Computergraphics Exercise 15/ Shading & Texturing

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Computergraphics Exercise 15/ Shading & Texturing"

Transcription

1 Computergraphics Exercise 15/16 3. Shading & Texturing Jakob Wagner for internal use only

2 Shaders Vertex Specification define vertex format & data in model space Vertex Processing transform to clip space Vertex Post-processing clipping, perspective divide, viewport transform Primitive Assembly build points/lines/triangles from vertices Vertex Shader Rasterisation scan-convert primitives to fragments, property transfer Fragment Processing computer fragment properties Fragment Shader Fragment Submission testing and blending write to buffer https://glumpy.github.io/modern-gl.html

3 Shaders - contain instructions for the Vertex/Fragment processing stages - use C-like syntax (GLSL) - two types of variables: - Uniforms: explicitly uploaded from CPU, constant value until new value is uploaded - Varyings: shader inputs/outputs, varying between each shader instance - built in variables: minimal Vertex shader outputs/ Fragment Shader inputs necessary for pipeline processing e.g. Vertex position output in Vertex Shader and Fragment position input in Fragment Shader

4 Vertex Shader Vertex Attributes (varying input) - 1st is position in Model Space - 2nd is normal in Model Space layout(location=0) in vec3 in_position; layout(location=1) in vec3 in_normal; Uniforms (constant input) - transformation matrices uploaded with gluniform*v Values passed to Fragment Shader (varying output) - normal in View Space Vertex Processing - position (predefined output) is transformed from Model- to Projection Space - normal is transformed from Model- to View Space uniform mat4 ModelMatrix; uniform mat4 ViewMatrix; uniform mat4 ProjectionMatrix; uniform mat4 NormalMatrix; out vec4 pass_normal; void main() { gl_position = (ProjectionMatrix * ViewMatrix * ModelMatrix) * vec4(in_position, 1.0f); pass_normal = normalize(normalmatrix * vec4(in_normal, 0.0f)); }

5 Fragment Shader Values interpolated from Vertices (varying input) - normal in View Space Values passed to Sample Processing (varying output) - fragment color, 4th component is opacity Fragment Processing - assign fragment RGB components value of the normal XYZ components and make it opaque in vec4 pass_normal; out vec4 out_color; void main() { out_color = vec4(pass_normal.xyz, 1.0f); }

6 Shader Uniforms - are part of ShaderProgram state - value does not change until a new value is uploaded - are shared between all stages of a ShaderProgram - upload uniform value to program a. query uniform location with - program handle - uniform name in Shader b. binding shader program c. upload value to uniform location int location = glgetuniformlocation( program_handle, "NameInShader") gluseprogram(program_handle) gluniformmatrix*v(location,..., data/data_ptr) - querying a location is expensive -> store it and only update when the shader is reloaded - querying locations in a ShaderProgram does not require it to be bound - location of uniform of the same name varies between ShaderPrograms

7 Star Shader - different vertex layout? -> new vertex shader required - 2 inputs: position (vec3) and color (vec3) - color needs to be passed to fragment shader -> vertex shader needs color output variable - fragment shader assigns input color to fragment - Model matrix not necessary because no transformation happens - in update_shader_programs() the star shader needs to be (re)loaded - shader needs View and Projection matrices - uniform locations between shaders vary -> matrix locations in star shader need to be stored in global variable - in update_uniform_locations() the matrix locations in the star shader need to be queried and updated - when modified in update_view() and update_camera(), matrices need to be uploaded to the star shader at their respective location

8 Rasterisation Vertex Specification define vertex format & data in model space Vertex Processing transform to clip space Vertex Post-processing clipping, perspective divide, viewport transform Primitive Assembly build points/lines/triangles from vertices Vertex Shader Rasterisation scan-convert primitives to fragments, property transfer Fragment Processing computer fragment properties Fragment Shader Fragment Submission testing and blending write to buffer https://glumpy.github.io/modern-gl.html

9 Property Transfer variable definition Vertex Shader out vec3 pass_color //predefined out vec4 gl_position... Interpolation Fragment Shader in vec3 pass_color //predefined in vec4 gl_fragcoord... variable interpolation v 1 pass_color 1 = vec3(0.0f, 0.0f, 1.0f) gl_position 1 = vec4(10.0f, 20.0f, 0.0f) d 1 pass_color = vec3(d 1 pass_color 1 + d 2 pass_color 2 + d 3 pass_color 3 ) gl_fragcoord = vec4(d 1 gl_position 1 + d 2 gl_position 2 + d 3 gl_position 3 ) d 2 d v 2 v 3 3 pass_color 2 = vec3(1.0f, 0.0f, 0.0f) gl_position 2 = vec4(0.0f, 0.0f, 0.0f) pass_color 3 = vec3(0.0f, 1.0f,0.0f) gl_position 3 = vec4(20.0f, 0.0f, 0.0f)

10 Perspective-correct Interpolation actual depth z-coordinates (depth) are not linear after projective transformation - very good depth accuracy close to camera - low depth accuracy close to far-plane - output distance between points dependent on distance to camera linear depth linear depth: (v 2 - v 1 ) / (v 4 - v 3 ) = d 1-2 / d 3-4 non-linear depth: (v 2 - v 1 ) / (v 4 - v 3 ) d 1-2 / d 3-4 fragment property interpolation takes place after perspective projection - linear interpolation leads to wrong results - Perspective-correct Interpolation necessary - explanation e.g. in Low, Perspective-Correct Interpolation, 2002 v 1 v 1 v 2 v 2 v 3 v 4 d 1-2 v3 v 2 d 3-4 output v 4 depth actual depth d z d 3-4 input linear depth depth v 1 v 1 v 2 d 1-2 d z

11 Interpolation Qualifiers normal vector interpolation - interpolation can be specified in GLSL: - flat: no interpolation, values from first vertex used -> Flat Shading - smooth: default, perspective-correct interpolation - nonperspective: linear interpolation flat (1 normal per triangle) non-flat (1 normal per vertex) - qualifier for variable must match between shaders texture coordinate interpolation smooth (perspective-correct) nonperspective (linear) https://commons.wikimedia.org/wiki/file:phong-shading-sample.jpg

