Metric Planning: Overview

Size: px
Start display at page:

Download "Metric Planning: Overview"

Transcription

1 Also called quantitative planning Tries to find optimal path to goal Metric Planning: Overview As opposed to some path as per qualitative approach Usually plans path as series of subgoals (waypoints) Optimal/best implies there exists a metric of comparison Optimal path algorithms computationally expensive Want to make as efficient as possible This approach requires 2 components: 1. Representation Data structure to represent world Must be usable by planning algorithm Should only represent what s necessary for planning 2. Algorithm 2 general types: (a) Ones that treat planning as graph problem (b) Ones that treat planning as a color-fill algorithm Hybrid model must address problem of interleaving deliberation and reaction 1

2 Metric Planning: CSpace Intro Configuration Space (CSpace): Data structure that represents world Usd to situate robot and obstacles in world Degrees of freedom: parameters needed to situate robot in space Need 6 in 3D: 1. 3 Cartesian coordinates (x, y, z) 2. 3 Euler angles (φ, θ, γ: pitch, yaw, roll) Want to use as few as possible to minimize storage 2 (x, y) often sufficient Holonomic robot: one that can turn in place Can be considered round Orientation not a factor in this case Simplifies DOF There are a number of CSpace representations: 1. Meadow map (hybrid vertex-graph free-space model) 2. Generalized Voronoi graph (GVG) 3. Regular grid 4. Quadtree (Octree) Each represents free (unoccupied) space differently 2

3 Metric Planning: CSpace Representations - Meadow Maps Generates CSpace from existing detailed map Expand boundaries of obstacles by radius of robot Can then treat robot as a point without need to worry about collisions Based on convex polygons Can travel from any point on perimeter to any other point on perimeter of convex poly without ever leaving poly If poly encloses free space, robot traveling such a path will have no collisions 3 general steps: 1. Make basic unit/ pixel size = size of robot 3

4 Metric Planning: CSpace Representations - Meadow Maps (2) 2. Create polygons Connect interesting features (corners, door frames,...) Identify useful polygons for partition 3. Create path Need to id points on perimeters of polys that connect polys Collection of these points and edges between result in a graph of free space One possibility: Choose midpoint of perimeter edges that are shared between 2 polys Given a start node and goal node, search graph for path Nodes on path become waypoints (subgoals) 4

5 Metric Planning: CSpace Representations - Meadow Maps (3) Problems: 1. Path is jagged Use path relaxation to alleviate 2. Polygon id computationally complex 3. Path not based on features that can be sensed, but on map artifacts i.e., robot must use self-localization 4. Hard to update CSpace if original map inaccurate 5

6 Metric Planning: CSpace Representations - Generalized Voronoi Graph (GVG) Path follows lines that are equidistant from all obstacles Such lines called Voronoi edges Points of convergence called Voronoi vertices Often correspond to features that can be sensed in environment Collection of Voronoi edges and vertices create a graph of free space By following edges, robot guaranteed not to collide with obstacle Can be created as robot navigates - do not necessarily need a priori map 6

7 Metric Planning: CSpace Representations - Regular (Occupancy) Grid World divided into regular rectangular cells If any part of cell occupied, entire cell is considered occupied Consider center of each cell a node Collection of nodes and edges between create a graph of free space 4-connected cell links to neighbors thru sides 8-connected cell links to neighbors thru sides and vertices Problems: 1. Digitation bias: Cell is considered filled if only a small fraction is actually occupied Results in wasted space Solution: Make cells small 2. Small cells require more storage 7

8 Metric Planning: CSpace Representations - Quadtree (Octree) Developed to solve problems of regular grid approach Grid uses large cells If grid partially occupied, subdivide grid into 4 equal subcells Recursively apply subdivision to partially filled subcells Centers of free cells represented as graph nodes Adjacent free nodes connected by graph edges Minimizes wasted free space, maximizes storage efficiency 8

9 Metric Planning: A Algorithm Given a graph, want to find optimal path from start to goal node Do not want algorithm to visit every node in graph: computationally expensive One solution is to use branch-and-bound algorithms: Those that only consider a path that looks promising When path becomes less promising (more expensive) than others, temporarily abandon it and pursue the more attractive ones A algorithm Basis of A Searches a state space for an optimal path State space is entire graph: all nodes and edges between them From a given node, need to decide which leaving edge is best one to take Decision based on following equation: f(n) = g(n) + h(n), where g(n) is cost of getting from start state to node n h(n) is cost of getting from node n to goal state f(n) is total cost of going from start to goal state via node n Note that h(n) and g(n) are known values Hence, selecting the node n with minimal f(n) as next node to visit from start to goal node, will generate optimal (minimal cost) path Problem: Since assumes h(n) known, can only have been determined by visiting all nodes in the graph, which is what want to avoid 9

10 Metric Planning: A Algorithm Same basic algorithm as A, but uses different evaluation function: f (n) = g (n) + h (n), where * means value is estimated g (n) g(n) since always know actual cost of getting from start to node n h (n) is heuristic function - rule of thumb for estimating cost to goal f(n) is total cost of going from start to goal state via node n Since f (n) is an estimate, how can optimal path be guaranteed? If h (n) h(n), path guaranteed optimal Any algorithm for which this relation is true is called admissible (hence algorithm A) 10

