Dr. Allen Back. Nov. 21, 2014

Size: px
Start display at page:

Download "Dr. Allen Back. Nov. 21, 2014"

Transcription

1 Dr. Allen Back of Nov. 21, 2014

2 The most important thing you should know (e.g. for exams and homework) is how to setup (and perhaps compute if not too hard) surface integrals, triple integrals, etc. But occasionally symmetries can save a considerable amount of work. of

3 Problem: Calculate the following surface integral: y 2 z 2 ds S for S the part of the paraboloid x = y 2 + z 2 with 1 x 5. of

4 of In this case the symmetry of interchanging y and z is an orthogonal (and so distance/angle preserving transformation of R 3.) (Algebraically this is the transformation y z, z y, x x.) And this transformation preserves the region we are integrating over. At the Riemann sum level, for every little area S near (x, y, z) S there is a matching area near (x, z, y) whose contributions at the Riemann sum level cancel. So the value of the surface integral is 0.

5 If you use this argument on homework or an exam, please 1 Describe the symmetry you are using. 2 Mention that the region of integration is symmetric under this symmetry. 3 State clearly what cancellation or simplification results. (In other words, don t just say by symmetry this is 0 unless it really is obvious.) of

6 Using the same potion of a paraboloid, here are two more examples where we can use symmetry to argue for an answer of 0 : 1 (0, y, z) ˆn ds 2 S S yz ds of

7 Definition: A path c : [a, b] R 3 is said to be a flow line (or integral curve) of a vector field F (x, y, z) if for all t [a, b]. c (t) = F (c(t)) of

8 Flow lines always exist at least locally because of existence and uniqueness theorems for ordinary differential equations. of

9 At the end of Math 2210, you studied how to use eigenvalues/eigenvectors/diagonalization/(jordan Normal form) to solve linear differential equations. of

10 Show that c(t) = (x 0 e t, y 0 e t ) is a flow line of F (x, y) = (x, y). of

11 Show that c(t) = [ ] x(t) = y(t) [ cos t ] [ ] sin t x0 sin t cos t y 0 is a flow line of F (x, y) = ( y, x). of

12 We will discuss the meaning of these when we get to the 3d integral theorems (8.2 and 8.4.) For a vector field F (x, y, z) = (P, Q, R) div( F ) is a (scalar) function; i.e. a number at each point. curl( F ) is another vector field; i.e. a vector at each point. of

13 for F (x, y, z) = (P, Q, R). div( F ) = P x + Q y + R z ( F ). of

14 for F (x, y, z) = (P, Q, R). î ĵ ˆk curl( F ) = x y z P Q R ( F ). of

15 Please take a look at the table of vector analysis identities on page 255. Many are just the 1-variable product or chain rules. 1 (fg) 2 div(f F ) 3 curl(f F ) 4 curl( G F ) would be more complicated. of

16 (There is a more complicated identity a ( b c) = ( a c) b ( a b) c useful in E & M, but the related curl identity (useful in some proofs of Stokes theorem is tricky to get right.) of

17 very important ones are 1 div(curl F ) = 0. 2 curl( f ) = 0. (for C 2 functions and vector fields.) They all are consequences of f xy = f yx for such functions. of

18 Problem: Let r = (x, y, z), and so r = r = x 2 + y 2 + z 2. Show that a vector field of the form f (r) r satisfies F = 0. (In physics, this is called a central force field.) of

19 of Green s theorem says that for simple closed (piecewise smooth) curve C whose inside is a region R, we have Q P(x, y) dx + Q(x, y) dy = x P dx dy y C as long as the vector field F (x, y) = (P(x, y), Q(x, y)) is C 1 on the set R and C is given its usual inside to the left orientation. R

20 For a y-simple region P y dy dx = R is fairly easily justified. C= R P dx. of

21 For an x-simple region Q x dx dy = R C= R Q dy. of

22 So for a region that is both y-simple and x-simple we have Green: P(x, y) dx + Q(x, y) dy = Q y P x dx dy. R R of

23 Intuitively, why the different signs? +Q x yet P y. And why this combination of Q x P y? of

24 Intuitively, why the different signs? +Q x yet P y. And why this combination of Q x P y? Think about the line integral around a small rectangle with sides x and y. If you assume (or justify) that evaluating the vector field in the middle of each edge gives a good approximation in the line integral, then Q x P y emerges quite naturally. of

25 If you can cut a region into two pieces where we know Green s holds on each piece (e.g. a ring shaped region), then Green also holds for the entire region. (Because the line integrals over the cuts show up twice with opposite signs (think inside to the left ) and cancel. of

26 So in the end, Green s theorem holds for regions whose boundaries include several closed curves (multiply-connected regions) as long as we orient each boundar curve according to the inside to the left rule. of

27 1 2 C x dy y dx oriented counterclockwise. for C the boundary of the ellipse x y = 1 of

28 Let F = 1 x 2 ( y, x). + y 2 If C 1 and C 2 are two simple closed curves enclosing the origin (and oriented with the usual inside to the left), can you say whether one of C 1 F d s and C 2 F d s is bigger than the other? of

29 Integration of a conservative vector field cartoon. of

30 Green s Theorem cartoon. of

31 Stokes Theorem cartoon. of

32 of Both sides of Stokes involve integrals whose signs depend on the orientation, so to have a chance at being true, there needs to be some compatibility between the choices. The rule is that, from the positive side of the surface, (i.e. the side chosen by the orientation), the positive direction of the curve has the inside of the surface to the left. As with all orientations, this can be expressed in terms of the sign of some determinant. (Or in many cases in terms of the sign of some combination of dot and cross products.)