12 Phong Reflection Model Components: - ambient: indirect light incoming from general surroundings ->constant - diffuse: Lambertian reflectance, diffusely reflected light from surface microfacets -> dependent on angle α between surface n and light direction l - specular: reflection of light directly to viewer -> dependent on angle ω between viewer v and light direction reflected from surface l -> specular highlight decay (glossiness) controlled by a Formula: k a,k d,k s,a - material parameters, i a,i d,i s - light parameters when v 1 and v 2 unit vectors, then: cos( (v 1, v 2 )) = <v 1, v 2 > (dot product) I = k a i a + k d i d cos(ω) + k s i s cos(α) a l v ω n α l = k a i a + k d i d <l, n> + k s i s <v, l > a https://commons.wikimedia.org/wiki/file:phong_components_version_4.png

13 Blinn-Phong Reflection Model reflection operation computation expensive -> approximation by Blinn does not require a reflection Blinn-Phong model: instead of angle between viewer and reflected light dir use angle ρ between normal and halfway vector h between viewer and light h = (l + v) / (ǁl + vǁ) = normalize(v + l) v n ρ ο ο h l I = k a i a + k d i d cos(ω) + k s i s cos(ρ) b = k a i a + k d i d <l, n> + k s i s <n, h> b - with same exponent as Phong model a is too small -> b = 4 a - Blinn approximation is actually empirically more accurate than Phong https://commons.wikimedia.org/wiki/file:blinn_phong_comparison.png

14 Blinn-Phong implementation - shading should be computed in View Space -> requires light and fragment position in View Space -> in Vertex Shader calculate position in View Space and pass to Fragment Shader -> upload uniform of sun position (which is vec3(0.0f, 0.0f, 0.0f) in World Space) in View Space to shader using gluniform3f() or gluniform3fv(), update value when when the View Matrix changes - light color properties can be hardcoded in fragment Shader - planet diffuse color can be assigned through a single vec3 uniform that is changed to the respective color before each planet is drawn - planet ambient color can be assumed as being the same as the diffuse color - planet specular color can be assumed as being white - before calculating angles with the dot product, both vectors need to be normalized

15 Texture Mapping creating all surface details with modeling is too expensive -> paint details on texture and project on surface project texture on model by assigning a coordinate on the texture to each vertex (UV coordinates) define 3d coordinates 1 (0.0, 1.0) v define texture coordinates (0.5, 0.8) (1.0, 1.0) apply texture to fragments (0.1, 0.1) (0.9, 0.1) 3 u (0.0, 0.0) (1.0, 0.0) 3 2

16 Texture Specification Concept Implementation Texture Specification Framebuffer Object Texture Storage Texture Parameters Sampling Parameters Texture Data Texture Format glteximage* gltexparameter* upload format define

17 Texture Binding - the OpenGL context has multiple Texture Units named GL_TEXTURE* - each Texture Unit has binding points for each texture type like GL_TEXTURE_2D, GL_PROXY_TEXTURE_1D_ARRAY etc. - there is always one active Texture Unit - all manipulation functions addressed to a Texture Unit binding point are applied to the object at the active Texture Units binding point active GL_TEXTURE_1D GL_TEXTUREk GL_TEXTURE_2D Texture Object... Context GL_TEXTUREk+1... GL_TEXTURE_1D... GL_TEXTURE_2D

18 Texture Access - in the shader, textures are accessed through sampler uniforms Context - the sampler type defines which binding point is accessed - the samplers holds an integer with the index of the Texture Unit that it should access as value - the index must be uploaded to the sampler value with the gluniform1i() function - if two samplers of different type access the same unit, the rendering will fail - one Texture Object can be bound to multiple Texture Units GL_TEXTUREk GL_TEXTURE_2D Texture Object GL_TEXTUREk+1... GL_TEXTURE_1D Texture Object - the active Texture Unit has no effect on the process gluniform1i(tex_location, k) Shader uniform sampler2d colortex = k uniform sampler1d colortex = k+1

19 Texture Specification prepare for formating 1. activate Texture Unit to which to bind texture 2. generate Texture Object 3. bind Texture Object to 2d texture binding point of unit glactivetexture(gl_texture0) glgentextures(1, &texture_object) glbindtexture(gl_texture_2d, texture_object) define mandatory sampling parameters 4. define interpolation type when fragment covers multiple texels (texture pixels) 5. define interpolation type when fragment does not exactly cover one texel gltexparameteri(gl_texture_2d, GL_TEXTURE_MIN_FILTER, GL_LINEAR) gltexparameteri(gl_texture_2d, GL_TEXTURE_MAG_FILTER, GL_LINEAR) define texture data and format 6. format Texture Object bound to the 2d binding point - with no mipmaps - data storage format - in resolution - without border - input data format - channel type - data to upload glteximage2d(gl_texture_2d, 0, internal_format, width,height, 0, input_format, channel_type, data_ptr)

20 Texture Formating glteximage*(target, level, internal_format, width, height, border, input_format, channel_type, data_ptr ) - target: binding point on which to create new image - level: detail level to create image in, 0 when not using mip-maps - internal_format: specifies the number of color components: GL_RED, GL_RG, GL_RGB, GL_RGBA or a special sized or compressed format - width, height: the texture dimensions - border: must be 0, previously the width of a colored border - input_format: the format of the input data, like internal_format but with additional types for compatibility: GL_BGR or GL_RED_INTEGER, for unnormalized data - channel_type: datatype of the pixel data channels: GL_BYTE, GL_FLOAT, GL_INT, or compressed types like GL_UNSIGNED_BYTE_3_3_2

