN POINT CLOUDS INTRODUCTION

DETECTION AND ROBUST ESTIMATION OF CYLINDER FEATURES IN POINT CLOUDS INTRODUCTION DETECTION AND ROBUST ESTIMATION OF CYLINDER FEATURES IN POINT CLOUDS Yun-Ting Su James Bethel Geomatics Engineering School of Civil Engineering Purdue University 550 Stadium Mall Drive, West Lafayette,

More information

Automatic Registration of Terrestrial Scanning Data Based on Registered Imagery

Automatic Registration of Terrestrial Scanning Data Based on Registered Imagery Automatic Registration of Terrestrial Scanning Data Based on Registered Imagery Zhizhong KANG, Sisi ZLATANOVA and Ben GORTE, The Netherlands Key words: point cloud, registration, terrestrial, automation,

More information

USE OF A POINT CLOUD CO-REGISTRATION ALGORITHM FOR DEFORMATION MEASURING

USE OF A POINT CLOUD CO-REGISTRATION ALGORITHM FOR DEFORMATION MEASURING USE OF A POINT CLOUD CO-REGISTRATION ALGORITHM FOR DEFORMATION MEASURING O.Monserrat, M. Crosetto, B.Pucci Institute of Geomatics, Castelldefels, Barceloba,Spain Abstract: During last few years the use

More information

Automatic image network design leading to optimal image-based 3D models

Automatic image network design leading to optimal image-based 3D models Automatic image network design leading to optimal image-based 3D models Enabling laymen to capture high quality 3D models of Cultural Heritage Bashar Alsadik & Markus Gerke, ITC, University of Twente,

More information

AUTOMATIC 3D POINT CLOUD REGISTRATION FOR CULTURAL HERITAGE DOCUMENTATION

AUTOMATIC 3D POINT CLOUD REGISTRATION FOR CULTURAL HERITAGE DOCUMENTATION AUTOMATIC 3D POINT CLOUD REGISTRATION FOR CULTURAL HERITAGE DOCUMENTATION E. Tournas, M. Tsakiri * School of Surveying Engineering, National Technical University of Athens, Greece ltournas@central.ntua.gr,

More information

A 3D Point Cloud Registration Algorithm based on Feature Points

A 3D Point Cloud Registration Algorithm based on Feature Points International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015) A 3D Point Cloud Registration Algorithm based on Feature Points Yi Ren 1, 2, a, Fucai Zhou 1, b 1 School

More information

NEW MONITORING TECHNIQUES ON THE DETERMINATION OF STRUCTURE DEFORMATIONS

NEW MONITORING TECHNIQUES ON THE DETERMINATION OF STRUCTURE DEFORMATIONS Proceedings, 11 th FIG Symposium on Deformation Measurements, Santorini, Greece, 003. NEW MONITORING TECHNIQUES ON THE DETERMINATION OF STRUCTURE DEFORMATIONS D.Stathas, O.Arabatzi, S.Dogouris, G.Piniotis,

More information

A Procedure for accuracy Investigation of Terrestrial Laser Scanners

A Procedure for accuracy Investigation of Terrestrial Laser Scanners A Procedure for accuracy Investigation of Terrestrial Laser Scanners Sinisa Delcev, Marko Pejic, Jelena Gucevic, Vukan Ogizovic, Serbia, Faculty of Civil Engineering University of Belgrade, Belgrade Keywords:

More information

Investigating the Applicability of Standard Software Packages for Laser Scanner Based Deformation Analyses

Investigating the Applicability of Standard Software Packages for Laser Scanner Based Deformation Analyses Investigating the Applicability of Standard Software Packages for Laser Scanner Based Deformation Analyses Presented at the FIG Working Week 2017, May 29 - June 2, 2017 in Helsinki, Finland FIG Working

More information

Jacky C.K. CHOW, William F. TESKEY, and J.W. (Bill) LOVSE, Canada

Jacky C.K. CHOW, William F. TESKEY, and J.W. (Bill) LOVSE, Canada In-situ Self-calibration of Terrestrial Laser Scanners and Deformation Analysis Using Both Signalized Targets and Intersection of Planes for Indoor Applications Jacky C.K. CHOW, William F. TESKEY, and

