Platonic Solids and the Euler Characteristic

Size: px
Start display at page:

Download "Platonic Solids and the Euler Characteristic"

Transcription

1 Platonic Solids and the Euler Characteristic Keith Jones Sanford Society, SUNY Oneonta September 2013

2 What is a Platonic Solid? A Platonic Solid is a 3-dimensional object with flat faces and straight edges (a.k.a a polyhedron) satisfying:

3 What is a Platonic Solid? A Platonic Solid is a 3-dimensional object with flat faces and straight edges (a.k.a a polyhedron) satisfying: all faces are congruent,

4 What is a Platonic Solid? A Platonic Solid is a 3-dimensional object with flat faces and straight edges (a.k.a a polyhedron) satisfying: all faces are congruent, all faces are regular polygons,

5 What is a Platonic Solid? A Platonic Solid is a 3-dimensional object with flat faces and straight edges (a.k.a a polyhedron) satisfying: all faces are congruent, all faces are regular polygons, the same number of faces meet at each vertex, and

6 What is a Platonic Solid? A Platonic Solid is a 3-dimensional object with flat faces and straight edges (a.k.a a polyhedron) satisfying: all faces are congruent, all faces are regular polygons, the same number of faces meet at each vertex, and the solid is convex (no indentations).

7 What is a Platonic Solid? A Platonic Solid is a 3-dimensional object with flat faces and straight edges (a.k.a a polyhedron) satisfying: all faces are congruent, all faces are regular polygons, the same number of faces meet at each vertex, and the solid is convex (no indentations). Images from WikipediA.

8 The Five Platonic Solids There are only five solids satisfying these properties: 1. The tetrahedron has 4 triangular faces, 6 edges, and 4 vertices:

9 The Five Platonic Solids There are only five solids satisfying these properties: 2. The cube or hexahedron has 6 square faces, 12 edges, and 8 vertices:

10 The Five Platonic Solids There are only five solids satisfying these properties: 3. The octahedron has 8 triangular faces, 12 edges, and 6 vertices:

11 The Five Platonic Solids There are only five solids satisfying these properties: 4. The dodecahedron has 12 pentagonal faces, 30 edges, and 20 vertices.

12 The Five Platonic Solids There are only five solids satisfying these properties: 5. The icosahedron has 20 triangular faces, 30 edges, and 12 vertices.

13 Platonic Solids are not a New Idea According to a certain website, these stones are believed to date to 2000 B.C.

14 Platonic Solids are not a New Idea According to a certain website, these stones are believed to date to 2000 B.C. But this is a dubious website dedicated to conspiracy theories. No solid evidence these people knew of the Platonic solids.

15 Platonic Solids are not a New Idea According to a certain website, these stones are believed to date to 2000 B.C. But this is a dubious website dedicated to conspiracy theories. No solid evidence these people knew of the Platonic solids. Still, the platonic solids are named after Plato, after all.

16 How to count edges and vertices Suppose a solid has F faces, each face is an p-sided polygon, and q edges meet at each vertex.

17 How to count edges and vertices Suppose a solid has F faces, each face is an p-sided polygon, and q edges meet at each vertex. Then there are E = pf 2 edges and V = 2E q vertices.

18 How to count edges and vertices Suppose a solid has F faces, each face is an p-sided polygon, and q edges meet at each vertex. Then there are E = pf 2 edges and V = 2E q vertices. Example: The Dodecahedron. 12 faces, 5 12 = 30 edges, 2 30 = 20 vertices. 2 3

19 How to count edges and vertices Suppose a solid has F faces, each face is an p-sided polygon, and q edges meet at each vertex. Then there are E = pf 2 edges and V = 2E q vertices. Example: The Dodecahedron. 12 faces, 5 12 = 30 edges, 2 30 = 20 vertices. 2 3 If you have E edges, you have F = 2E p faces and V = 2E q vertices.

20 The Euler Characteristic The Euler Characteristic χ for the surface a polyhedron with F faces, E edges, and V vertices is: χ = F E + V

21 The Euler Characteristic The Euler Characteristic χ for the surface a polyhedron with F faces, E edges, and V vertices is: χ = F E + V or χ = F + V E

22 The Euler Characteristic The Euler Characteristic χ for the surface a polyhedron with F faces, E edges, and V vertices is: χ = F E + V or χ = F + V E tetrahedron: F = 4, E = 6, V = 4. So χ = = 2

23 The Euler Characteristic The Euler Characteristic χ for the surface a polyhedron with F faces, E edges, and V vertices is: χ = F E + V or χ = F + V E tetrahedron: F = 4, E = 6, V = 4. So χ = = 2 hexahedron: F = 6, E = 12, V = 8. So χ = = 2

24 The Euler Characteristic The Euler Characteristic χ for the surface a polyhedron with F faces, E edges, and V vertices is: χ = F E + V or χ = F + V E tetrahedron: F = 4, E = 6, V = 4. So χ = = 2 hexahedron: F = 6, E = 12, V = 8. So χ = = 2 octahedron: F = 8, E = 12, V = 6. So χ = = 2