11 Metric Planning: A Algorithm (2) Example: Edges are labeled with the costs of moving between nodes. The following table lists the h values for each node. Node h A 15 B 13 C 9 D 15 E 13 F 12 G 1 H 7 I 9 J 0 Initial state is A Goal state is J 11

12 Partial plan generation: 1. Queue: A(15) Pop A f(b) = = 16 f(c) = = 18 f(d) = = Queue: B(16)D(17)C(18) Pop B f(e) = = 24 f(f ) = = Queue: D(17)C(18)F(19)E(24) Pop D f(h) = = 13 f(i) = = 18 Metric Planning: A Algorithm (3) 4. Queue: H(13)D(17)C(18)I(18)F(19)E(24) Pop H f(c) = = 16 Found a shorter path to C - update queue 5. Queue: C(16)D(17)I(18)F(19)E(24) Pop C f(g) = = Queue: G(16)D(17)I(18)F(19)E(24) etc. 12

13 Metric Planning: A Algorithm (4) For planning where optimal path is shortest, can let h (n) = Euclidean distance between node n and goal Note that since using a metric map, will know coordinates of all nodes Points of interest: Edges cannot have negative costs Algorithm must account for cycles New path to a node may be cheaper than one previously found Can include additional factors in path cost: terrain, presence of enemies, etc. 13

14 Metric Planning: Wavefront Approach Based on concept of heat propagation through solids (or CG color-fill algorithms) Create regular grid From start node, propagate outward Propagation rate dependent on nature of cell If free, conductivity = infinite If occupied, conductivity = 0 Can model types of terrain, etc. by assigning low values to those least desirable Path that reaches goal first is optimal 14

15 Metric Planning: Wavefront Approach (2) 15

16 Metric Planning: Wavefront Approach (3) 16

17 Metric Planning: Wavefront Approach (4) 17

18 Metric Planning: Wavefront Approach (5) 18

19 Metric Planning: Wavefront Approach (6) Trulla developed variant that uses this approach to generate potential field like vectors in each cell Side effect is optimal path to goal from any cell in world 19

20 Metric Planning: Interleaving Planning and Execution Hybrid planners tend to generate paths in terms of waypoints, which are passed to reactive component one-by-one 2 problems can arise during reactive execution of metric path: 1. Subgoal obsession (1) Result of goal-satisfaction requirements that are too strict Observed behavior is robot making lots of fine positioning adjustments at subgoal Problem worse for non-holonomic robots Wastes time and effort Can alleviate by easing satisfaction requirements e.g., use tolerance of 1 robot diameter 2. Subgoal obsession (2) Subgoal is unreachable Since in reactive mode, robot may not recognize is stuck Remedy: Impose time limit on subgoal satisfaction 3. Lack of opportunistic improvements Recognizing when current plan should be abandoned in favor of revised plan: Abandoning current subgoal in favor of subsequent one Replanning current path to subgoal 20

21 Metric Planning: Interleaving Planning and Execution (2) Solutions to subgoal obsession and opportunistic improvement 1. D algorithm (Stentz) Uses A to compute optimal path from every node in map 2. Trulla s wavefront algorithm Generates optimal path from every node as part of basic algorithm 3. In both cases, if robot diverted from optimal path, will know optimal path from current location if it can localize itself 4. Problems: (a) May cause excessive wandering or entrapment if many obstacles 5. Solutions to problems: (a) Continuous replanning When encounter unexpected obstacle, update map and adjust paths affected (D ) Problems: i. Computationally expensive ii. Dependent on sensor quality - may result in erratic paths (b) Event-driven replanning Event triggered by sensor readings causes replanning (Trulla) Problems: i. Cannot take advantage of favorable differences 21

Navigation and Metric Path Planning

Navigation and Metric Path Planning Navigation and Metric Path Planning October 4, 2011 Minerva tour guide robot (CMU): Gave tours in Smithsonian s National Museum of History Example of Minerva s occupancy map used for navigation Objectives

More information

10 Metric Path Planning

10 Metric Path Planning 10 Metric Path Planning Chapter objectives: Define Cspace, path relaxation, digitization bias, subgoal obsession, termination condition. Explain the difference between graph and wavefront planners. Represent

More information

EE631 Cooperating Autonomous Mobile Robots

EE631 Cooperating Autonomous Mobile Robots EE631 Cooperating Autonomous Mobile Robots Lecture 3: Path Planning Algorithm Prof. Yi Guo ECE Dept. Plan Representing the Space Path Planning Methods A* Search Algorithm D* Search Algorithm Representing

More information

Motion Planning, Part IV Graph Search Part II. Howie Choset

Motion Planning, Part IV Graph Search Part II. Howie Choset Motion Planning, Part IV Graph Search Part II Howie Choset Map-Based Approaches: Properties of a roadmap: Roadmap Theory Accessibility: there exists a collision-free path from the start to the road map

More information

Motion Planning. Howie CHoset

Motion Planning. Howie CHoset Motion Planning Howie CHoset Questions Where are we? Where do we go? Which is more important? Encoders Encoders Incremental Photodetector Encoder disk LED Photoemitter Encoders - Incremental Encoders -

More information

Path Planning. Marcello Restelli. Dipartimento di Elettronica e Informazione Politecnico di Milano tel:

Path Planning. Marcello Restelli. Dipartimento di Elettronica e Informazione Politecnico di Milano   tel: Marcello Restelli Dipartimento di Elettronica e Informazione Politecnico di Milano email: restelli@elet.polimi.it tel: 02 2399 3470 Path Planning Robotica for Computer Engineering students A.A. 2006/2007

More information

Roadmaps. Vertex Visibility Graph. Reduced visibility graph, i.e., not including segments that extend into obstacles on either side.