33 Problem: Let S be the portion of the unit sphere x 2 + y 2 + z 2 = 1 with z 0. Orient the hemisphere with an upward unit normal. Let F (x, y, z) = (y, x, z). Calculate the value of the surface integral F ˆn ds. S of

34 Theorem field cartoon. of

35 of The surface integral side of depends on the orientation, so there needs to be a choice making the theorem true. The rule is that the normal to the surface should point outward from the inside of the region. (For the 2d analogue of (really an application of ) F ˆn = (P x + Q y ) dx dy C inside we also use an outward normal, where here C must of course be a closed curve.

36 Problem: Let W be the solid cylinder x 2 + y 2 3 with 1 z 5. Let F (x, y, z) = (x, y, z). Find the value of the surface integral F ˆn ds. W of

37 of This is not worth memorizing! If one rotates about the z-axis the path (curve) z = f (x) in the xz-plane for 0 a x b, one obtains a surface of revolution with a parametrization of and ds =? Φ(u, v) = (u cos v, u sin v, f (u))

38 of ds = u 1 + (f (u)) 2 du dv. of

39 This is not worth memorizing! For the graph parametrization of z = f (x, y), and ds =? Φ(u, v) = (u, v, f (u, v)) of

40 ds = 1 + fu 2 + fv 2 du dv. of

41 of For such a graph, the normal to the surface at a point (x, y, f (x, y)) (this is the level set z f (x, y) = 0) is so we can see that ( f x, f y, 1) 1 cos γ = 1 + fx 2 + fy 2 determines the angle γ of the normal with the z-axis. And so at the point (u, v, f (u, v)) on a graph, ds = 1 cos γ du dv. (Note that du dv is essentially the same as dx dy here.)

42 Picture of T u, T v for a Lat/Long Param. of the Sphere. of

43 Basic Parametrization Picture of

44 of Parametrization Φ(u, v) = (x(u, v), y(u, v), z(u, v)) Tangents T u = (x u, y u, z u ) T v = (x v, y v, z v ) Area Element ds = T u T v du dv Normal N = T u T v Unit normal ˆn = ± T u T v T u T v (Choosing the ± sign corresponds to an orientation of the surface.)

45 of Two Kinds of Integral of a scalar function f (x, y, z) : f (x, y, z) ds Integral of a vector field F (x, y, z) : F (x, y, z) ˆn ds. S S

46 of Integral of a scalar function f (x, y, z) calculated by f (x, y, z) ds = f (Φ(u, v)) T u T v du dv S D where D is the domain of the parametrization Φ. Integral of a vector field F (x, y, z) calculated by F (x, y, z) ˆn ds S ( Tu = ± F (Φ(u, v)) ) T v D T u T T u T v du dv v where D is the domain of the parametrization Φ.

47 3d Flux Picture of

48 of The preceding picture can be used to argue that if F (x, y, z) is the velocity vector field, e.g. of a fluid of density ρ(x, y, z), then the surface integral S ρ F ˆn ds (with associated Riemann Sum ρ(x i, yj, zk ) F (xi, yj, zk ) ˆn(x i, yj, zk ) S ijk) represents the rate at which material (e.g. grams per second) crosses the surface.

49 From this point of view the orientation of a surface simple tells us which side is accumulatiing mass, in the case where the value of the integral is positive. of

50 2d Flux Picture of There s an analagous 2d Riemann sum and interp of F ˆn ds. C

51 of

52 Problem: Calculate S F (x, y, z) ˆn ds for the vector field F (x, y, z) = (x, y, z) and S the part of the paraboloid z = 1 x 2 y 2 above the xy-plane. Choose the positive orientation of the paraboloid to be the one with normal pointing downward. of

53 Problem: Calculate the surface area of the above paraboloid. of

54 Problem: Find S F ˆn ds for F (x, y, z) = (0, yz, z 2 ) and S the portion of the cylinder y 2 + z 2 = 1 with 0 x 1, z 0, and the positive orientation chosen to be a radial outward (from the axis of the cylinder) normal. of

55 Problem: Letting r denote the vector field (x, y, z), find the value of the surface integral r ˆn ds r 3 S where S is the sphere of radius R about the origin, oriented with an outward normal. of

56 Spherical coordinates (letting ρ = R be constant) gives a natural parametrization of the sphere of radius R centered at the origin. It is geometrically to be expected (and you ve done some verifications like this at least in look at problems) that the Jacobian result for spherical coordinates translates to the area element on such a sphere to be ds = R 2 sin φ dφ dθ. of

57 Paraboloid z = x 2 + 4y 2 The graph z = F (x, y) can always be parameterized by Φ(u, v) =< u, v, F (u, v) >. of

58 Paraboloid z = x 2 + 4y 2 of The graph z = F (x, y) can always be parameterized by Φ(u, v) =< u, v, F (u, v) >. Parameters u and v just different names for x and y resp.

59 Paraboloid z = x 2 + 4y 2 of The graph z = F (x, y) can always be parameterized by Φ(u, v) =< u, v, F (u, v) >. Use this idea if you can t think of something better.

60 Paraboloid z = x 2 + 4y 2 The graph z = F (x, y) can always be parameterized by Φ(u, v) =< u, v, F (u, v) >. of

61 Paraboloid z = x 2 + 4y 2 The graph z = F (x, y) can always be parameterized by Φ(u, v) =< u, v, F (u, v) >. of Note the curves where u and v are constant are visible in the wireframe.

62 Paraboloid z = x 2 + 4y 2 A trigonometric parametrization will often be better if you have to calculate a surface integral. of

63 Paraboloid z = x 2 + 4y 2 A trigonometric parametrization will often be better if you have to calculate a surface integral. Φ(u, v) =< 2u cos v, u sin v, 4u 2 >. of

64 Paraboloid z = x 2 + 4y 2 A trigonometric parametrization will often be better if you have to calculate a surface integral. Φ(u, v) =< 2u cos v, u sin v, 4u 2 >. of

65 Paraboloid z = x 2 + 4y 2 A trigonometric parametrization will often be better if you have to calculate a surface integral. Φ(u, v) =< 2u cos v, u sin v, 4u 2 >. of Algebraically, we are rescaling the algebra behind polar coordinates where x = r cos θ y = r sin θ leads to r 2 = x 2 + y 2.