25 The Euler Characteristic The Euler Characteristic χ for the surface a polyhedron with F faces, E edges, and V vertices is: χ = F E + V or χ = F + V E tetrahedron: F = 4, E = 6, V = 4. So χ = = 2 hexahedron: F = 6, E = 12, V = 8. So χ = = 2 octahedron: F = 8, E = 12, V = 6. So χ = = 2 dodecahedron: F = 12, E = 30, V = 20. So χ = 2

26 The Euler Characteristic The Euler Characteristic χ for the surface a polyhedron with F faces, E edges, and V vertices is: χ = F E + V or χ = F + V E tetrahedron: F = 4, E = 6, V = 4. So χ = = 2 hexahedron: F = 6, E = 12, V = 8. So χ = = 2 octahedron: F = 8, E = 12, V = 6. So χ = = 2 dodecahedron: F = 12, E = 30, V = 20. So χ = 2 icosahedron: F = 20, E = 30, V = 12. So χ = 2 In all cases, χ = 2! Why?

27 A Theorem for the Euler Characteristic For the surface of any convex polyhedron, χ = F + V E = 2. This is known as Euler s Polyhedron Formula.

28 There Can Be Only Five! How do we know these are the only five platonic solids?

29 There Can Be Only Five! How do we know these are the only five platonic solids? From Euler s Characteristic Formula, we know that F + V E = 2 > 0.

30 There Can Be Only Five! How do we know these are the only five platonic solids? From Euler s Characteristic Formula, we know that F + V E = 2 > 0. If each face meets p edges, and each vertex meets q edges, we can write F = 2E p and V = 2E q.

31 There Can Be Only Five! How do we know these are the only five platonic solids? From Euler s Characteristic Formula, we know that F + V E = 2 > 0. If each face meets p edges, and each vertex meets q edges, we can write F = 2E p and V = 2E q. So we have 2E p + 2E q E = 2 > 0.

32 Continuing the calculation... 2E p + 2E q E > 0

33 Continuing the calculation... 2E p + 2E q E > 0 1 p + 1 q 1 2 > 0

34 Continuing the calculation... 2E p + 2E q E > 0 1 p + 1 q 1 2 > 0 1 p + 1 q > 1 2

35 Continuing the calculation... 2E p + 2E q E > 0 1 p + 1 q 1 2 > 0 1 p + 1 q > 1 2 Now, p and q must both be larger than 2.

36 The only possible (p, q) pairs: p = 3, q = Tetrahedron

37 The only possible (p, q) pairs: p = 3, q = Tetrahedron p = 4, q = Hexahedron

38 The only possible (p, q) pairs: p = 3, q = Tetrahedron p = 4, q = Hexahedron p = 3, q = Octahedron

39 The only possible (p, q) pairs: p = 3, q = Tetrahedron p = 4, q = Hexahedron p = 3, q = Octahedron p = 5, q = Dodecahedron

40 The only possible (p, q) pairs: p = 3, q = Tetrahedron p = 4, q = Hexahedron p = 3, q = Octahedron p = 5, q = Dodecahedron p = 3, q = Icosahedron

41 Spot the Non-Platonic Solid!

42 Visit For Print and Fold instructions to make your own Platonic Solids!

43 Thanks for your time!

Five Platonic Solids: Three Proofs

Five Platonic Solids: Three Proofs Five Platonic Solids: Three Proofs Vincent J. Matsko IMSA, Dodecahedron Day Workshop 18 November 2011 Convex Polygons convex polygons nonconvex polygons Euler s Formula If V denotes the number of vertices

More information

Lesson/Unit Plan Name: Platonic Solids Using geometric nets to explore Platonic solids and discovering Euler s formula.

Lesson/Unit Plan Name: Platonic Solids Using geometric nets to explore Platonic solids and discovering Euler s formula. Grade Level/Course: Grade 6 Lesson/Unit Plan Name: Platonic Solids Using geometric nets to explore Platonic solids and discovering Euler s formula. Rationale/Lesson Abstract: An activity where the students

More information

Classifying 3D Shapes

Classifying 3D Shapes Classifying 3D Shapes Middle School Texas Essential Knowledge and Skills (TEKS) Math 5.4B Algebraic reasoning The student applies mathematical process standards to develop concepts of expressions and equations.

More information

Example: The following is an example of a polyhedron. Fill the blanks with the appropriate answer. Vertices:

Example: The following is an example of a polyhedron. Fill the blanks with the appropriate answer. Vertices: 11.1: Space Figures and Cross Sections Polyhedron: solid that is bounded by polygons Faces: polygons that enclose a polyhedron Edge: line segment that faces meet and form Vertex: point or corner where

More information

Question. Why is the third shape not convex?