Roadmaps. Vertex Visibility Graph. Reduced visibility graph, i.e., not including segments that extend into obstacles on either side. Roadmaps Vertex Visibility Graph Full visibility graph Reduced visibility graph, i.e., not including segments that extend into obstacles on either side. (but keeping endpoints roads) what else might we

More information

ECE276B: Planning & Learning in Robotics Lecture 5: Configuration Space

ECE276B: Planning & Learning in Robotics Lecture 5: Configuration Space ECE276B: Planning & Learning in Robotics Lecture 5: Configuration Space Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Tianyu Wang: tiw161@eng.ucsd.edu Yongxi Lu: yol070@eng.ucsd.edu

More information

Motion Planning, Part III Graph Search, Part I. Howie Choset

Motion Planning, Part III Graph Search, Part I. Howie Choset Motion Planning, Part III Graph Search, Part I Howie Choset Happy President s Day The Configuration Space What it is A set of reachable areas constructed from knowledge of both the robot and the world

More information

Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning

Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning Sören Schwertfeger / 师泽仁 ShanghaiTech University ShanghaiTech University - SIST - 10.05.2017

More information

Robot Motion Planning

Robot Motion Planning Robot Motion Planning James Bruce Computer Science Department Carnegie Mellon University April 7, 2004 Agent Planning An agent is a situated entity which can choose and execute actions within in an environment.

More information

Configuration Space of a Robot

Configuration Space of a Robot Robot Path Planning Overview: 1. Visibility Graphs 2. Voronoi Graphs 3. Potential Fields 4. Sampling-Based Planners PRM: Probabilistic Roadmap Methods RRTs: Rapidly-exploring Random Trees Configuration

More information

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON S RBE 550 Collision Detection Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Euler Angle RBE

More information

6.141: Robotics systems and science Lecture 10: Implementing Motion Planning

6.141: Robotics systems and science Lecture 10: Implementing Motion Planning 6.141: Robotics systems and science Lecture 10: Implementing Motion Planning Lecture Notes Prepared by N. Roy and D. Rus EECS/MIT Spring 2011 Reading: Chapter 3, and Craig: Robotics http://courses.csail.mit.edu/6.141/!

More information

Path Planning. Ioannis Rekleitis

Path Planning. Ioannis Rekleitis Path Planning Ioannis Rekleitis Outline Path Planning Visibility Graph Potential Fields Bug Algorithms Skeletons/Voronoi Graphs C-Space CSCE-574 Robotics 2 Mo+on Planning The ability to go from A to B

More information

Motion Planning. Howie CHoset

Motion Planning. Howie CHoset Motion Planning Howie CHoset What is Motion Planning? What is Motion Planning? Determining where to go Overview The Basics Motion Planning Statement The World and Robot Configuration Space Metrics Algorithms

More information

Autonomous Robotics 6905

Autonomous Robotics 6905 6905 Lecture 5: to Path-Planning and Navigation Dalhousie University i October 7, 2011 1 Lecture Outline based on diagrams and lecture notes adapted from: Probabilistic bili i Robotics (Thrun, et. al.)

More information

CS 354R: Computer Game Technology

CS 354R: Computer Game Technology CS 354R: Computer Game Technology A* Heuristics Fall 2018 A* Search f(n): The current best estimate for the best path through a node: f(n)=g(n)+h(n) g(n): current known best cost for getting to a node

More information

Autonomous Mobile Robots, Chapter 6 Planning and Navigation Where am I going? How do I get there? Localization. Cognition. Real World Environment

Autonomous Mobile Robots, Chapter 6 Planning and Navigation Where am I going? How do I get there? Localization. Cognition. Real World Environment Planning and Navigation Where am I going? How do I get there?? Localization "Position" Global Map Cognition Environment Model Local Map Perception Real World Environment Path Motion Control Competencies

More information

Unit 5: Part 1 Planning

Unit 5: Part 1 Planning Unit 5: Part 1 Planning Computer Science 4766/6778 Department of Computer Science Memorial University of Newfoundland March 25, 2014 COMP 4766/6778 (MUN) Planning March 25, 2014 1 / 9 Planning Localization

More information

Planning: Part 1 Classical Planning

Planning: Part 1 Classical Planning Planning: Part 1 Classical Planning Computer Science 6912 Department of Computer Science Memorial University of Newfoundland July 12, 2016 COMP 6912 (MUN) Planning July 12, 2016 1 / 9 Planning Localization

More information

Lesson 1 Introduction to Path Planning Graph Searches: BFS and DFS

Lesson 1 Introduction to Path Planning Graph Searches: BFS and DFS Lesson 1 Introduction to Path Planning Graph Searches: BFS and DFS DASL Summer Program Path Planning References: http://robotics.mem.drexel.edu/mhsieh/courses/mem380i/index.html http://dasl.mem.drexel.edu/hing/bfsdfstutorial.htm

More information

Framed-Quadtree Path Planning for Mobile Robots Operating in Sparse Environments

Framed-Quadtree Path Planning for Mobile Robots Operating in Sparse Environments In Proceedings, IEEE Conference on Robotics and Automation, (ICRA), Leuven, Belgium, May 1998. Framed-Quadtree Path Planning for Mobile Robots Operating in Sparse Environments Alex Yahja, Anthony Stentz,

More information

6.141: Robotics systems and science Lecture 10: Motion Planning III

6.141: Robotics systems and science Lecture 10: Motion Planning III 6.141: Robotics systems and science Lecture 10: Motion Planning III Lecture Notes Prepared by N. Roy and D. Rus EECS/MIT Spring 2012 Reading: Chapter 3, and Craig: Robotics http://courses.csail.mit.edu/6.141/!