66 Paraboloid z = x 2 + 4y 2 A trigonometric parametrization will often be better if you have to calculate a surface integral. Φ(u, v) =< 2u cos v, u sin v, 4u 2 >. of Here we want x 2 + 4y 2 to be simple. So x = 2r cos θ y = r sin θ will do better.

67 Paraboloid z = x 2 + 4y 2 A trigonometric parametrization will often be better if you have to calculate a surface integral. Φ(u, v) =< 2u cos v, u sin v, 4u 2 >. of Here we want x 2 + 4y 2 to be simple. So x = y = 2r cos θ r sin θ will do better. Plug x and y into z = x 2 + 4y 2 to get the z-component.

68 Parabolic Cylinder z = x 2 Graph parametrizations are often optimal for parabolic cylinders. of

69 Parabolic Cylinder z = x 2 Φ(u, v) =< u, v, u 2 > of

70 Parabolic Cylinder z = x 2 Φ(u, v) =< u, v, u 2 > of

71 Parabolic Cylinder z = x 2 Φ(u, v) =< u, v, u 2 > of One of the parameters (v) is giving us the extrusion direction. The parameter u is just being used to describe the curve z = x 2 in the zx plane.

72 Elliptic Cylinder x 2 + 2z 2 = 6 The trigonometric trick is often good for elliptic cylinders of

73 Elliptic Cylinder x 2 + 2z 2 = 6 Φ(u, v) =< 3 2 cos v, u, 3 sin v >=< 6 cos v, u, 3 sin v > of

74 Elliptic Cylinder x 2 + 2z 2 = 6 Φ(u, v) =< 6 cos v, u, 3 sin v > of

75 Elliptic Cylinder x 2 + 2z 2 = 6 Φ(u, v) =< 6 cos v, u, 3 sin v > of

76 Elliptic Cylinder x 2 + 2z 2 = 6 Φ(u, v) =< 6 cos v, u, 3 sin v > of

77 Elliptic Cylinder x 2 + 2z 2 = 6 Φ(u, v) =< 6 cos v, u, 3 sin v > of What happened here is we started with the polar coordinate idea x = r cos θ z = r sin θ but noted that the algebra wasn t right for x 2 + 2z 2 so shifted to x = 2r cos θ z = r sin θ

78 Elliptic Cylinder x 2 + 2z 2 = 6 Φ(u, v) =< 6 cos v, u, 3 sin v > of x = z = 2r cos θ r sin θ makes the left hand side work out to 2r 2 which will be 6 when r = 3.

79 Ellipsoid x 2 + 2y 2 + 3z 2 = 4 A similar trick occurs for using spherical coordinate ideas in parameterizing ellipsoids. of

80 Ellipsoid x 2 + 2y 2 + 3z 2 = 4 A similar trick occurs for using spherical coordinate ideas in parameterizing ellipsoids. Φ(u, v) =< 2 sin u cos v, 4 2 sin u sin v, 3 cos u > of

81 Ellipsoid x 2 + 2y 2 + 3z 2 = 4 Φ(u, v) =< 2 sin u cos v, 2 sin u sin v, 4 3 cos u > of

82 Hyperbolic Cylinder x 2 z 2 = 4 You may have run into the hyperbolic functions of cosh x = sinh x = ex + e x 2 ex e x 2

83 Hyperbolic Cylinder x 2 z 2 = 4 of You may have run into the hyperbolic functions cosh x = sinh x = ex + e x 2 ex e x Just as cos 2 θ + sin 2 θ = 1 helps with ellipses, the hyperbolic version cosh 2 θ sinh 2 θ = 1 leads to the nicest hyperbola parameterizations. 2

84 Hyperbolic Cylinder x 2 z 2 = 4 Just as cos 2 θ + sin 2 θ = 1 helps with ellipses, the hyperbolic version cosh 2 θ sinh 2 θ = 1 leads to the nicest hyperbola parameterizations. of Φ(u, v) =< 2 sinh v, u, 2 cosh v >

85 Hyperbolic Cylinder x 2 z 2 = 4 Φ(u, v) =< 2 sinh v, u, 2 cosh v > of

86 Saddle z = x 2 y 2 The hyperbolic trick also works with saddles of

87 Saddle z = x 2 y 2 Φ(u, v) =< u cosh v, u sinh v, u 2 > of

88 Saddle z = x 2 y 2 Φ(u, v) =< u cosh v, u sinh v, u 2 > of

89 Hyperboloid of 1 Sheet x 2 + y 2 z 2 = 1 The spherical coordinate idea for ellipsoids with sin φ replaced by cosh u works well here. of

90 Hyperboloid of 1 Sheet x 2 + y 2 z 2 = 1 Φ(u, v) =< cosh u cos v, cosh u sin v, sinh u > of

91 Hyperboloid of 1 Sheet x 2 + y 2 z 2 = 1 of

92 Hyperboloid of 2-Sheets x 2 + y 2 z 2 = 1 Φ(u, v) =< sinh u cos v, sinh u sin v, cosh u > of

93 Hyperboloid of 2-Sheets x 2 + y 2 z 2 = 1 of

94 Top Part of Cone z 2 = x 2 + y 2 So z = x 2 + y 2. of

95 Top Part of Cone z 2 = x 2 + y 2 So z = x 2 + y 2. The polar coordinate idea leads to Φ(u, v) =< u cos v, u sin v, u > of

96 Top Part of Cone z 2 = x 2 + y 2 So z = x 2 + y 2. The polar coordinate idea leads to Φ(u, v) =< u cos v, u sin v, u > of