21 Texture Usage prepare for formating 1. activate Texture Unit to which to bind texture 2. bind Texture Object to 2d texture binding point of unit glactivetexture(gl_texturek) glbindtexture(gl_texture_2d, texture_object) upload unit index to shader 3. get location of sampler uniform 4. bind shader for uniform uploading 5. upload index of unit to sampler use sampler in shader 6. declare sampler variable 7. read data from sampler int color_sampler_location = glgetuniformlocation (program_handle, "ColorTex") gluseprogram(program_handle) gluniform1i(color_sampler_location, k) uniform sampler2d ColorTex vec4 color = texture(colortex, tex_coordinate)

22 Planet Texturing Texture Creation - load png or tga files with the texture_loader::file() function - the texture struct that is returned contains all variables necessary for specifying the texture format - create a Texture Object from the texture struct for each planet - query and store the location of the sampler uniform for the color texture - upload the index of the Texture Unit you want to use for the color texture - activate the Texture Unit that you want to use - before drawing each planet, bind the respective texture object

23 Planet Texturing Texture Coordinates - request the model loader to load the texture coordinates by replacing the last parameter model::normal of the model_loader::obj() function with model::normal model::texcoord - in the planet_object initialisation, add another attribute of the type model::texcoord Texture mapping - in the planet vertex shader add another input attribute vec2 in_texcoord that is directly assigned to an output variable vec2 pass_texcoord - in the fragment shader add another input vec2 pass_texcoord - look up the pixel color at pass_texcoord and use it as diffuse and ambient color in the shading computation

Texture Mapping. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science

Texture Mapping. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science Texture Mapping CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science 1 Objectives Introduce Mapping Methods - Texture Mapping - Environment Mapping - Bump Mapping Consider

More information

CS4621/5621 Fall Basics of OpenGL/GLSL Textures Basics

CS4621/5621 Fall Basics of OpenGL/GLSL Textures Basics CS4621/5621 Fall 2015 Basics of OpenGL/GLSL Textures Basics Professor: Kavita Bala Instructor: Nicolas Savva with slides from Balazs Kovacs, Eston Schweickart, Daniel Schroeder, Jiang Huang and Pramook

More information

Graphics. Texture Mapping 고려대학교컴퓨터그래픽스연구실.

Graphics. Texture Mapping 고려대학교컴퓨터그래픽스연구실. Graphics Texture Mapping 고려대학교컴퓨터그래픽스연구실 3D Rendering Pipeline 3D Primitives 3D Modeling Coordinates Model Transformation 3D World Coordinates Lighting 3D World Coordinates Viewing Transformation 3D Viewing

More information

Texture Mapping. Computer Graphics, 2015 Lecture 9. Johan Nysjö Centre for Image analysis Uppsala University

Texture Mapping. Computer Graphics, 2015 Lecture 9. Johan Nysjö Centre for Image analysis Uppsala University Texture Mapping Computer Graphics, 2015 Lecture 9 Johan Nysjö Centre for Image analysis Uppsala University What we have rendered so far: Looks OK, but how do we add more details (and colors)? Texture mapping

More information

CS452/552; EE465/505. Texture Mapping in WebGL

CS452/552; EE465/505. Texture Mapping in WebGL CS452/552; EE465/505 Texture Mapping in WebGL 2-26 15 Outline! Texture Mapping in WebGL Read: Angel, Chapter 7, 7.3-7.5 LearningWebGL lesson 5: http://learningwebgl.com/blog/?p=507 Lab3 due: Monday, 3/2

More information

CS452/552; EE465/505. Image Processing Frame Buffer Objects

CS452/552; EE465/505. Image Processing Frame Buffer Objects CS452/552; EE465/505 Image Processing Frame Buffer Objects 3-12 15 Outline! Image Processing: Examples! Render to Texture Read: Angel, Chapter 7, 7.10-7.13 Lab3 new due date: Friday, Mar. 13 th Project#1

More information

Programming with OpenGL Shaders I. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico

Programming with OpenGL Shaders I. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Programming with OpenGL Shaders I Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico 0 Objectives Shader Basics Simple Shaders Vertex shader Fragment shaders 1 Vertex

More information

Lets assume each object has a defined colour. Hence our illumination model is looks unrealistic.

Lets assume each object has a defined colour. Hence our illumination model is looks unrealistic. Shading Models There are two main types of rendering that we cover, polygon rendering ray tracing Polygon rendering is used to apply illumination models to polygons, whereas ray tracing applies to arbitrary

More information

Shaders. Slide credit to Prof. Zwicker

Shaders. Slide credit to Prof. Zwicker Shaders Slide credit to Prof. Zwicker 2 Today Shader programming 3 Complete model Blinn model with several light sources i diffuse specular ambient How is this implemented on the graphics processor (GPU)?

More information

GLSL Introduction. Fu-Chung Huang. Thanks for materials from many other people

GLSL Introduction. Fu-Chung Huang. Thanks for materials from many other people GLSL Introduction Fu-Chung Huang Thanks for materials from many other people Shader Languages Currently 3 major shader languages Cg (Nvidia) HLSL (Microsoft) Derived from Cg GLSL (OpenGL) Main influences

More information

Textures. Texture Mapping. Bitmap Textures. Basic Texture Techniques

Textures. Texture Mapping. Bitmap Textures. Basic Texture Techniques Texture Mapping Textures The realism of an image is greatly enhanced by adding surface textures to the various faces of a mesh object. In part a) images have been pasted onto each face of a box. Part b)

More information

Steiner- Wallner- Podaras

Steiner- Wallner- Podaras Texturing 2 3 Some words on textures Texturing = mapping 2D image to a model (*You will hear more on other texturing- methods in the course.) Not a trivial task! 4 Texturing how it works 5 UV coordinates

More information

The Rasterization Pipeline

The Rasterization Pipeline Lecture 5: The Rasterization Pipeline Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2016 What We ve Covered So Far z x y z x y (0, 0) (w, h) Position objects and the camera in the world

More information

General Purpose computation on GPUs. Liangjun Zhang 2/23/2005

General Purpose computation on GPUs. Liangjun Zhang 2/23/2005 General Purpose computation on GPUs Liangjun Zhang 2/23/2005 Outline Interpretation of GPGPU GPU Programmable interfaces GPU programming sample: Hello, GPGPU More complex programming GPU essentials, opportunity