More information

Geometric Path Planning for General Robot Manipulators

Geometric Path Planning for General Robot Manipulators Proceedings of the World Congress on Engineering and Computer Science 29 Vol II WCECS 29, October 2-22, 29, San Francisco, USA Geometric Path Planning for General Robot Manipulators Ziyad Aljarboua Abstract

More information

Navigation methods and systems

Navigation methods and systems Navigation methods and systems Navigare necesse est Content: Navigation of mobile robots a short overview Maps Motion Planning SLAM (Simultaneous Localization and Mapping) Navigation of mobile robots a

More information

Planning in Mobile Robotics

Planning in Mobile Robotics Planning in Mobile Robotics Part I. Miroslav Kulich Intelligent and Mobile Robotics Group Gerstner Laboratory for Intelligent Decision Making and Control Czech Technical University in Prague Tuesday 26/07/2011

More information

Advanced Robotics Path Planning & Navigation

Advanced Robotics Path Planning & Navigation Advanced Robotics Path Planning & Navigation 1 Agenda Motivation Basic Definitions Configuration Space Global Planning Local Planning Obstacle Avoidance ROS Navigation Stack 2 Literature Choset, Lynch,

More information

Visibility Graph. How does a Mobile Robot get from A to B?

Visibility Graph. How does a Mobile Robot get from A to B? Robot Path Planning Things to Consider: Spatial reasoning/understanding: robots can have many dimensions in space, obstacles can be complicated Global Planning: Do we know the environment apriori? Online

More information

Robotic Motion Planning: A* and D* Search

Robotic Motion Planning: A* and D* Search Robotic Motion Planning: A* and D* Search Robotics Institute 6-75 http://voronoi.sbp.ri.cmu.edu/~motion Howie Choset http://voronoi.sbp.ri.cmu.edu/~choset 6-75, Howie Choset with slides from G. Ayorker

More information

Pathfinding. Artificial Intelligence for gaming

Pathfinding. Artificial Intelligence for gaming Pathfinding Artificial Intelligence for gaming Pathfinding Group AI Execution Management Strategy World Inter face Character AI Decision Making Movement Pathfinding Animation Physics Pathfinding Graphs

More information

University of Nevada, Reno. Dynamic Path Planning and Replanning for Mobile Robot Team Using RRT*

University of Nevada, Reno. Dynamic Path Planning and Replanning for Mobile Robot Team Using RRT* University of Nevada, Reno Dynamic Path Planning and Replanning for Mobile Robot Team Using RRT* A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer

More information

Geometric Path Planning McGill COMP 765 Oct 12 th, 2017

Geometric Path Planning McGill COMP 765 Oct 12 th, 2017 Geometric Path Planning McGill COMP 765 Oct 12 th, 2017 The Motion Planning Problem Intuition: Find a safe path/trajectory from start to goal More precisely: A path is a series of robot configurations

More information

Autonomous and Mobile Robotics Prof. Giuseppe Oriolo. Motion Planning 1 Retraction and Cell Decomposition

Autonomous and Mobile Robotics Prof. Giuseppe Oriolo. Motion Planning 1 Retraction and Cell Decomposition Autonomous and Mobile Robotics Prof. Giuseppe Oriolo Motion Planning 1 Retraction and Cell Decomposition motivation robots are expected to perform tasks in workspaces populated by obstacles autonomy requires

More information

Planning Techniques for Robotics Planning Representations: Skeletonization- and Grid-based Graphs

Planning Techniques for Robotics Planning Representations: Skeletonization- and Grid-based Graphs 16-350 Planning Techniques for Robotics Planning Representations: Skeletonization- and Grid-based Graphs Maxim Likhachev Robotics Institute 2D Planning for Omnidirectional Point Robot Planning for omnidirectional

More information

Path Planning for the Cye Personal Robot

Path Planning for the Cye Personal Robot Path Planning for the Cye Personal Robot Parag H. Batavia Illah Nourbakhsh Carnegie Mellon University Robotics Institute Pittsburgh, PA [parag/illah]@ri.cmu.edu Abstract In this paper, we describe the

More information

Recent Results in Path Planning for Mobile Robots Operating in Vast Outdoor Environments

Recent Results in Path Planning for Mobile Robots Operating in Vast Outdoor Environments In Proc. 1998 Symposium on Image, Speech, Signal Processing and Robotics, The Chinese University of Hong Kong, September,1998. Recent Results in Path Planning for Mobile Robots Operating in Vast Outdoor

More information

Path Planning. Jacky Baltes Dept. of Computer Science University of Manitoba 11/21/10

Path Planning. Jacky Baltes Dept. of Computer Science University of Manitoba   11/21/10 Path Planning Jacky Baltes Autonomous Agents Lab Department of Computer Science University of Manitoba Email: jacky@cs.umanitoba.ca http://www.cs.umanitoba.ca/~jacky Path Planning Jacky Baltes Dept. of

More information

Motion Planning for a Point Robot (2/2) Point Robot on a Grid. Planning requires models. Point Robot on a Grid 1/18/2012.