More information

Improvements to and Comparison of Static Terrestrial LiDAR Self-Calibration Methods

Improvements to and Comparison of Static Terrestrial LiDAR Self-Calibration Methods Sensors 2013, 13, 7224-7249; doi:10.3390/s130607224 Article OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Improvements to and Comparison of Static Terrestrial LiDAR Self-Calibration Methods

More information

A NEW AUTOMATIC SYSTEM CALIBRATION OF MULTI-CAMERAS AND LIDAR SENSORS

A NEW AUTOMATIC SYSTEM CALIBRATION OF MULTI-CAMERAS AND LIDAR SENSORS A NEW AUTOMATIC SYSTEM CALIBRATION OF MULTI-CAMERAS AND LIDAR SENSORS M. Hassanein a, *, A. Moussa a,b, N. El-Sheimy a a Department of Geomatics Engineering, University of Calgary, Calgary, Alberta, Canada

More information

Using terrestrial laser scan to monitor the upstream face of a rockfill weight dam

Using terrestrial laser scan to monitor the upstream face of a rockfill weight dam Using terrestrial laser scan to monitor the upstream face of a rockfill weight dam NEGRILĂ Aurel Department of Topography and Cadastre Technical University of Civil Engineering Bucharest Lacul Tei Bvd

More information

TERRESTRIAL LASER SCANNING FOR DEFORMATION MONITORING

TERRESTRIAL LASER SCANNING FOR DEFORMATION MONITORING TERRESTRIAL LASER SCANNING FOR DEFORMATION MONITORING Tsakiri M 1, Lichti D 2, Pfeifer N 3 1. School of Surveying Engineering, National Technical University of Athens, Greece 2. Department of Spatial Sciences,

More information

EXPERIENCES OF WPG S.A IN THE USAGE OF TERRESTIAL LASER SCANNERS FOR BUILDING INVENTORY PURPOSES

EXPERIENCES OF WPG S.A IN THE USAGE OF TERRESTIAL LASER SCANNERS FOR BUILDING INVENTORY PURPOSES EXPERIENCES OF WPG S.A IN THE USAGE OF TERRESTIAL LASER SCANNERS FOR BUILDING INVENTORY PURPOSES Uchański Jacek, Falkowski Piotr Warszawskie Przedsiębiorstwo Geodezyjne S.A. 1. INTRODUCTION Warszawskie

More information

CLASSIFICATION FOR ROADSIDE OBJECTS BASED ON SIMULATED LASER SCANNING

CLASSIFICATION FOR ROADSIDE OBJECTS BASED ON SIMULATED LASER SCANNING CLASSIFICATION FOR ROADSIDE OBJECTS BASED ON SIMULATED LASER SCANNING Kenta Fukano 1, and Hiroshi Masuda 2 1) Graduate student, Department of Intelligence Mechanical Engineering, The University of Electro-Communications,

More information

REDUCING THE ERROR IN TERRESTRIAL LASER SCANNING BY OPTIMIZING THE MEASUREMENT SET-UP

REDUCING THE ERROR IN TERRESTRIAL LASER SCANNING BY OPTIMIZING THE MEASUREMENT SET-UP REDUCING THE ERROR IN TERRESTRIAL LASER SCANNING BY OPTIMIZING THE MEASUREMENT SET-UP Sylvie Soudarissanane, Roderik Lindenbergh and Ben Gorte Delft Institute of Earth Observation and Space Systems(DEOS)

More information

ASSETS DATA INVENTORY BASED ON BUILDING INFORMATION MODELLING

ASSETS DATA INVENTORY BASED ON BUILDING INFORMATION MODELLING ASSETS DATA INVENTORY BASED ON BUILDING INFORMATION MODELLING Asep Yusup Saptari (Surveying and Cadastre Research Group) Geodesy And Geomatic Earth Science And Engineering Faculty Institut Teknologi Bandung