Question. Why is the third shape not convex? 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

Lecture 19: Introduction To Topology

Lecture 19: Introduction To Topology Chris Tralie, Duke University 3/24/2016 Announcements Group Assignment 2 Due Wednesday 3/30 First project milestone Friday 4/8/2016 Welcome to unit 3! Table of Contents The Euler Characteristic Spherical

More information

11.4 Three-Dimensional Figures

11.4 Three-Dimensional Figures 11. Three-Dimensional Figures Essential Question What is the relationship between the numbers of vertices V, edges E, and faces F of a polyhedron? A polyhedron is a solid that is bounded by polygons, called

More information

Explore Solids

Explore Solids 1212.1 Explore Solids Surface Area and Volume of Solids 12.2 Surface Area of Prisms and Cylinders 12.3 Surface Area of Pyramids and Cones 12.4 Volume of Prisms and Cylinders 12.5 Volume of Pyramids and

More information

Week 7 Convex Hulls in 3D

Week 7 Convex Hulls in 3D 1 Week 7 Convex Hulls in 3D 2 Polyhedra A polyhedron is the natural generalization of a 2D polygon to 3D 3 Closed Polyhedral Surface A closed polyhedral surface is a finite set of interior disjoint polygons

More information

Key Concept Euler s Formula

Key Concept Euler s Formula 11-1 Space Figures and Cross Sections Objectives To recognize polyhedrons and their parts To visualize cross sections of space figures Common Core State Standards G-GMD.B.4 Identify the shapes of two-dimensional

More information

Euler Characteristic

Euler Characteristic Euler Characteristic Rebecca Robinson May 15, 2007 Euler Characteristic Rebecca Robinson 1 PLANAR GRAPHS 1 Planar graphs v = 5, e = 4, f = 1 v e + f = 2 v = 6, e = 7, f = 3 v = 4, e = 6, f = 4 v e + f

More information

Math 311. Polyhedra Name: A Candel CSUN Math

Math 311. Polyhedra Name: A Candel CSUN Math 1. A polygon may be described as a finite region of the plane enclosed by a finite number of segments, arranged in such a way that (a) exactly two segments meets at every vertex, and (b) it is possible

More information

Euler Characteristic

Euler Characteristic Euler Characteristic Face Classification set_view(gl_render); set_scene(gl_render); glgetdoublev(gl_modelview_matrix, modelview_matrix1); glgetdoublev(gl_projection_matrix, projection_matrix1); glgetintegerv(gl_viewport,

More information

Ma/CS 6b Class 9: Euler s Formula

Ma/CS 6b Class 9: Euler s Formula Ma/CS 6b Class 9: Euler s Formula By Adam Sheffer Recall: Plane Graphs A plane graph is a drawing of a graph in the plane such that the edges are noncrossing curves. 1 Recall: Planar Graphs The drawing

More information

1 The Platonic Solids

1 The Platonic Solids 1 The We take the celebration of Dodecahedron Day as an opportunity embark on a discussion of perhaps the best-known and most celebrated of all polyhedra the Platonic solids. Before doing so, however,

More information

Section 9.4. Volume and Surface Area. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section 9.4. Volume and Surface Area. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 9.4 Volume and Surface Area What You Will Learn Volume Surface Area 9.4-2 Volume Volume is the measure of the capacity of a three-dimensional figure. It is the amount of material you can put inside

More information

Week 9: Planar and non-planar graphs. 7 and 9 November, 2018

Week 9: Planar and non-planar graphs. 7 and 9 November, 2018 (1/27) MA284 : Discrete Mathematics Week 9: Planar and non-planar graphs http://www.maths.nuigalway.ie/ niall/ma284/ 7 and 9 November, 2018 1 Planar graphs and Euler s formula 2 Non-planar graphs K 5 K

More information

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D.

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance.

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. Solid geometry We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. First, note that everything we have proven for the

More information

Rectangular prism. The two bases of a prism. bases

Rectangular prism. The two bases of a prism. bases Page 1 of 8 9.1 Solid Figures Goal Identify and name solid figures. Key Words solid polyhedron base face edge The three-dimensional shapes on this page are examples of solid figures, or solids. When a

More information

Grade VIII. Mathematics Geometry Notes. #GrowWithGreen

Grade VIII. Mathematics Geometry Notes. #GrowWithGreen Grade VIII Mathematics Geometry Notes #GrowWithGreen Polygons can be classified according to their number of sides (or vertices). The sum of all the interior angles of an n -sided polygon is given by,

More information

Answer Key: Three-Dimensional Cross Sections

Answer Key: Three-Dimensional Cross Sections Geometry A Unit Answer Key: Three-Dimensional Cross Sections Name Date Objectives In this lesson, you will: visualize three-dimensional objects from different perspectives be able to create a projection

More information

Tiling of Sphere by Congruent Pentagons

Tiling of Sphere by Congruent Pentagons Tiling of Sphere by Congruent Pentagons Min Yan September 9, 2017 webpage for further reading: http://www.math.ust.hk/ mamyan/research/urop.shtml We consider tilings of the sphere by congruent pentagons.

More information

Week 9: Planar and non-planar graphs. 1st and 3rd of November, 2017

Week 9: Planar and non-planar graphs. 1st and 3rd of November, 2017 (1/26) MA284 : Discrete Mathematics Week 9: Planar and non-planar graphs http://www.maths.nuigalway.ie/~niall/ma284/ 1st and 3rd of November, 2017 1 Recall... planar graphs and Euler s formula 2 Non-planar

More information

LESSON. Bigger and Bigger. Years 5 to 9. Enlarging Figures to Construct Polyhedra Nets

LESSON. Bigger and Bigger. Years 5 to 9. Enlarging Figures to Construct Polyhedra Nets LESSON 4 Bigger and Bigger Years 5 to 9 Enlarging Figures to Construct Polyhedra Nets This lesson involves students using their MATHOMAT to enlarge regular polygons to produce nets of selected polyhedra,