Motion Planning for a Point Robot (2/2) Point Robot on a Grid. Planning requires models. Point Robot on a Grid 1/18/2012. Motion Planning for a Point Robot (/) Class scribing Position paper 1 Planning requires models Point Robot on a Grid The Bug algorithms are reactive motion strategies ; they are not motion planners To

More information

Computer Game Programming Basic Path Finding

Computer Game Programming Basic Path Finding 15-466 Computer Game Programming Basic Path Finding Robotics Institute Path Planning Sven Path Planning needs to be very fast (especially for games with many characters) needs to generate believable paths

More information

4 INFORMED SEARCH AND EXPLORATION. 4.1 Heuristic Search Strategies

4 INFORMED SEARCH AND EXPLORATION. 4.1 Heuristic Search Strategies 55 4 INFORMED SEARCH AND EXPLORATION We now consider informed search that uses problem-specific knowledge beyond the definition of the problem itself This information helps to find solutions more efficiently

More information

Introduction to Mobile Robotics Path Planning and Collision Avoidance. Wolfram Burgard, Maren Bennewitz, Diego Tipaldi, Luciano Spinello

Introduction to Mobile Robotics Path Planning and Collision Avoidance. Wolfram Burgard, Maren Bennewitz, Diego Tipaldi, Luciano Spinello Introduction to Mobile Robotics Path Planning and Collision Avoidance Wolfram Burgard, Maren Bennewitz, Diego Tipaldi, Luciano Spinello 1 Motion Planning Latombe (1991): is eminently necessary since, by

More information

Informed search. Soleymani. CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016

Informed search. Soleymani. CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Informed search CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Soleymani Artificial Intelligence: A Modern Approach, Chapter 3 Outline Best-first search Greedy

More information

6. Parallel Volume Rendering Algorithms

6. Parallel Volume Rendering Algorithms 6. Parallel Volume Algorithms This chapter introduces a taxonomy of parallel volume rendering algorithms. In the thesis statement we claim that parallel algorithms may be described by "... how the tasks

More information

Robotics. CSPP Artificial Intelligence March 10, 2004

Robotics. CSPP Artificial Intelligence March 10, 2004 Robotics CSPP 56553 Artificial Intelligence March 10, 2004 Roadmap Robotics is AI-complete Integration of many AI techniques Classic AI Search in configuration space (Ultra) Modern AI Subsumption architecture

More information

Advanced Robotics Path Planning & Navigation

Advanced Robotics Path Planning & Navigation Advanced Robotics Path Planning & Navigation 1 Agenda Motivation Basic Definitions Configuration Space Global Planning Local Planning Obstacle Avoidance ROS Navigation Stack 2 Literature Choset, Lynch,

More information

Coverage. Ioannis Rekleitis

Coverage. Ioannis Rekleitis Coverage Ioannis Rekleitis Motivation Humanitarian Demining CS-417 Introduction to Robotics and Intelligent Systems 2 Motivation Lawn Mowing CS-417 Introduction to Robotics and Intelligent Systems 3 Motivation

More information

Efficient Interpolated Path Planning of Mobile Robots based on Occupancy Grid Maps

Efficient Interpolated Path Planning of Mobile Robots based on Occupancy Grid Maps Efficient Interpolated Path Planning of Mobile Robots based on Occupancy Grid Maps Marija Ðakulović Mijo Čikeš Ivan Petrović University of Zagreb, Faculty of Electrical Engineering and Computing, Department

More information

Introduction to Mobile Robotics Path Planning and Collision Avoidance

Introduction to Mobile Robotics Path Planning and Collision Avoidance Introduction to Mobile Robotics Path Planning and Collision Avoidance Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Giorgio Grisetti, Kai Arras 1 Motion Planning Latombe (1991): eminently necessary

More information

Informed Search. CS 486/686 University of Waterloo May 10. cs486/686 Lecture Slides 2005 (c) K. Larson and P. Poupart

Informed Search. CS 486/686 University of Waterloo May 10. cs486/686 Lecture Slides 2005 (c) K. Larson and P. Poupart Informed Search CS 486/686 University of Waterloo May 0 Outline Using knowledge Heuristics Best-first search Greedy best-first search A* search Other variations of A* Back to heuristics 2 Recall from last

More information

ON THE DUALITY OF ROBOT AND SENSOR PATH PLANNING. Ashleigh Swingler and Silvia Ferrari Mechanical Engineering and Materials Science Duke University

ON THE DUALITY OF ROBOT AND SENSOR PATH PLANNING. Ashleigh Swingler and Silvia Ferrari Mechanical Engineering and Materials Science Duke University ON THE DUALITY OF ROBOT AND SENSOR PATH PLANNING Ashleigh Swingler and Silvia Ferrari Mechanical Engineering and Materials Science Duke University Conference on Decision and Control - December 10, 2013

More information

Coverage. Ioannis Rekleitis

Coverage. Ioannis Rekleitis Coverage Ioannis Rekleitis Coverage A task performed quite often in everyday life: Cleaning Painting Plowing/Sowing Tile setting etc. CSCE 774: Robotic Systems 2 Motivation Humanitarian Demining CSCE 774:

More information

Topological Navigation and Path Planning

Topological Navigation and Path Planning Topological Navigation and Path Planning Topological Navigation and Path Planning Based upon points of interest E.g., landmarks Navigation is relational between points of interest E.g., Go past the corner

More information

Lecture 3: Motion Planning (cont.)