97 Mercator Parametrization of the Sphere For 0 v, 0 u 2π Φ(u, v) = (sech(v) cos u, sech(v) sin u, tanh(v)). (Note tanh 2 (v) + sech 2 (v) = 1) of

98 ctionn of

Dr. Allen Back. Nov. 19, 2014

Dr. Allen Back. Nov. 19, 2014 Why of Dr. Allen Back Nov. 19, 2014 Graph Picture of T u, T v for a Lat/Long Param. of the Sphere. Why of Graph Basic Picture Why of Graph Why Φ(u, v) = (x(u, v), y(u, v), z(u, v)) Tangents T u = (x u,

More information

Parametrization. Surface. Parametrization. Surface Integrals. Dr. Allen Back. Nov. 17, 2014

Parametrization. Surface. Parametrization. Surface Integrals. Dr. Allen Back. Nov. 17, 2014 Dr. Allen Back Nov. 17, 2014 Paraboloid z = x 2 + 4y 2 The graph z = F (x, y) can always be parameterized by Φ(u, v) =< u, v, F (u, v) >. Paraboloid z = x 2 + 4y 2 The graph z = F (x, y) can always be

More information

Chapter 15 Vector Calculus

Chapter 15 Vector Calculus Chapter 15 Vector Calculus 151 Vector Fields 152 Line Integrals 153 Fundamental Theorem and Independence of Path 153 Conservative Fields and Potential Functions 154 Green s Theorem 155 urface Integrals

More information

Math Exam III Review

Math Exam III Review Math 213 - Exam III Review Peter A. Perry University of Kentucky April 10, 2019 Homework Exam III is tonight at 5 PM Exam III will cover 15.1 15.3, 15.6 15.9, 16.1 16.2, and identifying conservative vector

More information

First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). Surfaces will need two parameters.

First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). Surfaces will need two parameters. Math 55 - Vector Calculus II Notes 14.6 urface Integrals Let s develop some surface integrals. First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). urfaces

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals MATH 234 Excercises on Integration in everal Variables I. Double Integrals Problem 1. D = {(x, y) : y x 1, 0 y 1}. Compute D ex3 da. Problem 2. Find the volume of the solid bounded above by the plane 3x

More information

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv.

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv. MAC2313 Final A (5 pts) 1. Let f(x, y, z) be a function continuous in R 3 and let S be a surface parameterized by r(u, v) with the domain of the parameterization given by R; how many of the following are

More information

MATH 2023 Multivariable Calculus

MATH 2023 Multivariable Calculus MATH 2023 Multivariable Calculus Problem Sets Note: Problems with asterisks represent supplementary informations. You may want to read their solutions if you like, but you don t need to work on them. Set

More information

Calculus III Meets the Final

Calculus III Meets the Final Calculus III Meets the Final Peter A. Perry University of Kentucky December 7, 2018 Homework Review for Final Exam on Thursday, December 13, 6:00-8:00 PM Be sure you know which room to go to for the final!

More information

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Textbook: Section 16.6 Big Ideas A surface in R 3 is a 2-dimensional object in 3-space. Surfaces can be described using two variables.

More information

Section Parametrized Surfaces and Surface Integrals. (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals

Section Parametrized Surfaces and Surface Integrals. (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals Section 16.4 Parametrized Surfaces and Surface Integrals (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals MATH 127 (Section 16.4) Parametrized Surfaces and Surface Integrals

More information

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two:

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two: Final Solutions. Suppose that the equation F (x, y, z) implicitly defines each of the three variables x, y, and z as functions of the other two: z f(x, y), y g(x, z), x h(y, z). If F is differentiable

More information

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim Chapter 14 Multiple Integrals..1 Double Integrals, Iterated Integrals, Cross-sections.2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals.3

More information

MATH 261 FALL 2000 FINAL EXAM INSTRUCTIONS. 1. This test booklet has 14 pages including this one. There are 25 questions, each worth 8 points.

MATH 261 FALL 2000 FINAL EXAM INSTRUCTIONS. 1. This test booklet has 14 pages including this one. There are 25 questions, each worth 8 points. MATH 261 FALL 2 FINAL EXAM STUDENT NAME - STUDENT ID - RECITATION HOUR - RECITATION INSTRUCTOR INSTRUCTOR - INSTRUCTIONS 1. This test booklet has 14 pages including this one. There are 25 questions, each

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley FINAL EXAMINATION, Fall 2012 DURATION: 3 hours Department of Mathematics MATH 53 Multivariable Calculus Examiner: Sean Fitzpatrick Total: 100 points Family Name: Given

More information

Curves: We always parameterize a curve with a single variable, for example r(t) =

Curves: We always parameterize a curve with a single variable, for example r(t) = Final Exam Topics hapters 16 and 17 In a very broad sense, the two major topics of this exam will be line and surface integrals. Both of these have versions for scalar functions and vector fields, and

More information

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures Grad operator, triple and line integrals Notice: this material must not be used as a substitute for attending the lectures 1 .1 The grad operator Let f(x 1, x,..., x n ) be a function of the n variables

More information

MATH 2400, Analytic Geometry and Calculus 3

MATH 2400, Analytic Geometry and Calculus 3 MATH 2400, Analytic Geometry and Calculus 3 List of important Definitions and Theorems 1 Foundations Definition 1. By a function f one understands a mathematical object consisting of (i) a set X, called

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

MA FINAL EXAM Green April 30, 2018 EXAM POLICIES

MA FINAL EXAM Green April 30, 2018 EXAM POLICIES MA 6100 FINAL EXAM Green April 0, 018 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME Be sure the paper you are looking at right now is GREEN! Write the following in the TEST/QUIZ NUMBER boxes (and blacken