More information

CE 59700: LASER SCANNING

CE 59700: LASER SCANNING Digital Photogrammetry Research Group Lyles School of Civil Engineering Purdue University, USA Webpage: http://purdue.edu/ce/ Email: ahabib@purdue.edu CE 59700: LASER SCANNING 1 Contact Information Instructor:

More information

IMPROVING 3D LIDAR POINT CLOUD REGISTRATION USING OPTIMAL NEIGHBORHOOD KNOWLEDGE

IMPROVING 3D LIDAR POINT CLOUD REGISTRATION USING OPTIMAL NEIGHBORHOOD KNOWLEDGE IMPROVING 3D LIDAR POINT CLOUD REGISTRATION USING OPTIMAL NEIGHBORHOOD KNOWLEDGE Adrien Gressin, Clément Mallet, Nicolas David IGN, MATIS, 73 avenue de Paris, 94160 Saint-Mandé, FRANCE; Université Paris-Est

More information

CRF Based Point Cloud Segmentation Jonathan Nation

CRF Based Point Cloud Segmentation Jonathan Nation CRF Based Point Cloud Segmentation Jonathan Nation jsnation@stanford.edu 1. INTRODUCTION The goal of the project is to use the recently proposed fully connected conditional random field (CRF) model to

More information

Boresight alignment method for mobile laser scanning systems

Boresight alignment method for mobile laser scanning systems Boresight alignment method for mobile laser scanning systems P. Rieger, N. Studnicka, M. Pfennigbauer RIEGL Laser Measurement Systems GmbH A-3580 Horn, Austria Contents A new principle of boresight alignment

More information

Application of Terrestrial Laser Scanning Methodology in Geometric Tolerances Analysis of Tunnel Structures

Application of Terrestrial Laser Scanning Methodology in Geometric Tolerances Analysis of Tunnel Structures Application of Terrestrial Laser Scanning Methodology in Geometric Tolerances Analysis of Tunnel Structures Steve Y. W. Lam Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University,

More information

3D BUILDINGS MODELLING BASED ON A COMBINATION OF TECHNIQUES AND METHODOLOGIES

3D BUILDINGS MODELLING BASED ON A COMBINATION OF TECHNIQUES AND METHODOLOGIES 3D BUILDINGS MODELLING BASED ON A COMBINATION OF TECHNIQUES AND METHODOLOGIES Georgeta Pop (Manea), Alexander Bucksch, Ben Gorte Delft Technical University, Department of Earth Observation and Space Systems,

More information

Critical Aspects when using Total Stations and Laser Scanners for Geotechnical Monitoring

Critical Aspects when using Total Stations and Laser Scanners for Geotechnical Monitoring Critical Aspects when using Total Stations and Laser Scanners for Geotechnical Monitoring Lienhart, W. Institute of Engineering Geodesy and Measurement Systems, Graz University of Technology, Austria Abstract

More information

AUTOMATIC DRAWING FOR TRAFFIC MARKING WITH MMS LIDAR INTENSITY

AUTOMATIC DRAWING FOR TRAFFIC MARKING WITH MMS LIDAR INTENSITY AUTOMATIC DRAWING FOR TRAFFIC MARKING WITH MMS LIDAR INTENSITY G. Takahashi a, H. Takeda a, Y. Shimano a a Spatial Information Division, Kokusai Kogyo Co., Ltd., Tokyo, Japan - (genki_takahashi, hiroshi1_takeda,

More information

IGTF 2016 Fort Worth, TX, April 11-15, 2016 Submission 149

IGTF 2016 Fort Worth, TX, April 11-15, 2016 Submission 149 IGTF 26 Fort Worth, TX, April -5, 26 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 2 Light weighted and Portable LiDAR, VLP-6 Registration Yushin Ahn (yahn@mtu.edu), Kyung In Huh (khuh@cpp.edu), Sudhagar Nagarajan

More information

3D Point Cloud Processing

3D Point Cloud Processing 3D Point Cloud Processing The image depicts how our robot Irma3D sees itself in a mirror. The laser looking into itself creates distortions as well as changes in intensity that give the robot a single