More information

CARDSTOCK MODELING Math Manipulative Kit. Student Activity Book

CARDSTOCK MODELING Math Manipulative Kit. Student Activity Book CARDSTOCK MODELING Math Manipulative Kit Student Activity Book TABLE OF CONTENTS Activity Sheet for L.E. #1 - Getting Started...3-4 Activity Sheet for L.E. #2 - Squares and Cubes (Hexahedrons)...5-8 Activity

More information

1 Appendix to notes 2, on Hyperbolic geometry:

1 Appendix to notes 2, on Hyperbolic geometry: 1230, notes 3 1 Appendix to notes 2, on Hyperbolic geometry: The axioms of hyperbolic geometry are axioms 1-4 of Euclid, plus an alternative to axiom 5: Axiom 5-h: Given a line l and a point p not on l,

More information

Unit I: Euler's Formula (and applications).

Unit I: Euler's Formula (and applications). Unit I: Euler's Formula (and applications). We define a roadmap to be a nonempty finite collection of possibly curvedlil1e segments in a piane, each with exactly two endpoints, such that if any pair of

More information

Multiply using the grid method.

Multiply using the grid method. Multiply using the grid method. Learning Objective Read and plot coordinates in all quadrants DEFINITION Grid A pattern of horizontal and vertical lines, usually forming squares. DEFINITION Coordinate

More information

Mathematics As A Liberal Art

Mathematics As A Liberal Art Math 105 Fall 2015 BY: 2015 Ron Buckmire Mathematics As A Liberal Art Class 26: Friday November 13 Fowler 302 MWF 10:40am- 11:35am http://sites.oxy.edu/ron/math/105/15/ Euclid, Geometry and the Platonic

More information

Today we will be exploring three-dimensional objects, those that possess length, width, and depth.

Today we will be exploring three-dimensional objects, those that possess length, width, and depth. Lesson 22 Lesson 22, page 1 of 13 Glencoe Geometry Chapter 11.1 3-D figures & Polyhedra Today we will be exploring three-dimensional objects, those that possess length, width, and depth. In Euclidean,

More information

The radius for a regular polygon is the same as the radius of the circumscribed circle.

The radius for a regular polygon is the same as the radius of the circumscribed circle. Perimeter and Area The perimeter and area of geometric shapes are basic properties that we need to know. The more complex a shape is, the more complex the process can be in finding its perimeter and area.

More information

Ready To Go On? Skills Intervention 10-1 Solid Geometry

Ready To Go On? Skills Intervention 10-1 Solid Geometry 10A Find these vocabulary words in Lesson 10-1 and the Multilingual Glossary. Vocabulary Ready To Go On? Skills Intervention 10-1 Solid Geometry face edge vertex prism cylinder pyramid cone cube net cross

More information

Major Facilities for Mathematical Thinking and Understanding. (2) Vision, spatial sense and kinesthetic (motion) sense.

Major Facilities for Mathematical Thinking and Understanding. (2) Vision, spatial sense and kinesthetic (motion) sense. Major Facilities for Mathematical Thinking and Understanding. (2) Vision, spatial sense and kinesthetic (motion) sense. Left brain Right brain Hear what you see. See what you hear. Mobius Strip http://www.metacafe.com/watch/331665/

More information

Euler's formula and Platonic solids

Euler's formula and Platonic solids University of Washington Euler's formula and Platonic solids Name: David Clark, Kelsey Kyllo, Kurt Maugerle, Yue Yuan Zhang Course Number: Math 445 Professor: Julia Pevtsova Date: 2013/06/03 Table of Contents:

More information

Planar Graphs, Solids, and Surfaces. Planar Graphs 1/28

Planar Graphs, Solids, and Surfaces. Planar Graphs 1/28 Planar Graphs, Solids, and Surfaces Planar Graphs 1/28 Last time we discussed the Four Color Theorem, which says that any map can be colored with at most 4 colors and not have two regions that share a

More information

Intermediate Math Circles Fall 2018 Patterns & Counting

Intermediate Math Circles Fall 2018 Patterns & Counting Intermediate Math Circles Fall 2018 Patterns & Counting Michael Miniou The Centre for Education in Mathematics and Computing Faculty of Mathematics University of Waterloo December 5, 2018 Michael Miniou

More information

One simple example is that of a cube. Each face is a square (=regular quadrilateral) and each vertex is connected to exactly three squares.

One simple example is that of a cube. Each face is a square (=regular quadrilateral) and each vertex is connected to exactly three squares. Berkeley Math Circle Intermediate I, 1/23, 1/20, 2/6 Presenter: Elysée Wilson-Egolf Topic: Polygons, Polyhedra, Polytope Series Part 1 Polygon Angle Formula Let s start simple. How do we find the sum of

More information

Map-colouring with Polydron

Map-colouring with Polydron Map-colouring with Polydron The 4 Colour Map Theorem says that you never need more than 4 colours to colour a map so that regions with the same colour don t touch. You have to count the region round the

More information

3D shapes introduction

3D shapes introduction 3D shapes introduction 2D shapes have 2 dimensions width and height. They re flat. height 3D shapes have 3 dimensions height, width and depth. Sometimes we call them solids. When we draw them, we often

