Mesh Decimation. Mark Pauly

Size: px
Start display at page:

Download "Mesh Decimation. Mark Pauly"

Transcription

1 Mesh Decimation Mark Pauly

2 Applications Oversampled 3D scan data ~150k triangles ~80k triangles Mark Pauly - ETH Zurich 280

3 Applications Overtessellation: E.g. iso-surface extraction Mark Pauly - ETH Zurich 281

4 Applications Multi-resolution hierarchies for efficient geometry processing level-of-detail (LOD) rendering Mark Pauly - ETH Zurich 282

5 Applications Adaptation to hardware capabilities Mark Pauly - ETH Zurich 283

6 Size-Quality Tradeoff error size Mark Pauly - ETH Zurich 284

7 Outline Applications Problem Statement Mesh Decimation Methods Vertex Clustering Iterative Decimation Extensions Remeshing Variational Shape Approximation Mark Pauly - ETH Zurich 285

8 Problem Statement Given: M = (V, F) Find: M = (V, F ) such that 1. V = n < V and M M is minimal, or 2. M M < ɛ and V is minimal M M Mark Pauly - ETH Zurich 286

9 Problem Statement Given: M = (V, F) Find: M = (V, F ) such that 1. V = n < V and M M is minimal, or 2. M M < ɛ and V is minimal hard! look for sub-optimal solution Mark Pauly - ETH Zurich 287

10 Problem Statement Given: M = (V, F) Find: M = (V, F ) such that 1. V = n < V and M M is minimal, or 2. M M < ɛ and V is minimal Respect additional fairness criteria normal deviation, triangle shape, scalar attributes, etc. Mark Pauly - ETH Zurich 288

11 Outline Applications Problem Statement Mesh Decimation Methods Vertex Clustering Iterative Decimation Extensions Mark Pauly - ETH Zurich 289

12 Vertex Clustering Cluster Generation Computing a representative Mesh generation Topology changes Mark Pauly - ETH Zurich 290

13 Vertex Clustering Cluster Generation Uniform 3D grid Map vertices to cluster cells Computing a representative Mesh generation Topology changes Mark Pauly - ETH Zurich 291

14 Vertex Clustering Cluster Generation Hierarchical approach Top-down or bottom-up Computing a representative Mesh generation Topology changes Mark Pauly - ETH Zurich 292

15 Vertex Clustering Cluster Generation Computing a representative Average/median vertex position Error quadrics Mesh generation Topology changes Mark Pauly - ETH Zurich 293

16 Computing a Representative Average vertex position Low-pass filter Mark Pauly - ETH Zurich 294

17 Computing a Representative Median vertex position Sub-sampling Mark Pauly - ETH Zurich 295

18 Computing a Representative Error quadrics Mark Pauly - ETH Zurich 296

19 Error Quadrics Squared distance to plane p = (x, y, z, 1) T, q = (a, b, c, d) T dist(q, p) 2 = (q T p) 2 = p T (qq T )p =: p T Q q p Q q = a 2 ab ac ad ab b 2 bc bd ac bc b 2 cd ad bd cd d 2 Mark Pauly - ETH Zurich 297

20 Error Quadrics Sum distances to vertex planes dist(q i, p) 2 = i p T Q qi p = p T ( i Q qi ) p =: p T Q p p i Point that minimizes the error q 11 q 12 q 13 q 14 q 21 q 22 q 23 q 24 q 31 q 32 q 33 q p = Mark Pauly - ETH Zurich 298

21 Comparison average median error quadric Mark Pauly - ETH Zurich 299

22 Vertex Clustering Cluster Generation Computing a representative Mesh generation Clusters p {p 0,...,p n }, q {q 0,...,q m } Connect (p,q) if there was an edge (p i,q j ) Topology changes Mark Pauly - ETH Zurich 300

23 Vertex Clustering Cluster Generation Computing a representative Mesh generation Topology changes If different sheets pass through one cell Not manifold Mark Pauly - ETH Zurich 301

24 Outline Applications Problem Statement Mesh Decimation Methods Vertex Clustering Iterative Decimation Extensions Mark Pauly - ETH Zurich 302

25 Incremental Decimation General Setup Decimation operators Error metrics Fairness criteria Topology changes Mark Pauly - ETH Zurich 303

26 General Setup Repeat: pick mesh region apply decimation operator Until no further reduction possible Mark Pauly - ETH Zurich 304

27 Greedy Optimization For each region evaluate quality after decimation enqeue(quality, region) Repeat: pick best mesh region apply decimation operator update queue Until no further reduction possible Mark Pauly - ETH Zurich 305