Lecture 3: Motion Planning (cont.) CS 294-115 Algorithmic Human-Robot Interaction Fall 2016 Lecture 3: Motion Planning (cont.) Scribes: Molly Nicholas, Chelsea Zhang 3.1 Previously in class... Recall that we defined configuration spaces.

More information

Elastic Bands: Connecting Path Planning and Control

Elastic Bands: Connecting Path Planning and Control Elastic Bands: Connecting Path Planning and Control Sean Quinlan and Oussama Khatib Robotics Laboratory Computer Science Department Stanford University Abstract Elastic bands are proposed as the basis

More information

Graph-based Planning Using Local Information for Unknown Outdoor Environments

Graph-based Planning Using Local Information for Unknown Outdoor Environments Graph-based Planning Using Local Information for Unknown Outdoor Environments Jinhan Lee, Roozbeh Mottaghi, Charles Pippin and Tucker Balch {jinhlee, roozbehm, cepippin, tucker}@cc.gatech.edu Center for

More information

Robot Motion Planning and (a little) Computational Geometry

Robot Motion Planning and (a little) Computational Geometry Images taken from slides b B. Baazit, G. Dudek, J. C. Latombe and A. Moore Robot Motion Planning and (a little) Computational Geometr Topics: Transforms Topological Methods Configuration space Skeletonization

More information

Motion Planning 2D. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Motion Planning 2D. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Motion Planning 2D Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Tratto dai corsi: CS 326A: Motion Planning ai.stanford.edu/~latombe/cs326/2007/index.htm Prof. J.C. Latombe Stanford

More information

Search : Lecture 2. September 9, 2003

Search : Lecture 2. September 9, 2003 Search 6.825: Lecture 2 September 9, 2003 1 Problem-Solving Problems When your environment can be effectively modeled as having discrete states and actions deterministic, known world dynamics known initial

More information

CS 771 Artificial Intelligence. Informed Search

CS 771 Artificial Intelligence. Informed Search CS 771 Artificial Intelligence Informed Search Outline Review limitations of uninformed search methods Informed (or heuristic) search Uses problem-specific heuristics to improve efficiency Best-first,

More information

Informed search strategies (Section ) Source: Fotolia

Informed search strategies (Section ) Source: Fotolia Informed search strategies (Section 3.5-3.6) Source: Fotolia Review: Tree search Initialize the frontier using the starting state While the frontier is not empty Choose a frontier node to expand according

More information

Visual Navigation for Flying Robots. Motion Planning

Visual Navigation for Flying Robots. Motion Planning Computer Vision Group Prof. Daniel Cremers Visual Navigation for Flying Robots Motion Planning Dr. Jürgen Sturm Motivation: Flying Through Forests 3 1 2 Visual Navigation for Flying Robots 2 Motion Planning

More information

Geometric Representations. Stelian Coros

Geometric Representations. Stelian Coros Geometric Representations Stelian Coros Geometric Representations Languages for describing shape Boundary representations Polygonal meshes Subdivision surfaces Implicit surfaces Volumetric models Parametric

More information

Lecture Schedule Week Date Lecture (W: 3:05p-4:50, 7-222)

Lecture Schedule Week Date Lecture (W: 3:05p-4:50, 7-222) 2017 School of Information Technology and Electrical Engineering at the University of Queensland Lecture Schedule Week Date Lecture (W: 3:05p-4:50, 7-222) 1 26-Jul Introduction + 2 2-Aug Representing Position

More information

A New Performance-Based Motion Planner for Nonholonomic Mobile Robots

A New Performance-Based Motion Planner for Nonholonomic Mobile Robots A New Performance-Based Motion Planner for Nonholonomic Mobile Robots Yi Guo, Zhihua Qu and Jing Wang School of Electrical Engineering and Computer Science University of Central Florida, Orlando, FL 3816-45

More information

Outline. Best-first search

Outline. Best-first search Outline Best-first search Greedy best-first search A* search Heuristics Admissible Heuristics Graph Search Consistent Heuristics Local search algorithms Hill-climbing search Beam search Simulated annealing

More information

CONSTRUCTION OF THE VORONOI DIAGRAM BY A TEAM OF COOPERATIVE ROBOTS

CONSTRUCTION OF THE VORONOI DIAGRAM BY A TEAM OF COOPERATIVE ROBOTS CONSTRUCTION OF THE VORONOI DIAGRAM BY A TEAM OF COOPERATIVE ROBOTS Flavio S. Mendes, Júlio S. Aude, Paulo C. V. Pinto IM and NCE, Federal University of Rio de Janeiro P.O.Box 2324 - Rio de Janeiro - RJ

More information

Chapter 5.4 Artificial Intelligence: Pathfinding

Chapter 5.4 Artificial Intelligence: Pathfinding Chapter 5.4 Artificial Intelligence: Pathfinding Introduction Almost every game requires pathfinding Agents must be able to find their way around the game world Pathfinding is not a trivial problem The