More information

LAS extrabytes implementation in RIEGL software WHITEPAPER

LAS extrabytes implementation in RIEGL software WHITEPAPER in RIEGL software WHITEPAPER _ Author: RIEGL Laser Measurement Systems GmbH Date: May 25, 2012 Status: Release Pages: 13 All rights are reserved in the event of the grant or the registration of a utility

More information

AUTOMATIC REGISTRATION OF TERRESTRIAL POINT CLOUD USING PANORAMIC REFLECTANCE IMAGES

AUTOMATIC REGISTRATION OF TERRESTRIAL POINT CLOUD USING PANORAMIC REFLECTANCE IMAGES AUTOMATIC REGISTRATION OF TERRESTRIAL POINT CLOUD USING PANORAMIC REFLECTANCE IMAGES Zhizhong Kang Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands

More information

Automatic registration of terrestrial laser scans for geological deformation monitoring

Automatic registration of terrestrial laser scans for geological deformation monitoring Automatic registration of terrestrial laser scans for geological deformation monitoring Daniel Wujanz 1, Michael Avian 2, Daniel Krueger 1, Frank Neitzel 1 1 Chair of Geodesy and Adjustment Theory, Technische

More information

Automated Processing of Terrestrial Mid-Range Laser Scanner Data for Restoration Documentation at Millimeter Scale

Automated Processing of Terrestrial Mid-Range Laser Scanner Data for Restoration Documentation at Millimeter Scale Automated Processing of Terrestrial Mid-Range Laser Scanner Data for Restoration Documentation at Millimeter Scale Peter DORNINGER / Clemens NOTHEGGER Vienna University of Technology, Christian Doppler

More information

Three-Dimensional Laser Scanner. Field Evaluation Specifications

Three-Dimensional Laser Scanner. Field Evaluation Specifications Stanford University June 27, 2004 Stanford Linear Accelerator Center P.O. Box 20450 Stanford, California 94309, USA Three-Dimensional Laser Scanner Field Evaluation Specifications Metrology Department

More information

THE IMPACT OF ANGLE PARAMETERISATION ON TERRESTRIAL LASER SCANNER SELF-CALIBRATION

THE IMPACT OF ANGLE PARAMETERISATION ON TERRESTRIAL LASER SCANNER SELF-CALIBRATION In: Bretar F, Pierrot-Deseilligny M, Vosselman G (Eds) Laser scanning 9, IAPRS, Vol. XXXVIII, Part 3/W8 Paris, France, September -, 9 THE IMPACT OF ANGLE PARAMETERISATION ON TERRESTRIAL LASER SCANNER SELF-CALIBRATION

More information

Highly Accurate Photorealistic Modeling of Cultural Heritage Assets

Highly Accurate Photorealistic Modeling of Cultural Heritage Assets Highly Accurate Photorealistic Modeling of Cultural Heritage Assets Peter DORNINGER 1 / Marco BRUNNER 2 1 TU Vienna, Institute of Photogrammetry and Remote Sensing / 2 a:xperience audiovisuelle Kommunikation

More information

Deformation Monitoring Trials Using a Leica HDS3000

Deformation Monitoring Trials Using a Leica HDS3000 Deformation Monitoring Trials Using a Leica HDS3000 Gethin ROBERTS, Matthew BADDLEY, UK Key words: Laser scanning, deformation monitoring. SUMMARY The use of laser scanners for deformation monitoring is

More information

Geometric Accuracy Investigations of the Latest Terrestrial Laser Scanning Systems

Geometric Accuracy Investigations of the Latest Terrestrial Laser Scanning Systems Thomas Kersten, Klaus Mechelke, Maren Lindstaedt, Harald Sternberg Geometric Accuracy Investigations of the Latest Terrestrial Laser Scanning Systems Outline of presentation Introduction Laser scanning