More information

Math 2374 Spring 2007 Midterm 3 Solutions - Page 1 of 6 April 25, 2007

Math 2374 Spring 2007 Midterm 3 Solutions - Page 1 of 6 April 25, 2007 Math 374 Spring 7 Midterm 3 Solutions - Page of 6 April 5, 7. (3 points) Consider the surface parametrized by (x, y, z) Φ(x, y) (x, y,4 (x +y )) between the planes z and z 3. (i) (5 points) Set up the

More information

18.02 Final Exam. y = 0

18.02 Final Exam. y = 0 No books, notes or calculators. 5 problems, 50 points. 8.0 Final Exam Useful formula: cos (θ) = ( + cos(θ)) Problem. (0 points) a) (5 pts.) Find the equation in the form Ax + By + z = D of the plane P

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 covers essentially the same material as MAT201, but is more in depth and theoretical. Exam problems are often more sophisticated in scope and difficulty

More information

Math 11 Fall 2016 Section 1 Monday, October 17, 2016

Math 11 Fall 2016 Section 1 Monday, October 17, 2016 Math 11 Fall 16 Section 1 Monday, October 17, 16 First, some important points from the last class: f(x, y, z) dv, the integral (with respect to volume) of f over the three-dimensional region, is a triple

More information

14.1 Vector Fields. Gradient of 3d surface: Divergence of a vector field:

14.1 Vector Fields. Gradient of 3d surface: Divergence of a vector field: 14.1 Vector Fields Gradient of 3d surface: Divergence of a vector field: 1 14.1 (continued) url of a vector field: Ex 1: Fill in the table. Let f (x, y, z) be a scalar field (i.e. it returns a scalar)

More information

8(x 2) + 21(y 1) + 6(z 3) = 0 8x + 21y + 6z = 55.

8(x 2) + 21(y 1) + 6(z 3) = 0 8x + 21y + 6z = 55. MATH 24 -Review for Final Exam. Let f(x, y, z) x 2 yz + y 3 z x 2 + z, and a (2,, 3). Note: f (2xyz 2x, x 2 z + 3y 2 z, x 2 y + y 3 + ) f(a) (8, 2, 6) (a) Find all stationary points (if any) of f. et f.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus III-Final review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the corresponding position vector. 1) Define the points P = (-,

More information

Integration using Transformations in Polar, Cylindrical, and Spherical Coordinates

Integration using Transformations in Polar, Cylindrical, and Spherical Coordinates ections 15.4 Integration using Transformations in Polar, Cylindrical, and pherical Coordinates Cylindrical Coordinates pherical Coordinates MATH 127 (ection 15.5) Applications of Multiple Integrals The

More information

MATH 2400: CALCULUS 3 MAY 9, 2007 FINAL EXAM

MATH 2400: CALCULUS 3 MAY 9, 2007 FINAL EXAM MATH 4: CALCULUS 3 MAY 9, 7 FINAL EXAM I have neither given nor received aid on this exam. Name: 1 E. Kim................ (9am) E. Angel.............(1am) 3 I. Mishev............ (11am) 4 M. Daniel...........

More information

Coordinate Transformations in Advanced Calculus

Coordinate Transformations in Advanced Calculus Coordinate Transformations in Advanced Calculus by Sacha Nandlall T.A. for MATH 264, McGill University Email: sacha.nandlall@mail.mcgill.ca Website: http://www.resanova.com/teaching/calculus/ Fall 2006,

More information

Chapter 15 Notes, Stewart 7e

Chapter 15 Notes, Stewart 7e Contents 15.2 Iterated Integrals..................................... 2 15.3 Double Integrals over General Regions......................... 5 15.4 Double Integrals in Polar Coordinates..........................

More information

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

Multiple Integrals. max x i 0

Multiple Integrals. max x i 0 Multiple Integrals 1 Double Integrals Definite integrals appear when one solves Area problem. Find the area A of the region bounded above by the curve y = f(x), below by the x-axis, and on the sides by

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

F dr = f dx + g dy + h dz. Using that dz = q x dx + q y dy we get. (g + hq y ) x (f + hq x ) y da.

F dr = f dx + g dy + h dz. Using that dz = q x dx + q y dy we get. (g + hq y ) x (f + hq x ) y da. Math 55 - Vector alculus II Notes 14.7 tokes Theorem tokes Theorem is the three-dimensional version of the circulation form of Green s Theorem. Let s quickly recall that theorem: Green s Theorem: Let be

More information

MATH 261 EXAM III PRACTICE PROBLEMS

MATH 261 EXAM III PRACTICE PROBLEMS MATH 6 EXAM III PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam 3 typically has 5 (not 6!) problems on it, with no more than one problem of any given

More information

Lecture 23. Surface integrals, Stokes theorem, and the divergence theorem. Dan Nichols

Lecture 23. Surface integrals, Stokes theorem, and the divergence theorem. Dan Nichols Lecture 23 urface integrals, tokes theorem, and the divergence theorem an Nichols nichols@math.umass.edu MATH 233, pring 218 University of Massachusetts April 26, 218 (2) Last time: Green s theorem Theorem

More information

Total. Math 2130 Practice Final (Spring 2017) (1) (2) (3) (4) (5) (6) (7) (8)

Total. Math 2130 Practice Final (Spring 2017) (1) (2) (3) (4) (5) (6) (7) (8) Math 130 Practice Final (Spring 017) Before the exam: Do not write anything on this page. Do not open the exam. Turn off your cell phone. Make sure your books, notes, and electronics are not visible during

More information

Calculus IV. Exam 2 November 13, 2003

Calculus IV. Exam 2 November 13, 2003 Name: Section: Calculus IV Math 1 Fall Professor Ben Richert Exam November 1, Please do all your work in this booklet and show all the steps. Calculators and note-cards are not allowed. Problem Possible