More information

OUTLINE. Implementing Texturing What Can Go Wrong and How to Fix It Mipmapping Filtering Perspective Correction

OUTLINE. Implementing Texturing What Can Go Wrong and How to Fix It Mipmapping Filtering Perspective Correction TEXTURE MAPPING 1 OUTLINE Implementing Texturing What Can Go Wrong and How to Fix It Mipmapping Filtering Perspective Correction 2 BASIC STRAGEGY Three steps to applying a texture 1. specify the texture

More information

Shading/Texturing. Dr. Scott Schaefer

Shading/Texturing. Dr. Scott Schaefer Shading/Texturing Dr. Scott Schaefer Problem / Problem / Problem 4/ Problem / Problem / Shading Algorithms Flat Shading Gouraud Shading Phong Shading / Flat Shading Apply same color across entire polygon

More information

C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE. Mikhail Bessmeltsev

C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE. Mikhail Bessmeltsev C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE UGRAD.CS.UBC.C A/~CS314 Mikhail Bessmeltsev 1 WHAT IS RENDERING? Generating image from a 3D scene 2 WHAT IS RENDERING? Generating image

More information

The Rasterization Pipeline

The Rasterization Pipeline Lecture 5: The Rasterization Pipeline Computer Graphics and Imaging UC Berkeley What We ve Covered So Far z x y z x y (0, 0) (w, h) Position objects and the camera in the world Compute position of objects

More information

Best practices for effective OpenGL programming. Dan Omachi OpenGL Development Engineer

Best practices for effective OpenGL programming. Dan Omachi OpenGL Development Engineer Best practices for effective OpenGL programming Dan Omachi OpenGL Development Engineer 2 What Is OpenGL? 3 OpenGL is a software interface to graphics hardware - OpenGL Specification 4 GPU accelerates rendering

More information

GLSL Introduction. Fu-Chung Huang. Thanks for materials from many other people

GLSL Introduction. Fu-Chung Huang. Thanks for materials from many other people GLSL Introduction Fu-Chung Huang Thanks for materials from many other people Programmable Shaders //per vertex inputs from main attribute aposition; attribute anormal; //outputs to frag. program varying

More information

Supplement to Lecture 22

Supplement to Lecture 22 Supplement to Lecture 22 Programmable GPUs Programmable Pipelines Introduce programmable pipelines - Vertex shaders - Fragment shaders Introduce shading languages - Needed to describe shaders - RenderMan

More information

CSE 167: Introduction to Computer Graphics Lecture #8: Textures. Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #8: Textures. Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016 CSE 167: Introduction to Computer Graphics Lecture #8: Textures Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016 Announcements Project 2 due this Friday Midterm next Tuesday

More information

Objectives Shading in OpenGL. Front and Back Faces. OpenGL shading. Introduce the OpenGL shading methods. Discuss polygonal shading

Objectives Shading in OpenGL. Front and Back Faces. OpenGL shading. Introduce the OpenGL shading methods. Discuss polygonal shading Objectives Shading in OpenGL Introduce the OpenGL shading methods - per vertex shading vs per fragment shading - Where to carry out Discuss polygonal shading - Flat - Smooth - Gouraud CITS3003 Graphics

More information

Preparing for Texture Access. Stored Texture Shaders. Accessing Texture Maps. Vertex Shader Texture Access

Preparing for Texture Access. Stored Texture Shaders. Accessing Texture Maps. Vertex Shader Texture Access Stored Texture Shaders Preparing for Texture Access These steps are the same when using a shader as when using fixed functionality Make a specific texture unit active by calling glactivetexture Create

More information

CGT520 Lighting. Lighting. T-vertices. Normal vector. Color of an object can be specified 1) Explicitly as a color buffer

CGT520 Lighting. Lighting. T-vertices. Normal vector. Color of an object can be specified 1) Explicitly as a color buffer CGT520 Lighting Lighting Color of an object can be specified 1) Explicitly as a color buffer Bedrich Benes, Ph.D. Purdue University Department of Computer Graphics 2) Implicitly from the illumination model.

More information

ECS 175 COMPUTER GRAPHICS. Ken Joy.! Winter 2014

ECS 175 COMPUTER GRAPHICS. Ken Joy.! Winter 2014 ECS 175 COMPUTER GRAPHICS Ken Joy Winter 2014 Shading To be able to model shading, we simplify Uniform Media no scattering of light Opaque Objects No Interreflection Point Light Sources RGB Color (eliminating

More information

Stored Texture Shaders

Stored Texture Shaders Stored Texture Shaders 157 Preparing for Texture Access These steps are the same when using a shader as when using fixed functionality Make a specific texture unit active by calling glactivetexture Create

More information

Texture Mapping. Mike Bailey.

Texture Mapping. Mike Bailey. Texture Mapping 1 Mike Bailey mjb@cs.oregonstate.edu This work is licensed under a Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International License TextureMapping.pptx The Basic Idea

More information

CSE 167: Lecture #8: GLSL. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #8: GLSL. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #8: GLSL Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #4 due Friday, November 2 nd Introduction:

More information

Programming with OpenGL Shaders I. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico

Programming with OpenGL Shaders I. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Programming with OpenGL Shaders I Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Objectives Shader Programming Basics Simple Shaders Vertex shader Fragment shaders

More information

The Graphics Pipeline

The Graphics Pipeline The Graphics Pipeline Lecture 2 Robb T. Koether Hampden-Sydney College Fri, Aug 28, 2015 Robb T. Koether (Hampden-Sydney College) The Graphics Pipeline Fri, Aug 28, 2015 1 / 19 Outline 1 Vertices 2 The

More information

https://ilearn.marist.edu/xsl-portal/tool/d4e4fd3a-a3...

https://ilearn.marist.edu/xsl-portal/tool/d4e4fd3a-a3... Assessment Preview - This is an example student view of this assessment done Exam 2 Part 1 of 5 - Modern Graphics Pipeline Question 1 of 27 Match each stage in the graphics pipeline with a description