More information

COMPARATIVE ANALYSIS OF DIFFERENT LIDAR SYSTEM CALIBRATION TECHNIQUES

COMPARATIVE ANALYSIS OF DIFFERENT LIDAR SYSTEM CALIBRATION TECHNIQUES COMPARATIVE ANALYSIS OF DIFFERENT LIDAR SYSTEM CALIBRATION TECHNIQUES M. Miller a, A. Habib a a Digitial Photogrammetry Research Group Lyles School of Civil Engineering Purdue University, 550 Stadium Mall

More information

TERRESTRIAL 3D-LASER SCANNER ZLS07 DEVELOPED AT ETH ZURICH: AN OVERVIEW OF ITS CONFIGURATION, PERFORMANCE AND APPLICATION

TERRESTRIAL 3D-LASER SCANNER ZLS07 DEVELOPED AT ETH ZURICH: AN OVERVIEW OF ITS CONFIGURATION, PERFORMANCE AND APPLICATION TERRESTRIAL 3D-LASER SCANNER ZLS07 DEVELOPED AT ETH ZURICH: AN OVERVIEW OF ITS CONFIGURATION, PERFORMANCE AND APPLICATION Hans-Martin Zogg and Hilmar Ingensand Institute of Geodesy and Photogrammetry,

More information

3D SCANNER: is any device that

3D SCANNER: is any device that DEFINITIONS 3D SCANNER: is any device that - collects 3D coordinates of a given region of an object surface - automatically and in a systematic pattern - at a high rate - achieving the results (i.e. 3D

More information

AUTOMATIC TARGET IDENTIFICATION FOR LASER SCANNERS

AUTOMATIC TARGET IDENTIFICATION FOR LASER SCANNERS AUTOMATIC TARGET IDENTIFICATION FOR LASER SCANNERS Valanis Α., Tsakiri Μ. National Technical University of Athens, School of Rural and Surveying Engineering, 9 Polytechniou Street, Zographos Campus, Athens

More information

Analysis of error sources in Terrestrial Laser Scanning

Analysis of error sources in Terrestrial Laser Scanning C. COŞARCĂ, A. JOCEA, A. SAVU Associate professor, eng. Constantin COŞARCĂ, Ph.D., Faculty of Geodesy, Technical University of Civil Engineering, Bucharest, e-mail: constantin_cosarca@yahoo.com Teacher

More information

Comparison of point clouds captured with terrestrial laser scanners with different technical characteristic

Comparison of point clouds captured with terrestrial laser scanners with different technical characteristic Comparison of point clouds captured with terrestrial laser scanners with different technical characteristic Janina Zaczek-Peplinska, Maria Elżbieta Kowalska Warsaw University of Technology, Faculty of

More information

GABRIELE GUIDI, PHD POLITECNICO DI MILANO, ITALY VISITING SCHOLAR AT INDIANA UNIVERSITY NOV OCT D IMAGE FUSION

GABRIELE GUIDI, PHD POLITECNICO DI MILANO, ITALY VISITING SCHOLAR AT INDIANA UNIVERSITY NOV OCT D IMAGE FUSION GABRIELE GUIDI, PHD POLITECNICO DI MILANO, ITALY VISITING SCHOLAR AT INDIANA UNIVERSITY NOV 2017 - OCT 2018 3D IMAGE FUSION 3D IMAGE FUSION WHAT A 3D IMAGE IS? A cloud of 3D points collected from a 3D

More information

Comparison between two methods for monitoring deformation with Laser Scanner

Comparison between two methods for monitoring deformation with Laser Scanner Comparison between two methods for monitoring deformation with Laser Scanner VINCENZO BARRILE (*), GIUSEPPE M. MEDURI (*), GIULIANA BILOTTA (**) * DICEAM - Faculty of Engineering Mediterranea University

More information

LASER SCANNER SURVEY TO CULTURAL HERITAGE CONSERVATION AND RESTORATION

LASER SCANNER SURVEY TO CULTURAL HERITAGE CONSERVATION AND RESTORATION LASER SCANNER SURVEY TO CULTURAL HERITAGE CONSERVATION AND RESTORATION G. Vacca a, *, M. Deidda a, A. Dessi a, M. Marras a a DICAAR, Engineering Faculty, University of Cagliari P.zza D Armi 09123 Cagliari,