More information

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2 PURE MATHEMATICS 212 Multivariable Calculus CONTENTS Page 1. Assignment Summary... i 2. Summary...1 3. Assignments...2 i PMTH212, Multivariable Calculus Assignment Summary 2010 Assignment Date to be Posted

More information

10.7 Triple Integrals. The Divergence Theorem of Gauss

10.7 Triple Integrals. The Divergence Theorem of Gauss 10.7 riple Integrals. he Divergence heorem of Gauss We begin by recalling the definition of the triple integral f (x, y, z) dv, (1) where is a bounded, solid region in R 3 (for example the solid ball {(x,

More information

Solution of final examination

Solution of final examination of final examination Math 20, pring 201 December 9, 201 Problem 1 Let v(t) (2t e t ) i j + π cos(πt) k be the velocity of a particle with initial position r(0) ( 1, 0, 2). Find the accelaration at the

More information

Math 2130 Practice Problems Sec Name. Change the Cartesian integral to an equivalent polar integral, and then evaluate.

Math 2130 Practice Problems Sec Name. Change the Cartesian integral to an equivalent polar integral, and then evaluate. Math 10 Practice Problems Sec 1.-1. Name Change the Cartesian integral to an equivalent polar integral, and then evaluate. 1) 5 5 - x dy dx -5 0 A) 5 B) C) 15 D) 5 ) 0 0-8 - 6 - x (8 + ln 9) A) 1 1 + x

More information

MATH 230 FALL 2004 FINAL EXAM DECEMBER 13, :20-2:10 PM

MATH 230 FALL 2004 FINAL EXAM DECEMBER 13, :20-2:10 PM Problem Score 1 2 Name: SID: Section: Instructor: 3 4 5 6 7 8 9 10 11 12 Total MATH 230 FALL 2004 FINAL EXAM DECEMBER 13, 2004 12:20-2:10 PM INSTRUCTIONS There are 12 problems on this exam for a total

More information

MATH 116 REVIEW PROBLEMS for the FINAL EXAM

MATH 116 REVIEW PROBLEMS for the FINAL EXAM MATH 116 REVIEW PROBLEMS for the FINAL EXAM The following questions are taken from old final exams of various calculus courses taught in Bilkent University 1. onsider the line integral (2xy 2 z + y)dx

More information

Math 52 Final Exam March 16, 2009

Math 52 Final Exam March 16, 2009 Math 52 Final Exam March 16, 2009 Name : Section Leader: Josh Lan Xiannan (Circle one) Genauer Huang Li Section Time: 10:00 11:00 1:15 2:15 (Circle one) This is a closed-book, closed-notes exam. No calculators

More information

Quadric surface. Ellipsoid

Quadric surface. Ellipsoid Quadric surface Quadric surfaces are the graphs of any equation that can be put into the general form 11 = a x + a y + a 33z + a1xy + a13xz + a 3yz + a10x + a 0y + a 30z + a 00 where a ij R,i, j = 0,1,,

More information

Math 253, Section 102, Fall 2006 Practice Final Solutions

Math 253, Section 102, Fall 2006 Practice Final Solutions Math 253, Section 102, Fall 2006 Practice Final Solutions 1 2 1. Determine whether the two lines L 1 and L 2 described below intersect. If yes, find the point of intersection. If not, say whether they

More information

Section 2.5. Functions and Surfaces

Section 2.5. Functions and Surfaces Section 2.5. Functions and Surfaces ² Brief review for one variable functions and curves: A (one variable) function is rule that assigns to each member x in a subset D in R 1 a unique real number denoted

More information

Applications of Triple Integrals

Applications of Triple Integrals Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

MA 174: Multivariable Calculus Final EXAM (practice) NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper.

MA 174: Multivariable Calculus Final EXAM (practice) NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper. MA 174: Multivariable alculus Final EXAM (practice) NAME lass Meeting Time: NO ALULATOR, BOOK, OR PAPER ARE ALLOWED. Use the back of the test pages for scrap paper. Points awarded 1. (5 pts). (5 pts).

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

WW Prob Lib1 Math course-section, semester year

WW Prob Lib1 Math course-section, semester year WW Prob Lib Math course-section, semester year WeBWorK assignment due /25/06 at :00 PM..( pt) Consider the parametric equation x = 7(cosθ + θsinθ) y = 7(sinθ θcosθ) What is the length of the curve for

More information

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. . Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. f (x, y) = x y, x + y = 8. Set up the triple integral of an arbitrary continuous function

More information

Name: Final Exam Review. (b) Reparameterize r(t) with respect to arc length measured for the point (1, 0, 1) in the direction of increasing t.

Name: Final Exam Review. (b) Reparameterize r(t) with respect to arc length measured for the point (1, 0, 1) in the direction of increasing t. MATH 127 ALULU III Name: 1. Let r(t) = e t i + e t sin t j + e t cos t k (a) Find r (t) Final Exam Review (b) Reparameterize r(t) with respect to arc length measured for the point (1,, 1) in the direction

More information

Quadric Surfaces. Six basic types of quadric surfaces: ellipsoid. cone. elliptic paraboloid. hyperboloid of one sheet. hyperboloid of two sheets

Quadric Surfaces. Six basic types of quadric surfaces: ellipsoid. cone. elliptic paraboloid. hyperboloid of one sheet. hyperboloid of two sheets Quadric Surfaces Six basic types of quadric surfaces: ellipsoid cone elliptic paraboloid hyperboloid of one sheet hyperboloid of two sheets hyperbolic paraboloid (A) (B) (C) (D) (E) (F) 1. For each surface,

More information

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals)

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals) MA 43 Calculus III Fall 8 Dr. E. Jacobs Assignments Reading assignments are found in James Stewart s Calculus (Early Transcendentals) Assignment. Spheres and Other Surfaces Read. -. and.6 Section./Problems