More information

Today. Rendering - III. Outline. Texturing: The 10,000m View. Texture Coordinates. Specifying Texture Coordinates in GL

Today. Rendering - III. Outline. Texturing: The 10,000m View. Texture Coordinates. Specifying Texture Coordinates in GL Today Rendering - III CS148, Summer 2010 Graphics Pipeline and Programmable Shaders Artist Workflow Siddhartha Chaudhuri 1 2 Outline Texturing: The 10,000m View Intro to textures The fixed-function graphics

More information

Scanline Rendering 2 1/42

Scanline Rendering 2 1/42 Scanline Rendering 2 1/42 Review 1. Set up a Camera the viewing frustum has near and far clipping planes 2. Create some Geometry made out of triangles 3. Place the geometry in the scene using Transforms

More information

Copyright Khronos Group 2012 Page 1. Teaching GL. Dave Shreiner Director, Graphics and GPU Computing, ARM 1 December 2012

Copyright Khronos Group 2012 Page 1. Teaching GL. Dave Shreiner Director, Graphics and GPU Computing, ARM 1 December 2012 Copyright Khronos Group 2012 Page 1 Teaching GL Dave Shreiner Director, Graphics and GPU Computing, ARM 1 December 2012 Copyright Khronos Group 2012 Page 2 Agenda Overview of OpenGL family of APIs Comparison

More information

-=Catmull's Texturing=1974. Part I of Texturing

-=Catmull's Texturing=1974. Part I of Texturing -=Catmull's Texturing=1974 but with shaders Part I of Texturing Anton Gerdelan Textures Edwin Catmull's PhD thesis Computer display of curved surfaces, 1974 U.Utah Also invented the z-buffer / depth buffer

More information

Tutorial 12: Real-Time Lighting B

Tutorial 12: Real-Time Lighting B Tutorial 12: Real-Time Lighting B Summary The last tutorial taught you the basics of real time lighting, including using the normal of a surface to calculate the diffusion and specularity. Surfaces are

More information

2D graphics with WebGL

2D graphics with WebGL 2D graphics with WebGL Some material contained here is adapted from the book s slides. September 7, 2015 (Dr. Mihail) 2D graphics September 7, 2015 1 / 22 Graphics Pipeline (Dr. Mihail) 2D graphics September

More information

Texture Mapping. Texture Mapping. Map textures to surfaces. Trompe L Oeil ( Deceive the Eye ) The texture. Texture map

Texture Mapping. Texture Mapping. Map textures to surfaces. Trompe L Oeil ( Deceive the Eye ) The texture. Texture map CSCI 42 Computer Graphic Lecture 2 Texture Mapping A way of adding urface detail Texture Mapping Jernej Barbic Univerity of Southern California Texture Mapping + Shading Filtering and Mipmap Non-color

More information

- Rasterization. Geometry. Scan Conversion. Rasterization

- Rasterization. Geometry. Scan Conversion. Rasterization Computer Graphics - The graphics pipeline - Geometry Modelview Geometry Processing Lighting Perspective Clipping Scan Conversion Texturing Fragment Tests Blending Framebuffer Fragment Processing - So far,

More information

OPENGL RENDERING PIPELINE

OPENGL RENDERING PIPELINE CPSC 314 03 SHADERS, OPENGL, & JS UGRAD.CS.UBC.CA/~CS314 Textbook: Appendix A* (helpful, but different version of OpenGL) Alla Sheffer Sep 2016 OPENGL RENDERING PIPELINE 1 OPENGL RENDERING PIPELINE Javascript

More information

Overview. Goals. MipMapping. P5 MipMap Texturing. What are MipMaps. MipMapping in OpenGL. Generating MipMaps Filtering.

Overview. Goals. MipMapping. P5 MipMap Texturing. What are MipMaps. MipMapping in OpenGL. Generating MipMaps Filtering. Overview What are MipMaps MipMapping in OpenGL P5 MipMap Texturing Generating MipMaps Filtering Alexandra Junghans junghana@student.ethz.ch Advanced Filters You can explain why it is a good idea to use

More information

Lecture 07: Buffers and Textures

Lecture 07: Buffers and Textures Lecture 07: Buffers and Textures CSE 40166 Computer Graphics Peter Bui University of Notre Dame, IN, USA October 26, 2010 OpenGL Pipeline Today s Focus Pixel Buffers: read and write image data to and from

More information

Lecture 11 Shaders and WebGL. October 8, 2015

Lecture 11 Shaders and WebGL. October 8, 2015 Lecture 11 Shaders and WebGL October 8, 2015 Review Graphics Pipeline (all the machinery) Program Vertex and Fragment Shaders WebGL to set things up Key Shader Concepts Fragment Processing and Vertex

More information

SHADER PROGRAMMING. Based on Jian Huang s lecture on Shader Programming

SHADER PROGRAMMING. Based on Jian Huang s lecture on Shader Programming SHADER PROGRAMMING Based on Jian Huang s lecture on Shader Programming What OpenGL 15 years ago could do http://www.neilturner.me.uk/shots/opengl-big.jpg What OpenGL can do now What s Changed? 15 years

More information

CMSC427 Advanced shading getting global illumination by local methods. Credit: slides Prof. Zwicker

CMSC427 Advanced shading getting global illumination by local methods. Credit: slides Prof. Zwicker CMSC427 Advanced shading getting global illumination by local methods Credit: slides Prof. Zwicker Topics Shadows Environment maps Reflection mapping Irradiance environment maps Ambient occlusion Reflection

More information

OpenGL Performances and Flexibility. Visual Computing Laboratory ISTI CNR, Italy

OpenGL Performances and Flexibility. Visual Computing Laboratory ISTI CNR, Italy OpenGL Performances and Flexibility Visual Computing Laboratory ISTI CNR, Italy The Abstract Graphics Pipeline Application 1. The application specifies vertices & connectivity. Vertex Processing 2. The