More information

Chapters 1 7: Overview

Chapters 1 7: Overview Chapters 1 7: Overview Chapter 1: Introduction Chapters 2 4: Data acquisition Chapters 5 7: Data manipulation Chapter 5: Vertical imagery Chapter 6: Image coordinate measurements and refinements Chapter

More information

Cultural Heritage. Geometric Recording of Cultural Monuments. Basic Principles of Geometric Recording. Specific requirements

Cultural Heritage. Geometric Recording of Cultural Monuments. Basic Principles of Geometric Recording. Specific requirements LOW COST DIGITAL PHOTOGRAMMETRIC TECHNIQUES FOR THE DOCUMENTATION OF CULTURAL HERITAGE Ch. Ioannidis, S. Soile, C. Potsiou Lab. of Photogrammetry School of Rural & Surveying Eng. National Technical University

More information

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions. Mukupa, Wallace and Roberts, Gethin Wyn and Hancock, Craig M. and Al-Manasir, Khalil (2016) A review of the use of terrestrial laser scanning application for change detection and deformation monitoring

More information

Large-Scale. Point Cloud Processing Tutorial. Application: Mobile Mapping

Large-Scale. Point Cloud Processing Tutorial. Application: Mobile Mapping Large-Scale 3D Point Cloud Processing Tutorial 2013 Application: Mobile Mapping The image depicts how our robot Irma3D sees itself in a mirror. The laser looking into itself creates distortions as well

More information

Research Article Measurement Axis Searching Model for Terrestrial Laser Scans Registration

Research Article Measurement Axis Searching Model for Terrestrial Laser Scans Registration Journal of Sensors Volume 2016, Article ID 2568420, 10 pages http://dx.doi.org/10.1155/2016/2568420 Research Article Measurement Axis Searching Model for Terrestrial Laser Scans Registration Shaoxing Hu,

More information

EVALUATION OF WORLDVIEW-1 STEREO SCENES AND RELATED 3D PRODUCTS

EVALUATION OF WORLDVIEW-1 STEREO SCENES AND RELATED 3D PRODUCTS EVALUATION OF WORLDVIEW-1 STEREO SCENES AND RELATED 3D PRODUCTS Daniela POLI, Kirsten WOLFF, Armin GRUEN Swiss Federal Institute of Technology Institute of Geodesy and Photogrammetry Wolfgang-Pauli-Strasse

More information

TAKING LIDAR SUBSEA. Adam Lowry, Nov 2016

TAKING LIDAR SUBSEA. Adam Lowry, Nov 2016 TAKING LIDAR SUBSEA Adam Lowry, Nov 2016 3D AT DEPTH Based in the technology hub of Boulder, Colorado, 3D at Depth is dedicated to the development of underwater laser measurement sensors and software Patented

More information

Automatic Pipeline Generation by the Sequential Segmentation and Skelton Construction of Point Cloud

Automatic Pipeline Generation by the Sequential Segmentation and Skelton Construction of Point Cloud , pp.43-47 http://dx.doi.org/10.14257/astl.2014.67.11 Automatic Pipeline Generation by the Sequential Segmentation and Skelton Construction of Point Cloud Ashok Kumar Patil, Seong Sill Park, Pavitra Holi,

More information

Chapters 1 4: Overview

Chapters 1 4: Overview Chapters 1 4: Overview Photogrammetry: introduction, applications, and tools GNSS/INS-assisted photogrammetric and LiDAR mapping LiDAR mapping: principles, applications, mathematical model, and error sources

More information

Laser Scanning. 3D Model is not existing and is required for: studies revamping maintenance HSE integration in another 3D model archiving

Laser Scanning. 3D Model is not existing and is required for: studies revamping maintenance HSE integration in another 3D model archiving Laser Scanning Laser Scanning Laser scanning is used whenever: 3D Model is not existing and is required for: studies revamping maintenance HSE integration in another 3D model archiving 2 Object acquisition