More information

Dr. Allen Back. Aug. 27, 2014

Dr. Allen Back. Aug. 27, 2014 Dr. Allen Back Aug. 27, 2014 Math 2220 Preliminaries (2+ classes) Differentiation (12 classes) Multiple Integrals (9 classes) Vector Integrals (15 classes) Math 2220 Preliminaries (2+ classes) Differentiation

More information

y ds y(θ, z) = 3 sin(θ) 0 z 4 Likewise the bottom of the cylinder will be a disc of radius 3 located at a fixed z = 0

y ds y(θ, z) = 3 sin(θ) 0 z 4 Likewise the bottom of the cylinder will be a disc of radius 3 located at a fixed z = 0 1. Let denote the closed cylinder with bottom given by z and top given by z 4 and the lateral surface given by x 2 + y 2 9. Orient with outward normals. Determine the urface Integral y d (a) Is this a

More information

Mysterious or unsupported answers will not receive full credit. Your work should be mathematically correct and carefully and legibly written.

Mysterious or unsupported answers will not receive full credit. Your work should be mathematically correct and carefully and legibly written. Math 2374 Spring 2006 Final May 8, 2006 Time Limit: 1 Hour Name (Print): Student ID: Section Number: Teaching Assistant: Signature: This exams contains 11 pages (including this cover page) and 10 problems.

More information

12.5 Triple Integrals

12.5 Triple Integrals 1.5 Triple Integrals Arkansas Tech University MATH 94: Calculus III r. Marcel B Finan In Sections 1.1-1., we showed how a function of two variables can be integrated over a region in -space and how integration

More information

Math 397: Exam 3 08/10/2017 Summer Session II 2017 Time Limit: 145 Minutes

Math 397: Exam 3 08/10/2017 Summer Session II 2017 Time Limit: 145 Minutes Math 397: Exam 3 08/10/2017 Summer Session II 2017 Time Limit: 145 Minutes Name: Write your name on the appropriate line on the exam cover sheet. This exam contains 19 pages (including this cover page)

More information

Worksheet 3.5: Triple Integrals in Spherical Coordinates. Warm-Up: Spherical Coordinates (ρ, φ, θ)

Worksheet 3.5: Triple Integrals in Spherical Coordinates. Warm-Up: Spherical Coordinates (ρ, φ, θ) Boise State Math 275 (Ultman) Worksheet 3.5: Triple Integrals in Spherical Coordinates From the Toolbox (what you need from previous classes) Know what the volume element dv represents. Be able to find

More information

Math 251 Quiz 5 Fall b. Calculate. 2. Sketch the region. Write as one double integral by interchanging the order of integration: 2

Math 251 Quiz 5 Fall b. Calculate. 2. Sketch the region. Write as one double integral by interchanging the order of integration: 2 Math 251 Quiz 5 Fall 2002 1. a. Calculate 5 1 0 1 x dx dy b. Calculate 1 5 1 0 xdxdy 2. Sketch the region. Write as one double integral by interchanging the order of integration: 0 2 dx 2 x dy f(x,y) +

More information

Math 240 Practice Problems

Math 240 Practice Problems Math 4 Practice Problems Note that a few of these questions are somewhat harder than questions on the final will be, but they will all help you practice the material from this semester. 1. Consider the

More information

Determine whether or not F is a conservative vector field. If it is, find a function f such that F = enter NONE.

Determine whether or not F is a conservative vector field. If it is, find a function f such that F = enter NONE. Ch17 Practice Test Sketch the vector field F. F(x, y) = (x - y)i + xj Evaluate the line integral, where C is the given curve. C xy 4 ds. C is the right half of the circle x 2 + y 2 = 4 oriented counterclockwise.

More information

Double Integrals, Iterated Integrals, Cross-sections

Double Integrals, Iterated Integrals, Cross-sections Chapter 14 Multiple Integrals 1 ouble Integrals, Iterated Integrals, Cross-sections 2 ouble Integrals over more general regions, efinition, Evaluation of ouble Integrals, Properties of ouble Integrals

More information

MIDTERM. Section: Signature:

MIDTERM. Section: Signature: MIDTERM Math 32B 8/8/2 Name: Section: Signature: Read all of the following information before starting the exam: Check your exam to make sure all pages are present. NO CALCULATORS! Show all work, clearly

More information

Math 241, Final Exam. 12/11/12.

Math 241, Final Exam. 12/11/12. Math, Final Exam. //. No notes, calculator, or text. There are points total. Partial credit may be given. ircle or otherwise clearly identify your final answer. Name:. (5 points): Equation of a line. Find

More information

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points.

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. 1. Evaluate the area A of the triangle with the vertices

More information

Chapter 15: Functions of Several Variables

Chapter 15: Functions of Several Variables Chapter 15: Functions of Several Variables Section 15.1 Elementary Examples a. Notation: Two Variables b. Example c. Notation: Three Variables d. Functions of Several Variables e. Examples from the Sciences

More information

QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 252 FALL 2008 KUNIYUKI SCORED OUT OF 125 POINTS MULTIPLIED BY % POSSIBLE

QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 252 FALL 2008 KUNIYUKI SCORED OUT OF 125 POINTS MULTIPLIED BY % POSSIBLE QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 5 FALL 8 KUNIYUKI SCORED OUT OF 15 POINTS MULTIPLIED BY.84 15% POSSIBLE 1) Reverse the order of integration, and evaluate the resulting double integral: 16 y dx dy. Give

More information

) in the k-th subbox. The mass of the k-th subbox is M k δ(x k, y k, z k ) V k. Thus,

) in the k-th subbox. The mass of the k-th subbox is M k δ(x k, y k, z k ) V k. Thus, 1 Triple Integrals Mass problem. Find the mass M of a solid whose density (the mass per unit volume) is a continuous nonnegative function δ(x, y, z). 1. Divide the box enclosing into subboxes, and exclude

More information

Double Integrals over Polar Coordinate

Double Integrals over Polar Coordinate 1. 15.4 DOUBLE INTEGRALS OVER POLAR COORDINATE 1 15.4 Double Integrals over Polar Coordinate 1. Polar Coordinates. The polar coordinates (r, θ) of a point are related to the rectangular coordinates (x,y)

More information

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Introduction Timetable Assignments...