More information

Spring 2010: Lecture 9. Ashutosh Saxena. Ashutosh Saxena

Spring 2010: Lecture 9. Ashutosh Saxena. Ashutosh Saxena CS 4758/6758: Robot Learning Spring 2010: Lecture 9 Why planning and control? Video Typical Architecture Planning 0.1 Hz Control 50 Hz Does it apply to all robots and all scenarios? Previous Lecture: Potential

More information

Dependency Tracking for Fast Marching. Dynamic Replanning for Ground Vehicles

Dependency Tracking for Fast Marching. Dynamic Replanning for Ground Vehicles Dependency Tracking for Fast Marching Dynamic Replanning for Ground Vehicles Roland Philippsen Robotics and AI Lab, Stanford, USA Fast Marching Method Tutorial, IROS 2008 Overview Path Planning Approaches

More information

Robot Motion Planning

Robot Motion Planning Robot Motion Planning slides by Jan Faigl Department of Computer Science and Engineering Faculty of Electrical Engineering, Czech Technical University in Prague lecture A4M36PAH - Planning and Games Dpt.

More information

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute Jane Li Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute A search-algorithm prioritizes and expands the nodes in its open list items by

More information

CS Path Planning

CS Path Planning Why Path Planning? CS 603 - Path Planning Roderic A. Grupen 4/13/15 Robotics 1 4/13/15 Robotics 2 Why Motion Planning? Origins of Motion Planning Virtual Prototyping! Character Animation! Structural Molecular

More information

Off-Line and On-Line Trajectory Planning

Off-Line and On-Line Trajectory Planning Off-Line and On-Line Trajectory Planning Zvi Shiller Abstract The basic problem of motion planning is to select a path, or trajectory, from a given initial state to a destination state, while avoiding

More information

Informed/Heuristic Search

Informed/Heuristic Search Informed/Heuristic Search Outline Limitations of uninformed search methods Informed (or heuristic) search uses problem-specific heuristics to improve efficiency Best-first A* Techniques for generating

More information

Heuristic (Informed) Search

Heuristic (Informed) Search Heuristic (Informed) Search (Where we try to choose smartly) R&N: Chap., Sect..1 3 1 Search Algorithm #2 SEARCH#2 1. INSERT(initial-node,Open-List) 2. Repeat: a. If empty(open-list) then return failure

More information

Simulation in Computer Graphics Space Subdivision. Matthias Teschner

Simulation in Computer Graphics Space Subdivision. Matthias Teschner Simulation in Computer Graphics Space Subdivision Matthias Teschner Outline Introduction Uniform grid Octree and k-d tree BSP tree University of Freiburg Computer Science Department 2 Model Partitioning

More information

MEM380 Applied Autonomous Robots Fall Depth First Search A* and Dijkstra s Algorithm

MEM380 Applied Autonomous Robots Fall Depth First Search A* and Dijkstra s Algorithm MEM380 Applied Autonomous Robots Fall Breadth First Search Depth First Search A* and Dijkstra s Algorithm Admin Stuff Course Website: http://robotics.mem.drexel.edu/mhsieh/courses/mem380i/ Instructor:

More information

Goal-Directed Navigation

Goal-Directed Navigation Goal-Directed Navigation Chapter 6 Objectives Investigate techniques for navigating a robot towards a goal location Examine algorithms that work in environments with known obstacle locations unknown obstacle

More information

Introduction to Mobile Robotics Path and Motion Planning. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello

Introduction to Mobile Robotics Path and Motion Planning. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello Introduction to Mobile Robotics Path and Motion Planning Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello 1 Motion Planning Latombe (1991): eminently necessary since,

More information

Foundations of AI. 4. Informed Search Methods. Heuristics, Local Search Methods, Genetic Algorithms. Wolfram Burgard & Bernhard Nebel

Foundations of AI. 4. Informed Search Methods. Heuristics, Local Search Methods, Genetic Algorithms. Wolfram Burgard & Bernhard Nebel Foundations of AI 4. Informed Search Methods Heuristics, Local Search Methods, Genetic Algorithms Wolfram Burgard & Bernhard Nebel Contents Best-First Search A* and IDA* Local Search Methods Genetic Algorithms

More information

Prediction-Based Path Planning with Obstacle Avoidance in Dynamic Target Environment

Prediction-Based Path Planning with Obstacle Avoidance in Dynamic Target Environment 48 Prediction-Based Path Planning with Obstacle Avoidance in Dynamic Target Environment Zahraa Y. Ibrahim Electrical Engineering Department University of Basrah Basrah, Iraq Abdulmuttalib T. Rashid Electrical

More information

Foundations of AI. 4. Informed Search Methods. Heuristics, Local Search Methods, Genetic Algorithms

Foundations of AI. 4. Informed Search Methods. Heuristics, Local Search Methods, Genetic Algorithms Foundations of AI 4. Informed Search Methods Heuristics, Local Search Methods, Genetic Algorithms Luc De Raedt and Wolfram Burgard and Bernhard Nebel Contents Best-First Search A* and IDA* Local Search

More information

Informed Search Algorithms

Informed Search Algorithms Informed Search Algorithms CITS3001 Algorithms, Agents and Artificial Intelligence Tim French School of Computer Science and Software Engineering The University of Western Australia 2017, Semester 2 Introduction

More information

Planning, Execution and Learning Application: Examples of Planning for Mobile Manipulation and Articulated Robots

Planning, Execution and Learning Application: Examples of Planning for Mobile Manipulation and Articulated Robots 15-887 Planning, Execution and Learning Application: Examples of Planning for Mobile Manipulation and Articulated Robots Maxim Likhachev Robotics Institute Carnegie Mellon University Two Examples Planning