More information

THE PLATONIC SOLIDS BOOK DAN RADIN

THE PLATONIC SOLIDS BOOK DAN RADIN THE PLATONIC SOLIDS BOOK DAN RADIN Copyright 2008 by Daniel R. Radin All rights reserved. Published by CreateSpace Publishing 3-D renderings were created on a thirteen-year-old Macintosh computer using

More information

The Volume of a Platonic Solid

The Volume of a Platonic Solid University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-007 The Volume of a Platonic Solid Cindy Steinkruger

More information

Part Two Development of Single Solids - The Five Plutonic Solids

Part Two Development of Single Solids - The Five Plutonic Solids 1 Part Two Development of Single Solids - The Five Plutonic Solids We will now proceed to learn different topics of descriptive geometry using AutoCAD 2D tools and settings. Throughout this and subsequent

More information

State if each pair of triangles is similar. If so, state how you know they are similar (AA, SAS, SSS) and complete the similarity statement.

State if each pair of triangles is similar. If so, state how you know they are similar (AA, SAS, SSS) and complete the similarity statement. Geometry 1-2 est #7 Review Name Date Period State if each pair of triangles is similar. If so, state how you know they are similar (AA, SAS, SSS) and complete the similarity statement. 1) Q R 2) V F H

More information

REGULAR TILINGS. Hints: There are only three regular tilings.

REGULAR TILINGS. Hints: There are only three regular tilings. REGULAR TILINGS Description: A regular tiling is a tiling of the plane consisting of multiple copies of a single regular polygon, meeting edge to edge. How many can you construct? Comments: While these

More information

of Nebraska - Lincoln

of Nebraska - Lincoln University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2008 Archimedean Solids Anna Anderson University of

More information

A Study of the Rigidity of Regular Polytopes

A Study of the Rigidity of Regular Polytopes A Study of the Rigidity of Regular Polytopes A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Helene

More information

3.D. The Platonic solids

3.D. The Platonic solids 3.D. The Platonic solids The purpose of this addendum to the course notes is to provide more information about regular solid figures, which played an important role in Greek mathematics and philosophy.

More information

INTRODUCTION TO GRAPH THEORY. 1. Definitions

INTRODUCTION TO GRAPH THEORY. 1. Definitions INTRODUCTION TO GRAPH THEORY D. JAKOBSON 1. Definitions A graph G consists of vertices {v 1, v 2,..., v n } and edges {e 1, e 2,..., e m } connecting pairs of vertices. An edge e = (uv) is incident with

More information

Platonic Solids. Jennie Sköld. January 21, Karlstad University. Symmetries: Groups Algebras and Tensor Calculus FYAD08

Platonic Solids. Jennie Sköld. January 21, Karlstad University. Symmetries: Groups Algebras and Tensor Calculus FYAD08 Platonic Solids Jennie Sköld January 21, 2015 Symmetries: Groups Algebras and Tensor Calculus FYAD08 Karlstad University 1 Contents 1 What are Platonic Solids? 3 2 Symmetries in 3-Space 5 2.1 Isometries

More information

Date: Wednesday, 18 January :00AM. Location: Barnard's Inn Hall

Date: Wednesday, 18 January :00AM. Location: Barnard's Inn Hall Wallpaper Patterns and Buckyballs Transcript Date: Wednesday, 18 January 2006-12:00AM Location: Barnard's Inn Hall WALLPAPER PATTERNS AND BUCKYBALLS Professor Robin Wilson My lectures this term will be

More information

Platonic? Solids: How they really relate.

Platonic? Solids: How they really relate. Platonic? Solids: How they really relate. Ron Hopley ATI Education Specialist University of Arizona Math Department rhopley@math.arizona.edu High School Teacher s Circle Tuesday, September 21, 2010 The

More information

7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. The Gauss-Bonnet theorem 7.1 Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

More information

SHAPE AND STRUCTURE. Shape and Structure. An explanation of Mathematical terminology

SHAPE AND STRUCTURE. Shape and Structure. An explanation of Mathematical terminology Shape and Structure An explanation of Mathematical terminology 2005 1 POINT A dot Dots join to make lines LINE A line is 1 dimensional (length) A line is a series of points touching each other and extending

More information

D A S O D A. Identifying and Classifying 3-D Objects. Examples

D A S O D A. Identifying and Classifying 3-D Objects. Examples Identifying Classifying 3-D Objects Examples Have you noticed that many of the products we purchase come in packages or boxes? Take a look at the products below. A) Did you notice that all the sides or

More information

Euclid forgot to require that the vertices should be the same, so his definition includes the deltahedra.