More information

The raycloud A Vision Beyond the Point Cloud

The raycloud A Vision Beyond the Point Cloud The raycloud A Vision Beyond the Point Cloud Christoph STRECHA, Switzerland Key words: Photogrammetry, Aerial triangulation, Multi-view stereo, 3D vectorisation, Bundle Block Adjustment SUMMARY Measuring

More information

DIRSAC: A Directed Sample and Consensus Algorithm for Localization with Quasi Degenerate Data

DIRSAC: A Directed Sample and Consensus Algorithm for Localization with Quasi Degenerate Data DIRSAC: A Directed Sample and Consensus Algorithm for Localization with Quasi Degenerate Data Chris L Baker a,b, William Hoff c a National Robotics Engineering Center (chris@chimail.net) b Neya Systems

More information

TERRESTRIAL LASER SCANNING FOR AREA BASED DEFORMATION ANALYSIS OF TOWERS AND WATER DAMNS

TERRESTRIAL LASER SCANNING FOR AREA BASED DEFORMATION ANALYSIS OF TOWERS AND WATER DAMNS TERRESTRIAL LASER SCANNING FOR AREA BASED DEFORMATION ANALYSIS OF TOWERS AND WATER DAMNS Danilo Schneider Institute of Photogrammetry and Remote Sensing Dresden University of Technology, Germany Email:

More information

Everything you did not want to know about least squares and positional tolerance! (in one hour or less) Raymond J. Hintz, PLS, PhD University of Maine

Everything you did not want to know about least squares and positional tolerance! (in one hour or less) Raymond J. Hintz, PLS, PhD University of Maine Everything you did not want to know about least squares and positional tolerance! (in one hour or less) Raymond J. Hintz, PLS, PhD University of Maine Least squares is used in varying degrees in -Conventional

More information

SELF-CALIBRATION AND EVALUATION OF THE TRIMBLE GX TERRESTRIAL LASER SCANNER

SELF-CALIBRATION AND EVALUATION OF THE TRIMBLE GX TERRESTRIAL LASER SCANNER SELF-CALIBRATION AND EVALUATION OF THE TRIMBLE GX TERRESTRIAL LASER SCANNER J.C.K. Chow*, W.F. Teskey, and D.D. Lichti Department of Geomatics Engineering, University of Calgary, 5 University Dr NW, Calgary,

More information

AN ADAPTIVE APPROACH FOR SEGMENTATION OF 3D LASER POINT CLOUD

AN ADAPTIVE APPROACH FOR SEGMENTATION OF 3D LASER POINT CLOUD AN ADAPTIVE APPROACH FOR SEGMENTATION OF 3D LASER POINT CLOUD Z. Lari, A. F. Habib, E. Kwak Department of Geomatics Engineering, University of Calgary, Calgary, Alberta, Canada TN 1N4 - (zlari, ahabib,

More information

The TLS to study deformations using ICP algorithm

The TLS to study deformations using ICP algorithm The TLS to study deformations using ICP algorithm V. Barrile, G. M. Meduri and G. Bilotta Abstract This contribute describes a methodology for the monitoring and control of mountainous areas with TLS,

More information

Accurate Sphere Marker-Based Registration System of 3D Point Cloud Data in Applications of Shipbuilding Blocks

Accurate Sphere Marker-Based Registration System of 3D Point Cloud Data in Applications of Shipbuilding Blocks Journal of Industrial and Intelligent Information Vol. 3, No. 4, December 2015 Accurate Sphere Marker-Based Registration System of 3D Point Cloud Data in Applications of Shipbuilding Blocks Mengmi Zhang

More information

CALIBRATION AND STABILITY ANALYSIS OF THE VLP-16 LASER SCANNER

CALIBRATION AND STABILITY ANALYSIS OF THE VLP-16 LASER SCANNER CALIBRATION AND STABILITY ANALYSIS OF THE VLP-16 LASER SCANNER C.L. Glennie a, A. Kusari a, A. Facchin b a Dept. of Civil & Environmental Engineering, University of Houston, Houston, TX USA - (clglennie,