More information

Wave front Method Based Path Planning Algorithm for Mobile Robots

Wave front Method Based Path Planning Algorithm for Mobile Robots Wave front Method Based Path Planning Algorithm for Mobile Robots Bhavya Ghai 1 and Anupam Shukla 2 ABV- Indian Institute of Information Technology and Management, Gwalior, India 1 bhavyaghai@gmail.com,

More information

Sampling-based Planning 2

Sampling-based Planning 2 RBE MOTION PLANNING Sampling-based Planning 2 Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Problem with KD-tree RBE MOTION PLANNING Curse of dimension

More information

1 Introduction and Examples

1 Introduction and Examples 1 Introduction and Examples Sequencing Problems Definition A sequencing problem is one that involves finding a sequence of steps that transforms an initial system state to a pre-defined goal state for

More information

EE631 Cooperating Autonomous Mobile Robots

EE631 Cooperating Autonomous Mobile Robots EE631 Cooperating Autonomous Mobile Robots Lecture: Multi-Robot Motion Planning Prof. Yi Guo ECE Department Plan Introduction Premises and Problem Statement A Multi-Robot Motion Planning Algorithm Implementation

More information

Collision Detection based on Spatial Partitioning

Collision Detection based on Spatial Partitioning Simulation in Computer Graphics Collision Detection based on Spatial Partitioning Matthias Teschner Computer Science Department University of Freiburg Outline introduction uniform grid Octree and k-d tree

More information

Cluster Subgraphs Example, With Tile Graphs. Alternatives. Cluster Subgraphs. Cluster Subgraphs Example, With Tile Graphs

Cluster Subgraphs Example, With Tile Graphs. Alternatives. Cluster Subgraphs. Cluster Subgraphs Example, With Tile Graphs Alternatives Cluster Subgraphs Example, With Tile Graphs Replace a cluster with a small subgraph instead of a single node. e.g. represent entry/exit points run path-finding on the abstract graph to find

More information

COMP9414/ 9814/ 3411: Artificial Intelligence. 5. Informed Search. Russell & Norvig, Chapter 3. UNSW c Alan Blair,

COMP9414/ 9814/ 3411: Artificial Intelligence. 5. Informed Search. Russell & Norvig, Chapter 3. UNSW c Alan Blair, COMP9414/ 9814/ 3411: Artificial Intelligence 5. Informed Search Russell & Norvig, Chapter 3. COMP9414/9814/3411 15s1 Informed Search 1 Search Strategies General Search algorithm: add initial state to

More information

Heuristic Search. Heuristic Search. Heuristic Search. CSE 3401: Intro to AI & LP Informed Search

Heuristic Search. Heuristic Search. Heuristic Search. CSE 3401: Intro to AI & LP Informed Search CSE 3401: Intro to AI & LP Informed Search Heuristic Search. Required Readings: Chapter 3, Sections 5 and 6, and Chapter 4, Section 1. In uninformed search, we don t try to evaluate which of the nodes

More information

Heuristic (Informed) Search

Heuristic (Informed) Search Heuristic (Informed) Search (Where we try to choose smartly) R&N: Chap. 4, Sect. 4.1 3 1 Recall that the ordering of FRINGE defines the search strategy Search Algorithm #2 SEARCH#2 1. INSERT(initial-node,FRINGE)

More information

Informed Search A* Algorithm

Informed Search A* Algorithm Informed Search A* Algorithm CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Soleymani Artificial Intelligence: A Modern Approach, Chapter 3 Most slides have

More information

Outline for today s lecture. Informed Search. Informed Search II. Review: Properties of greedy best-first search. Review: Greedy best-first search:

Outline for today s lecture. Informed Search. Informed Search II. Review: Properties of greedy best-first search. Review: Greedy best-first search: Outline for today s lecture Informed Search II Informed Search Optimal informed search: A* (AIMA 3.5.2) Creating good heuristic functions Hill Climbing 2 Review: Greedy best-first search: f(n): estimated

More information

Manipula0on Algorithms Mo0on Planning. Mo#on Planning I. Katharina Muelling (NREC, Carnegie Mellon University) 1

Manipula0on Algorithms Mo0on Planning. Mo#on Planning I. Katharina Muelling (NREC, Carnegie Mellon University) 1 16-843 Manipula0on Algorithms Mo0on Planning Mo#on Planning I Katharina Muelling (NREC, Carnegie Mellon University) 1 Configura0on Space Obstacles Star Algorithm Convex robot, transla#on C obs : convex

More information

Chapter 12. Path Planning. Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 2012,

Chapter 12. Path Planning. Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 2012, Chapter 12 Path Planning Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 212, Chapter 12: Slide 1 Control Architecture destination, obstacles map path planner waypoints status path

More information

A* Optimality CS4804

A* Optimality CS4804 A* Optimality CS4804 Plan A* in a tree A* in a graph How to handle multiple paths to a node Intuition about consistency Search space + heuristic design practice A* Search Expand node in frontier with best

More information

Informed Search and Exploration for Agents

Informed Search and Exploration for Agents Informed Search and Exploration for Agents R&N: 3.5, 3.6 Michael Rovatsos University of Edinburgh 29 th January 2015 Outline Best-first search Greedy best-first search A * search Heuristics Admissibility

More information