Euclid forgot to require that the vertices should be the same, so his definition includes the deltahedra. 2 1. What is a Platonic solid? What is a deltahedron? Give at least one example of a deltahedron that is t a Platonic solid. What is the error Euclid made when he defined a Platonic solid? Solution: A

More information

A Physical Proof for Five and Only Five Regular Solids

A Physical Proof for Five and Only Five Regular Solids A Physical Proof for Five and Only Five Regular Solids Robert McDermott Center for High Performance Computing University of Utah Salt Lake City, Utah, 84112, USA E-mail: mcdermott@chpc.utah.edu Abstract

More information

Chapter 12 and 11.1 Planar graphs, regular polyhedra, and graph colorings

Chapter 12 and 11.1 Planar graphs, regular polyhedra, and graph colorings Chapter 12 and 11.1 Planar graphs, regular polyhedra, and graph colorings Prof. Tesler Math 184A Fall 2017 Prof. Tesler Ch. 12: Planar Graphs Math 184A / Fall 2017 1 / 45 12.1 12.2. Planar graphs Definition

More information

Measurement 1 PYTHAGOREAN THEOREM. The area of the square on the hypotenuse of a right triangle is equal to the sum of the areas of

Measurement 1 PYTHAGOREAN THEOREM. The area of the square on the hypotenuse of a right triangle is equal to the sum of the areas of Measurement 1 PYTHAGOREAN THEOREM Remember the Pythagorean Theorem: The area of the square on the hypotenuse of a right triangle is equal to the sum of the areas of the squares on the other two sides.

More information

Section 1-1 Points, Lines, and Planes

Section 1-1 Points, Lines, and Planes Section 1-1 Points, Lines, and Planes I CAN. Identify and model points, lines, and planes. Identify collinear and coplanar points and intersecting lines and planes in space. Undefined Term- Words, usually

More information

Math 489 Project 1: Explore a Math Problem L. Hogben 1 Possible Topics for Project 1: Explore a Math Problem draft 1/13/03

Math 489 Project 1: Explore a Math Problem L. Hogben 1 Possible Topics for Project 1: Explore a Math Problem draft 1/13/03 Math 489 Project 1: Explore a Math Problem L. Hogben 1 Possible Topics for Project 1: Explore a Math Problem draft 1/13/03 Number Base and Regularity We use base 10. The Babylonians used base 60. Discuss

More information

SOLIDS.

SOLIDS. SOLIDS Prisms Among the numerous objects we see around us, some have a regular shape while many others do not have a regular shape. Take, for example, a brick and a stone. A brick has a regular shape while

More information

Chapter 11 Part 2. Measurement of Figures and Solids

Chapter 11 Part 2. Measurement of Figures and Solids Chapter 11 Part 2 Measurement of Figures and Solids 11.5 Explore Solids Objective: Identify Solids Essential Question: When is a solid a polyhedron? Using properties of polyhedra A is a solid that is bounded

More information

Creating Two and Three Dimensional Fractals from the Nets of the Platonic Solids

Creating Two and Three Dimensional Fractals from the Nets of the Platonic Solids Bridges 2011: Mathematics, Music, Art, Architecture, Culture Creating Two and Three Dimensional Fractals from the Nets of the Platonic Solids Stanley Spencer The Sycamores Queens Road Hodthorpe Worksop

More information

Convex Hulls (3D) O Rourke, Chapter 4

Convex Hulls (3D) O Rourke, Chapter 4 Convex Hulls (3D) O Rourke, Chapter 4 Outline Polyhedra Polytopes Euler Characteristic (Oriented) Mesh Representation Polyhedra Definition: A polyhedron is a solid region in 3D space whose boundary is

More information

Write Euler s Theorem. Solving Problems Using Surface Area and Volume. Figure Surface Area Volume. Cl V 5 1 } 3

Write Euler s Theorem. Solving Problems Using Surface Area and Volume. Figure Surface Area Volume. Cl V 5 1 } 3 CHAPTER SUMMARY Big Idea 1 BIG IDEAS Exploring Solids and Their Properties For Your Notebook Euler s Theorem is useful when finding the number of faces, edges, or vertices on a polyhedron, especially when

More information

Geometro: Developing Concepts for Math, Science and O&M with Students who are Visually Impaired October 5, 2012

Geometro: Developing Concepts for Math, Science and O&M with Students who are Visually Impaired October 5, 2012 Texas School for the Blind and Visually Impaired Outreach Programs www.tsbvi.edu 512-454-8631 1100 W. 45 th St. Austin, Texas 78756 Geometro: Developing Concepts for Math, Science and O&M with Students

More information

Polyhedra. Kavitha d/o Krishnan

Polyhedra. Kavitha d/o Krishnan Polyhedra Kavitha d/o Krishnan Supervisor: Associate Professor Helmer Aslaksen Department of Mathematics National University of Singapore Semester I 2001/2002 Abstract Introduction The report focuses on

More information

25. How would you make the octahedral die shown below?

25. How would you make the octahedral die shown below? 304450_ch_08_enqxd 12/6/06 1:39 PM Page 577 Chapter Summary 577 draw others you will not necessarily need all of them. Describe your method, other than random trial and error. How confident are you that

More information

Mathematics Concepts 2 Exam 1 Version 4 21 September 2018

Mathematics Concepts 2 Exam 1 Version 4 21 September 2018 Mathematics Concepts 2 Exam 1 Version 4 21 September 2018 Name: Permissible Aides: The small ruler distributed by the proctor Prohibited: Class Notes Class Handouts Study Guides and Materials The Book

More information

Polyhedron. A polyhedron is simply a three-dimensional solid which consists of a collection of polygons, joined at their edges.