More information

Terrestrial Laser Scanning: Applications in Civil Engineering Pauline Miller

Terrestrial Laser Scanning: Applications in Civil Engineering Pauline Miller Terrestrial Laser Scanning: Applications in Civil Engineering Pauline Miller School of Civil Engineering & Geosciences Newcastle University Overview Laser scanning overview Research applications geometric

More information

CORRECTION OF INTENSITY INCIDENCE ANGLE EFFECT IN TERRESTRIAL LASER SCANNING

CORRECTION OF INTENSITY INCIDENCE ANGLE EFFECT IN TERRESTRIAL LASER SCANNING CORRECTION OF INTENSITY INCIDENCE ANGLE EFFECT IN TERRESTRIAL LASER SCANNING A. Krooks a, *, S. Kaasalainen a, T. Hakala a, O. Nevalainen a a Department of Photogrammetry and Remote Sensing, Finnish Geodetic

More information

3D-2D Laser Range Finder calibration using a conic based geometry shape

3D-2D Laser Range Finder calibration using a conic based geometry shape 3D-2D Laser Range Finder calibration using a conic based geometry shape Miguel Almeida 1, Paulo Dias 1, Miguel Oliveira 2, Vítor Santos 2 1 Dept. of Electronics, Telecom. and Informatics, IEETA, University

More information

Extraction of façades with window information from oblique view airborne laser scanning point clouds

Extraction of façades with window information from oblique view airborne laser scanning point clouds Extraction of façades with window information from oblique view airborne laser scanning point clouds Sebastian Tuttas, Uwe Stilla Photogrammetry and Remote Sensing, Technische Universität München, 80290

More information

AUTOMATIC FEATURE-BASED POINT CLOUD REGISTRATION FOR A MOVING SENSOR PLATFORM

AUTOMATIC FEATURE-BASED POINT CLOUD REGISTRATION FOR A MOVING SENSOR PLATFORM AUTOMATIC FEATURE-BASED POINT CLOUD REGISTRATION FOR A MOVING SENSOR PLATFORM Martin Weinmann, André Dittrich, Stefan Hinz, and Boris Jutzi Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute

More information

Software for Land Development Professionals

Software for Land Development Professionals Software for Land Development Professionals SurvNET Carlson SurvNET is SurvCADD's Network Least Squares Reduction (NLSA) program. This module will perform a least squares adjustment and statistical analysis

More information

FULL AUTOMATIC REGISTRATION OF LASER SCANNER POINT CLOUDS

FULL AUTOMATIC REGISTRATION OF LASER SCANNER POINT CLOUDS FULL AUTOMATIC REGISTRATION OF LASER SCANNER POINT CLOUDS Devrim Akca Institute of Geodesy and Photogrammetry, ETH - Zurich, Switzerland http://www.photogrammetry.ethz.ch 1 The Goal: is automatic registration

More information

Italian pavilion in 3D, project for EXPO 2015, Milan (Italy) JRC 3D RECONSTRUCTOR POWERFUL. ADVANCED. PROFESSIONAL

Italian pavilion in 3D, project for EXPO 2015, Milan (Italy) JRC 3D RECONSTRUCTOR POWERFUL. ADVANCED. PROFESSIONAL Italian pavilion in 3D, project for EXPO 2015, Milan (Italy) JRC 3D RECONSTRUCTOR POWERFUL. ADVANCED. PROFESSIONAL OVERVIEW JRC 3D Reconstructor is the well known multi-platform and multi-resolution software

More information

Leica Cyclone 5.4 Technical Specifications

Leica Cyclone 5.4 Technical Specifications Leica Cyclone 5.4 Technical Specifications HDS Scanner control and operation Scan Scan Scan Register Model Survey Viewer Acquire and display image Acquire image at specified resolution (high, medium, low)

More information

Accurate 3D Face and Body Modeling from a Single Fixed Kinect

Accurate 3D Face and Body Modeling from a Single Fixed Kinect Accurate 3D Face and Body Modeling from a Single Fixed Kinect Ruizhe Wang*, Matthias Hernandez*, Jongmoo Choi, Gérard Medioni Computer Vision Lab, IRIS University of Southern California Abstract In this

More information