More information

Texture Mapping 1/34

Texture Mapping 1/34 Texture Mapping 1/34 Texture Mapping Offsets the modeling assumption that the BRDF doesn t change in u and v coordinates along the object s surface Store a reflectance as an image called a texture Map

More information

OpenGL Texture Mapping. Objectives Introduce the OpenGL texture functions and options

OpenGL Texture Mapping. Objectives Introduce the OpenGL texture functions and options OpenGL Texture Mapping Objectives Introduce the OpenGL texture functions and options 1 Basic Strategy Three steps to applying a texture 1. 2. 3. specify the texture read or generate image assign to texture

More information

Lessons Learned from HW4. Shading. Objectives. Why we need shading. Shading. Scattering

Lessons Learned from HW4. Shading. Objectives. Why we need shading. Shading. Scattering Lessons Learned from HW Shading CS Interactive Computer Graphics Prof. David E. Breen Department of Computer Science Only have an idle() function if something is animated Set idle function to NULL, when

More information

CPSC 314 LIGHTING AND SHADING

CPSC 314 LIGHTING AND SHADING CPSC 314 LIGHTING AND SHADING UGRAD.CS.UBC.CA/~CS314 slide credits: Mikhail Bessmeltsev et al 1 THE RENDERING PIPELINE Vertices and attributes Vertex Shader Modelview transform Per-vertex attributes Vertex

More information

OpenGL SUPERBIBLE. Fifth Edition. Comprehensive Tutorial and Reference. Richard S. Wright, Jr. Nicholas Haemel Graham Sellers Benjamin Lipchak

OpenGL SUPERBIBLE. Fifth Edition. Comprehensive Tutorial and Reference. Richard S. Wright, Jr. Nicholas Haemel Graham Sellers Benjamin Lipchak OpenGL SUPERBIBLE Fifth Edition Comprehensive Tutorial and Reference Richard S. Wright, Jr. Nicholas Haemel Graham Sellers Benjamin Lipchak AAddison-Wesley Upper Saddle River, NJ Boston Indianapolis San

More information

The Graphics Pipeline and OpenGL III: OpenGL Shading Language (GLSL 1.10)!

The Graphics Pipeline and OpenGL III: OpenGL Shading Language (GLSL 1.10)! ! The Graphics Pipeline and OpenGL III: OpenGL Shading Language (GLSL 1.10)! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 4! stanford.edu/class/ee267/! Updates! for 24h lab access:

More information

CS4621/5621 Fall Computer Graphics Practicum Intro to OpenGL/GLSL

CS4621/5621 Fall Computer Graphics Practicum Intro to OpenGL/GLSL CS4621/5621 Fall 2015 Computer Graphics Practicum Intro to OpenGL/GLSL Professor: Kavita Bala Instructor: Nicolas Savva with slides from Balazs Kovacs, Eston Schweickart, Daniel Schroeder, Jiang Huang

More information

Tutorial 3: Texture Mapping

Tutorial 3: Texture Mapping Tutorial 3: Texture Mapping Summary In this tutorial, you are going to learn about texture mapping, by performing some texture mapping operations on the triangle you ve been using in the previous tutorials.

More information

Shaders. Introduction. OpenGL Grows via Extensions. OpenGL Extensions. OpenGL 2.0 Added Shaders. Shaders Enable Many New Effects

Shaders. Introduction. OpenGL Grows via Extensions. OpenGL Extensions. OpenGL 2.0 Added Shaders. Shaders Enable Many New Effects CSCI 420 Computer Graphics Lecture 4 Shaders Jernej Barbic University of Southern California Shading Languages GLSL Vertex Array Objects Vertex Shader Fragment Shader [Angel Ch. 1, 2, A] Introduction The

More information

Introduction to the OpenGL Shading Language (GLSL)

Introduction to the OpenGL Shading Language (GLSL) 1 Introduction to the OpenGL Shading Language (GLSL) This work is licensed under a Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International License Mike Bailey mjb@cs.oregonstate.edu

More information

CSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 CSE 167: Introduction to Computer Graphics Lecture #7: Color and Shading Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #3 due this Friday,

More information

CSE 167: Lecture #8: Lighting. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Lecture #8: Lighting. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 CSE 167: Introduction to Computer Graphics Lecture #8: Lighting Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #4 due Friday, October 28 Introduction:

More information

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015 Orthogonal Projection Matrices 1 Objectives Derive the projection matrices used for standard orthogonal projections Introduce oblique projections Introduce projection normalization 2 Normalization Rather

More information

OpenGL shaders and programming models that provide object persistence

OpenGL shaders and programming models that provide object persistence OpenGL shaders and programming models that provide object persistence COSC342 Lecture 22 19 May 2016 OpenGL shaders We discussed forms of local illumination in the ray tracing lectures. We also saw that

More information

CS212. OpenGL Texture Mapping and Related

CS212. OpenGL Texture Mapping and Related CS212 OpenGL Texture Mapping and Related Basic Strategy Three steps to applying a texture 1. specify the texture read or generate image assign to texture enable texturing 2. assign texture coordinates

More information

CSE 167: Introduction to Computer Graphics Lecture #7: GLSL. Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #7: GLSL. Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016 CSE 167: Introduction to Computer Graphics Lecture #7: GLSL Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016 Announcements Project 2 due Friday 4/22 at 2pm Midterm #1 on

More information

Objectives. Introduce the OpenGL shading Methods 1) Light and material functions on MV.js 2) per vertex vs per fragment shading 3) Where to carry out

Objectives. Introduce the OpenGL shading Methods 1) Light and material functions on MV.js 2) per vertex vs per fragment shading 3) Where to carry out Objectives Introduce the OpenGL shading Methods 1) Light and material functions on MV.js 2) per vertex vs per fragment shading 3) Where to carry out 1 Steps in OpenGL shading Enable shading and select