Polyhedron. A polyhedron is simply a three-dimensional solid which consists of a collection of polygons, joined at their edges. Polyhedron A polyhedron is simply a three-dimensional solid which consists of a collection of polygons, joined at their edges. A polyhedron is said to be regular if its faces and vertex figures are regular

More information

Class Generated Review Sheet for Math 213 Final

Class Generated Review Sheet for Math 213 Final Class Generated Review Sheet for Math 213 Final Key Ideas 9.1 A line segment consists of two point on a plane and all the points in between them. Complementary: The sum of the two angles is 90 degrees

More information

Polygons and Convexity

Polygons and Convexity Geometry Week 4 Sec 2.5 to ch. 2 test Polygons and Convexity section 2.5 convex set has the property that any two of its points determine a segment contained in the set concave set a set that is not convex

More information

3D shapes types and properties

3D shapes types and properties 3D shapes types and properties 1 How do 3D shapes differ from 2D shapes? Imagine you re giving an explana on to a younger child. What would you say and/or draw? Remember the surfaces of a 3D shape are

More information

9.1. Perimeter & Circumference. For this Challenge Activity, you will need to see your teacher. Measurement & Geometry

9.1. Perimeter & Circumference. For this Challenge Activity, you will need to see your teacher. Measurement & Geometry Perimeter & Circumference 9.1 Find the perimeter of each polygon. Find the perimeter of each rectangle. Find the circumference of each circle to the nearest tenth. Use 3.14 or 22 7 for. 7. 8. 9. Use 22

More information

Junior Math Circles March 3, D Geometry I

Junior Math Circles March 3, D Geometry I 1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Junior Math Circles March 3, 2010 3D Geometry I Opening Problem Max received a gumball machine for his

More information

REGULAR POLYTOPES REALIZED OVER Q

REGULAR POLYTOPES REALIZED OVER Q REGULAR POLYTOPES REALIZED OVER Q TREVOR HYDE A regular polytope is a d-dimensional generalization of a regular polygon and a Platonic solid. Roughly, they are convex geometric objects with maximal rotational

More information

MATHEMATICS. Y4 Understanding shape Visualise, describe and classify 3-D and 2-D shapes. Equipment

MATHEMATICS. Y4 Understanding shape Visualise, describe and classify 3-D and 2-D shapes. Equipment MATHEMATICS Y4 Understanding shape 4501 Visualise, describe and classify 3-D and 2-D shapes Paper, pencil, ruler Equipment Maths Go Go Go 4501 Visualise, describe and classify 3-D and 2-D shapes. Page

More information

Math 462: Review questions

Math 462: Review questions Math 462: Review questions Paul Hacking 4/22/10 (1) What is the angle between two interior diagonals of a cube joining opposite vertices? [Hint: It is probably quickest to use a description of the cube

More information

Platonic Polyhedra and How to Construct Them

Platonic Polyhedra and How to Construct Them Platonic Polyhedra and How to Construct Them Tarun Biswas June 17, 2016 The platonic polyhedra (or platonic solids) are convex regular polyhedra that have identical regular polygons as faces They are characterized

More information

Non-flat tilings with flat tiles

Non-flat tilings with flat tiles Non-flat tilings with flat tiles Rinus Roelofs Sculptor Lansinkweg 28 7553AL Hengelo The Netherlands E-mail: rinus@rinusroelofs.nl www.rinusroelofs.nl Abstract In general a tiling is considered to be a

More information

Computer Graphics using OpenGL, 3 rd Edition F. S. Hill, Jr. and S. Kelley

Computer Graphics using OpenGL, 3 rd Edition F. S. Hill, Jr. and S. Kelley Computer Graphics using OpenGL, 3 rd Edition F. S. Hill, Jr. and S. Kelley Chapter 6.1-3 Modeling Shapes with Polygonal Meshes S. M. Lea University of North Carolina at Greensboro 2007, Prentice Hall 3D

More information

Jordan Curves. A curve is a subset of IR 2 of the form

Jordan Curves. A curve is a subset of IR 2 of the form Jordan Curves A curve is a subset of IR 2 of the form α = {γ(x) : x [0,1]}, where γ : [0,1] IR 2 is a continuous mapping from the closed interval [0,1] to the plane. γ(0) and γ(1) are called the endpoints

More information

Triangles and Squares David Eppstein, ICS Theory Group, April 20, 2001

Triangles and Squares David Eppstein, ICS Theory Group, April 20, 2001 Triangles and Squares David Eppstein, ICS Theory Group, April 20, 2001 Which unit-side-length convex polygons can be formed by packing together unit squares and unit equilateral triangles? For instance

More information

Sonobe Origami for enriching understanding of geometric concepts in three dimensions. DONNA A. DIETZ American University Washington, D.C.