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Introduction Timetable Assignments... PURE MATHEMATICS 212 Multivariable Calculus CONTENTS Page 1. Assignment Summary... i 2. Introduction...1 3. Timetable... 3 4. Assignments...5 i PMTH212, Multivariable Calculus Assignment Summary 2009

More information

1 Vector Functions and Space Curves

1 Vector Functions and Space Curves ontents 1 Vector Functions and pace urves 2 1.1 Limits, Derivatives, and Integrals of Vector Functions...................... 2 1.2 Arc Length and urvature..................................... 2 1.3 Motion

More information

Triple Integrals. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Triple Integrals

Triple Integrals. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Triple Integrals Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 211 Riemann Sum Approach Suppose we wish to integrate w f (x, y, z), a continuous function, on the box-shaped region

More information

Math 265 Exam 3 Solutions

Math 265 Exam 3 Solutions C Roettger, Fall 16 Math 265 Exam 3 Solutions Problem 1 Let D be the region inside the circle r 5 sin θ but outside the cardioid r 2 + sin θ. Find the area of D. Note that r and θ denote polar coordinates.

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space In Figure 11.43, consider the line L through the point P(x 1, y 1, z 1 ) and parallel to the vector. The vector v is a direction vector for the line L, and a, b, and c

More information

Math 6A Practice Problems III

Math 6A Practice Problems III Math 6A Practice Problems III Written by Victoria Kala vtkala@math.ucsb.edu H 63u Office Hours: R 1:3 1:3pm Last updated 6//16 Answers 1. 3. 171 1 3. π. 5. a) 8π b) 8π 6. 7. 9 3π 3 1 etailed olutions 1.

More information

The Divergence Theorem

The Divergence Theorem The Divergence Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Summer 2011 Green s Theorem Revisited Green s Theorem: M(x, y) dx + N(x, y) dy = C R ( N x M ) da y y x Green

More information

8/5/2010 FINAL EXAM PRACTICE IV Maths 21a, O. Knill, Summer 2010

8/5/2010 FINAL EXAM PRACTICE IV Maths 21a, O. Knill, Summer 2010 8/5/21 FINAL EXAM PRACTICE IV Maths 21a, O. Knill, Summer 21 Name: Start by printing your name in the above box. Try to answer each question on the same page as the question is asked. If needed, use the

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL 5

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL 5 UNIVERSITI TEKNOLOGI MALAYSIA SSE 189 ENGINEERING MATHEMATIS TUTORIAL 5 1. Evaluate the following surface integrals (i) (x + y) ds, : part of the surface 2x+y+z = 6 in the first octant. (ii) (iii) (iv)

More information

MAT175 Overview and Sample Problems

MAT175 Overview and Sample Problems MAT175 Overview and Sample Problems The course begins with a quick review/overview of one-variable integration including the Fundamental Theorem of Calculus, u-substitutions, integration by parts, and

More information

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b.

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. Practice problems 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. 1, 1 = c 1 3, 2 + c 2 2, 1. Solve c 1, c 2. 2. Suppose a is a vector in the plane. If the component of the a in

More information

Final Exam Review. Name: Class: Date: Short Answer

Final Exam Review. Name: Class: Date: Short Answer Name: Class: Date: ID: A Final Exam Review Short Answer 1. Find the distance between the sphere (x 1) + (y + 1) + z = 1 4 and the sphere (x 3) + (y + ) + (z + ) = 1. Find, a a + b, a b, a, and 3a + 4b

More information

Homework 8. Due: Tuesday, March 31st, 2009

Homework 8. Due: Tuesday, March 31st, 2009 MATH 55 Applied Honors Calculus III Winter 9 Homework 8 Due: Tuesday, March 3st, 9 Section 6.5, pg. 54: 7, 3. Section 6.6, pg. 58:, 3. Section 6.7, pg. 66: 3, 5, 47. Section 6.8, pg. 73: 33, 38. Section

More information

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution 13 Functions of Several Variables 13.1 Introduction to Functions of Several Variables Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Objectives Understand

More information

2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0.

2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0. Midterm 3 Review Short Answer 2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0. 3. Compute the Riemann sum for the double integral where for the given grid

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

This exam will be cumulative. Consult the review sheets for the midterms for reviews of Chapters

This exam will be cumulative. Consult the review sheets for the midterms for reviews of Chapters Final exam review Math 265 Fall 2007 This exam will be cumulative. onsult the review sheets for the midterms for reviews of hapters 12 15. 16.1. Vector Fields. A vector field on R 2 is a function F from

More information

MATH 209 Lab Solutions

MATH 209 Lab Solutions MATH 9 Lab Solutions Richard M. Slevinsky 1 November 1, 13 1 Contact: rms8@ualberta.ca Contents 1 Multivariable Functions and Limits Partial Derivatives 6 3 Directional Derivatives and Gradients 15 4 Maximum

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas 16 Vector Calculus 16.6 and Their Areas Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and Their Areas Here we use vector functions to describe more general

More information

MATH SPRING 2000 (Test 01) FINAL EXAM INSTRUCTIONS

MATH SPRING 2000 (Test 01) FINAL EXAM INSTRUCTIONS MATH 61 - SPRING 000 (Test 01) Name Signature Instructor Recitation Instructor Div. Sect. No. FINAL EXAM INSTRUCTIONS 1. You must use a # pencil on the mark-sense sheet (answer sheet).. If you have test

More information