More information

Rasterization Overview

Rasterization Overview Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

More information

CS452/552; EE465/505. Lighting & Shading

CS452/552; EE465/505. Lighting & Shading CS452/552; EE465/505 Lighting & Shading 2-17 15 Outline! More on Lighting and Shading Read: Angel Chapter 6 Lab2: due tonight use ASDW to move a 2D shape around; 1 to center Local Illumination! Approximate

More information

GLSL 1: Basics. J.Tumblin-Modified SLIDES from:

GLSL 1: Basics. J.Tumblin-Modified SLIDES from: GLSL 1: Basics J.Tumblin-Modified SLIDES from: Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts Director, Arts Technology Center University of New Mexico and

More information

Textures. Texture coordinates. Introduce one more component to geometry

Textures. Texture coordinates. Introduce one more component to geometry Texturing & Blending Prof. Aaron Lanterman (Based on slides by Prof. Hsien-Hsin Sean Lee) School of Electrical and Computer Engineering Georgia Institute of Technology Textures Rendering tiny triangles

More information

Lecture 2. Shaders, GLSL and GPGPU

Lecture 2. Shaders, GLSL and GPGPU Lecture 2 Shaders, GLSL and GPGPU Is it interesting to do GPU computing with graphics APIs today? Lecture overview Why care about shaders for computing? Shaders for graphics GLSL Computing with shaders

More information

5.2 Shading in OpenGL

5.2 Shading in OpenGL Fall 2017 CSCI 420: Computer Graphics 5.2 Shading in OpenGL Hao Li http://cs420.hao-li.com 1 Outline Normal Vectors in OpenGL Polygonal Shading Light Sources in OpenGL Material Properties in OpenGL Example:

More information

3D Programming. 3D Programming Concepts. Outline. 3D Concepts. 3D Concepts -- Coordinate Systems. 3D Concepts Displaying 3D Models

3D Programming. 3D Programming Concepts. Outline. 3D Concepts. 3D Concepts -- Coordinate Systems. 3D Concepts Displaying 3D Models 3D Programming Concepts Outline 3D Concepts Displaying 3D Models 3D Programming CS 4390 3D Computer 1 2 3D Concepts 3D Model is a 3D simulation of an object. Coordinate Systems 3D Models 3D Shapes 3D Concepts

More information

Shaders (some slides taken from David M. course)

Shaders (some slides taken from David M. course) Shaders (some slides taken from David M. course) Doron Nussbaum Doron Nussbaum COMP 3501 - Shaders 1 Traditional Rendering Pipeline Traditional pipeline (older graphics cards) restricts developer to texture

More information

Deferred Rendering Due: Wednesday November 15 at 10pm

Deferred Rendering Due: Wednesday November 15 at 10pm CMSC 23700 Autumn 2017 Introduction to Computer Graphics Project 4 November 2, 2017 Deferred Rendering Due: Wednesday November 15 at 10pm 1 Summary This assignment uses the same application architecture

More information

Yazhuo Liu Homework 3

Yazhuo Liu Homework 3 Yazhuo Liu Homework 3 Write a shader program that renders a colored tetrahedron, which gradually shrinks to a point and expands back to its original shape. While it is shrinking and expanding, the color

More information

CS770/870 Spring 2017 Open GL Shader Language GLSL

CS770/870 Spring 2017 Open GL Shader Language GLSL Preview CS770/870 Spring 2017 Open GL Shader Language GLSL Review traditional graphics pipeline CPU/GPU mixed pipeline issues Shaders GLSL graphics pipeline Based on material from Angel and Shreiner, Interactive

More information

9. Illumination and Shading

9. Illumination and Shading 9. Illumination and Shading Approaches for visual realism: - Remove hidden surfaces - Shade visible surfaces and reproduce shadows - Reproduce surface properties Texture Degree of transparency Roughness,

More information

Methodology for Lecture. Importance of Lighting. Outline. Shading Models. Brief primer on Color. Foundations of Computer Graphics (Spring 2010)

Methodology for Lecture. Importance of Lighting. Outline. Shading Models. Brief primer on Color. Foundations of Computer Graphics (Spring 2010) Foundations of Computer Graphics (Spring 2010) CS 184, Lecture 11: OpenGL 3 http://inst.eecs.berkeley.edu/~cs184 Methodology for Lecture Lecture deals with lighting (teapot shaded as in HW1) Some Nate

More information

Texturas. Objectives. ! Introduce Mapping Methods. ! Consider two basic strategies. Computação Gráfica

Texturas. Objectives. ! Introduce Mapping Methods. ! Consider two basic strategies. Computação Gráfica Texturas Computação Gráfica Objectives! Introduce Mapping Methods! Texture Mapping! Environmental Mapping! Bump Mapping! Light Mapping! Consider two basic strategies! Manual coordinate specification! Two-stage

More information

COMP environment mapping Mar. 12, r = 2n(n v) v

COMP environment mapping Mar. 12, r = 2n(n v) v Rendering mirror surfaces The next texture mapping method assumes we have a mirror surface, or at least a reflectance function that contains a mirror component. Examples might be a car window or hood,

More information

WebGL and GLSL Basics. CS559 Fall 2015 Lecture 10 October 6, 2015

WebGL and GLSL Basics. CS559 Fall 2015 Lecture 10 October 6, 2015 WebGL and GLSL Basics CS559 Fall 2015 Lecture 10 October 6, 2015 Last time Hardware Rasterization For each point: Compute barycentric coords Decide if in or out.7,.7, -.4 1.1, 0, -.1.9,.05,.05.33,.33,.33

More information

Texturing. Slides done by Tomas Akenine-Möller and Ulf Assarsson Department of Computer Engineering Chalmers University of Technology

Texturing. Slides done by Tomas Akenine-Möller and Ulf Assarsson Department of Computer Engineering Chalmers University of Technology Texturing Slides done by Tomas Akenine-Möller and Ulf Assarsson Department of Computer Engineering Chalmers University of Technology 1 Texturing: Glue n-dimensional images onto geometrical objects l Purpose:

More information

Shaders CSCI 4239/5239 Advanced Computer Graphics Spring 2014

Shaders CSCI 4239/5239 Advanced Computer Graphics Spring 2014 Shaders CSCI 4239/5239 Advanced Computer Graphics Spring 2014 What is a Shader? Wikipedia: A shader is a computer program used in 3D computer graphics to determine the final surface properties of an object

More information

Computer Graphics. Illumination and Shading

Computer Graphics. Illumination and Shading () Illumination and Shading Dr. Ayman Eldeib Lighting So given a 3-D triangle and a 3-D viewpoint, we can set the right pixels But what color should those pixels be? If we re attempting to create a realistic

More information

Programming Guide. Aaftab Munshi Dan Ginsburg Dave Shreiner. TT r^addison-wesley

Programming Guide. Aaftab Munshi Dan Ginsburg Dave Shreiner. TT r^addison-wesley OpenGUES 2.0 Programming Guide Aaftab Munshi Dan Ginsburg Dave Shreiner TT r^addison-wesley Upper Saddle River, NJ Boston Indianapolis San Francisco New York Toronto Montreal London Munich Paris Madrid

More information

Computer graphics Labs: OpenGL (1/3) Geometric transformations and projections

Computer graphics Labs: OpenGL (1/3) Geometric transformations and projections University of Liège Department of Aerospace and Mechanical engineering Computer graphics Labs: OpenGL (1/3) Geometric transformations and projections Exercise 1: Geometric transformations (Folder transf

More information

Interpolation using scanline algorithm

Interpolation using scanline algorithm Interpolation using scanline algorithm Idea: Exploit knowledge about already computed color values. Traverse projected triangle top-down using scanline. Compute start and end color value of each pixel

More information

Mobile Application Programing: Android. OpenGL Operation

Mobile Application Programing: Android. OpenGL Operation Mobile Application Programing: Android OpenGL Operation Activities Apps are composed of activities Activities are self-contained tasks made up of one screen-full of information Activities start one another

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics So Far wireframe hidden surfaces Next step 1 2 Light! Need to understand: How lighting works Types of lights Types of surfaces How shading works Shading algorithms What s Missing? Lighting vs. Shading

More information

OpenGL. Jimmy Johansson Norrköping Visualization and Interaction Studio Linköping University

OpenGL. Jimmy Johansson Norrköping Visualization and Interaction Studio Linköping University OpenGL Jimmy Johansson Norrköping Visualization and Interaction Studio Linköping University Background Software interface to graphics hardware 250+ commands Objects (models) are built from geometric primitives

More information

Surface Graphics. 200 polys 1,000 polys 15,000 polys. an empty foot. - a mesh of spline patches:

Surface Graphics. 200 polys 1,000 polys 15,000 polys. an empty foot. - a mesh of spline patches: Surface Graphics Objects are explicitely defined by a surface or boundary representation (explicit inside vs outside) This boundary representation can be given by: - a mesh of polygons: 200 polys 1,000

More information

Shading. Flat shading Gouraud shading Phong shading

Shading. Flat shading Gouraud shading Phong shading Shading Flat shading Gouraud shading Phong shading Flat Shading and Perception Lateral inhibition: exaggerates perceived intensity Mach bands: perceived stripes along edges Icosahedron with Sphere Normals

More information

Raytracing CS148 AS3. Due :59pm PDT

Raytracing CS148 AS3. Due :59pm PDT Raytracing CS148 AS3 Due 2010-07-25 11:59pm PDT We start our exploration of Rendering - the process of converting a high-level object-based description of scene into an image. We will do this by building

More information

CS 4620 Midterm, March 21, 2017

CS 4620 Midterm, March 21, 2017 CS 460 Midterm, March 1, 017 This 90-minute exam has 4 questions worth a total of 100 points. Use the back of the pages if you need more space. Academic Integrity is expected of all students of Cornell

More information

Introduction to Shaders.

Introduction to Shaders. Introduction to Shaders Marco Benvegnù hiforce@gmx.it www.benve.org Summer 2005 Overview Rendering pipeline Shaders concepts Shading Languages Shading Tools Effects showcase Setup of a Shader in OpenGL

More information

GLSL Applications: 2 of 2

GLSL Applications: 2 of 2 Administrivia GLSL Applications: 2 of 2 Patrick Cozzi University of Pennsylvania CIS 565 - Spring 2011 Assignment 2 due today 11:59pm on Blackboard Assignment 3 handed out today Due Wednesday, 02/09 at

More information

Introduction to the OpenGL Shading Language

Introduction to the OpenGL Shading Language Introduction to the OpenGL Shading Language Randi Rost Director of Developer Relations, 3Dlabs 08-Dec-2005 1 Why use graphics programmability? Graphics hardware has changed radically Fixed functionality

More information

E.Order of Operations

E.Order of Operations Appendix E E.Order of Operations This book describes all the performed between initial specification of vertices and final writing of fragments into the framebuffer. The chapters of this book are arranged

More information

Point-Based rendering on GPU hardware. Advanced Computer Graphics 2008

Point-Based rendering on GPU hardware. Advanced Computer Graphics 2008 Point-Based rendering on GPU hardware Advanced Computer Graphics 2008 Outline Why use the GPU? Splat rasterization Image-aligned squares Perspective correct rasterization Splat shading Flat shading Gouroud

More information

1)Write a shader program that renders a regular pentagon with textured image like the one shown below.

1)Write a shader program that renders a regular pentagon with textured image like the one shown below. Andrew Yenalavitch CSE520 Winter 2015 Quiz 2 Report 1)Write a shader program that renders a regular pentagon with textured image like the one shown below. Use the following provided image for the texture:

More information

Cap. 3 Textures. Mestrado em Engenharia Informática (6931) 1º ano, 1º semestre

Cap. 3 Textures. Mestrado em Engenharia Informática (6931) 1º ano, 1º semestre Cap. 3 Textures Mestrado em Engenharia Informática (6931) 1º ano, 1º semestre Overview Objectives Notion of texture Motivation Texture mapping, texture patterns, and texels Mapping textures to polygons,

More information