Sonobe Origami for enriching understanding of geometric concepts in three dimensions. DONNA A. DIETZ American University Washington, D.C. Sonobe Origami for enriching understanding of geometric concepts in three dimensions DONNA A. DIETZ American University Washington, D.C. Donna Dietz, American University Sonobe Origami for enriching understanding

More information

Symmetry: Geometry and Elementary Group Theory

Symmetry: Geometry and Elementary Group Theory Symmetry: Geometry and Elementary Group Theory Cooper Union Summer Research Internship August 16, 2012 Gordon Arrowsmith-Kron Kiril Bejoulev Thomas Bender Anwar Jammal Ali Janati Sam Krickellas Alex Li

More information

Connected Holes. Rinus Roelofs Sculptor Lansinkweg AL Hengelo The Netherlands

Connected Holes. Rinus Roelofs Sculptor Lansinkweg AL Hengelo The Netherlands Connected Holes Rinus Roelofs Sculptor Lansinkweg 28 7553AL Hengelo The Netherlands E-mail: rinus@rinusroelofs.nl www.rinusroelofs.nl Abstract It is possible to make interwoven structures by using two

More information

Glossary of dictionary terms in the AP geometry units

Glossary of dictionary terms in the AP geometry units Glossary of dictionary terms in the AP geometry units affine linear equation: an equation in which both sides are sums of terms that are either a number times y or a number times x or just a number [SlL2-D5]

More information

TOURNAMENT OF THE TOWNS, Glossary

TOURNAMENT OF THE TOWNS, Glossary TOURNAMENT OF THE TOWNS, 2003 2004 Glossary Absolute value The size of a number with its + or sign removed. The absolute value of 3.2 is 3.2, the absolute value of +4.6 is 4.6. We write this: 3.2 = 3.2

More information

February 07, Dimensional Geometry Notebook.notebook. Glossary & Standards. Prisms and Cylinders. Return to Table of Contents

February 07, Dimensional Geometry Notebook.notebook. Glossary & Standards. Prisms and Cylinders. Return to Table of Contents Prisms and Cylinders Glossary & Standards Return to Table of Contents 1 Polyhedrons 3-Dimensional Solids A 3-D figure whose faces are all polygons Sort the figures into the appropriate side. 2. Sides are

More information

Notes: Geometry (6.G.1 4)

Notes: Geometry (6.G.1 4) Perimeter Add up all the sides (P =s + s + s...) Square A = side 2 A = S 2 Perimeter The distance around a polygon. Rectangle w s L A = Length x Width A = lw Parallelogram A = Base x Height A = h h Triangle

More information

Edge Unfoldings of Platonic Solids Never Overlap

Edge Unfoldings of Platonic Solids Never Overlap Edge Unfoldings of Platonic Solids Never Overlap Takashi Horiyama (Saitama Univ.) joint work with Wataru Shoji 1 Unfolding Simple polygon unfolded by cutting along the surface of a polyhedron Two kinds

More information

Math 210 Manifold III, Spring 2018 Euler Characteristics of Surfaces Hirotaka Tamanoi

Math 210 Manifold III, Spring 2018 Euler Characteristics of Surfaces Hirotaka Tamanoi Math 210 Manifold III, Spring 2018 Euler Characteristics of Surfaces Hirotaka Tamanoi 1. Euler Characteristic of Surfaces Leonhard Euler noticed that the number v of vertices, the number e of edges and

More information

Draw and Classify 3-Dimensional Figures

Draw and Classify 3-Dimensional Figures Introduction to Three-Dimensional Figures Draw and Classify 3-Dimensional Figures Identify various three-dimensional figures. Course 2 Introduction to Three-Dimensional Figures Insert Lesson Title Here

More information

CARDSTOCK MODELING Math Manipulative Kit. Revised July 25, 2006

CARDSTOCK MODELING Math Manipulative Kit. Revised July 25, 2006 CARDSTOCK MODELING Math Manipulative Kit Revised July 25, 2006 TABLE OF CONTENTS Unit Overview...3 Format & Background Information...3-5 Learning Experience #1 - Getting Started...6-7 Learning Experience

More information

The Construction of Uniform Polyhedron with the aid of GeoGebra

The Construction of Uniform Polyhedron with the aid of GeoGebra The Construction of Uniform Polyhedron with the aid of GeoGebra JiangPing QiuFaWen 71692686@qq.com 3009827@qq.com gifted Department High-school northeast yucai school northeast yucai school 110179 110179

More information

Math 213 Student Note Outlines. Sections

Math 213 Student Note Outlines. Sections Math 213 Student Note Outlines Sections 9.2 9.3 11.1 11.2 11.3 9.2 KEY IDEAS, page 1 of 2 Polygon Vertex Angles Sum Regular Polygons: Vertex Angles Congruence Definition Regular Polygons Definition Tessellation

More information

Practice A Introduction to Three-Dimensional Figures

Practice A Introduction to Three-Dimensional Figures Name Date Class Identify the base of each prism or pyramid. Then choose the name of the prism or pyramid from the box. rectangular prism square pyramid triangular prism pentagonal prism square prism triangular

More information

Mathematics Concepts 2 Exam 1 Version 2 22 September 2017

Mathematics Concepts 2 Exam 1 Version 2 22 September 2017 Mathematics Concepts 2 Exam 1 Version 2 22 September 2017 Name: Permissible Aides: The small ruler distributed by the proctor Prohibited: Class Notes Class Handouts Study Guides and Materials The Book

More information

ON THE ARCHIMEDEAN OR SEMIREGULAR POLYHEDRA

ON THE ARCHIMEDEAN OR SEMIREGULAR POLYHEDRA ON THE ARCHIMEDEAN OR SEMIREGULAR POLYHEDRA arxiv:math/0505488v1 [math.gt] 4 May 005 Mark B. Villarino Depto. de Matemática, Universidad de Costa Rica, 060 San José, Costa Rica May 11, 005 Abstract We

More information