28 Global Error Control For each region evaluate quality after decimation enqeue(quality, region) Repeat: pick best mesh region if error < ε apply decimation operator update queue Until no further reduction possible Mark Pauly - ETH Zurich 306

29 Incremental Decimation General Setup Decimation operators Error metrics Fairness criteria Topology changes Mark Pauly - ETH Zurich 307

30 Decimation Operators What is a "region"? What are the DOF for re-triangulation? Classification Topology-changing vs. topology-preserving Subsampling vs. filtering Inverse operation progressive meshes Mark Pauly - ETH Zurich 308

31 Vertex Removal Select a vertex to be eliminated Mark Pauly - ETH Zurich 309

32 Vertex Removal Select all triangles sharing this vertex Mark Pauly - ETH Zurich 310

33 Vertex Removal Remove the selected triangles, creating the hole Mark Pauly - ETH Zurich 311

34 Vertex Removal Fill the hole with triangles Mark Pauly - ETH Zurich 312

35 Decimation Operators Vertex Removal Vertex Insertion Remove vertex Re-triangulate hole Combinatorial DOFs Sub-sampling Mark Pauly - ETH Zurich 313

36 Decimation Operators Edge Collapse Vertex Split Merge two adjacent triangles Define new vertex position Continuous DOF Filtering Mark Pauly - ETH Zurich 314

37 Decimation Operators Half-Edge Collapse Restricted Vertex Split Collapse edge into one end point Special vertex removal Special edge collapse No DOFs One operator per half-edge Sub-sampling! Mark Pauly - ETH Zurich 315

38 Edge Collapse Mark Pauly - ETH Zurich 316

39 Edge Collapse Mark Pauly - ETH Zurich 317

40 Edge Collapse Mark Pauly - ETH Zurich 318

41 Edge Collapse Mark Pauly - ETH Zurich 319

42 Edge Collapse Mark Pauly - ETH Zurich 320

43 Edge Collapse Mark Pauly - ETH Zurich 321

44 Edge Collapse Mark Pauly - ETH Zurich 322

45 Edge Collapse Mark Pauly - ETH Zurich 323

46 Edge Collapse Mark Pauly - ETH Zurich 324

47 Edge Collapse Mark Pauly - ETH Zurich 325

48 Priority Queue Updating Mark Pauly - ETH Zurich 326

49 Incremental Decimation General Setup Decimation operators Error metrics Fairness criteria Topology changes Mark Pauly - ETH Zurich 327

50 Local Error Metrics Local distance to mesh [Schroeder et al. 92] Compute average plane No comparison to original geometry Mark Pauly - ETH Zurich 328

51 Global Error Metrics Simplification envelopes [Cohen et al. 96] Compute (non-intersecting) offset surfaces Simplification guarantees to stay within bounds Mark Pauly - ETH Zurich 329

52 Global Error Metrics (Two-sided) Hausdorff distance: Maximum distance between two shapes In general d(a,b) d(b,a) Computationally involved A d(a,b) B d(b,a) Mark Pauly - ETH Zurich 330

53 Global Error Metrics Scan data: One-sided Hausdorff distance sufficient From original vertices to current surface Mark Pauly - ETH Zurich 331

54 Global Error Metrics Error quadrics [Garland, Heckbert 97] Squared distance to planes at vertex No bound on true error Q 1 Q 2 Q 3 = Q 1 +Q 2 v 3 p 1 p 2 p i TQ i p i = 0, i={1,2} solve v 3 TQ 3 v 3 = min < ε? ok Mark Pauly - ETH Zurich 332

55 Complexity N = number of vertices Priority queue for half-edges 6 N * log ( 6 N ) Error control Local O(1) global O(N) Local O(N) global O(N 2 ) Mark Pauly - ETH Zurich 333

56 Incremental Decimation General Setup Decimation operators Error metrics Fairness criteria Topology changes Mark Pauly - ETH Zurich 334

57 Fairness Criteria Rate quality of decimation operation Approximation error Triangle shape Dihedral angles Valence balance Color differences... Mark Pauly - ETH Zurich 335

58 Fairness Criteria Rate quality after decimation Approximation error Triangle shape Dihedral angles Valence balance Color differences r 1 e 1 < r 2 e 2 r 1 e 1... e 2 r 2 Mark Pauly - ETH Zurich 336

59 Fairness Criteria Rate quality after decimation Approximation error Triangle shape Dihedral angles Valence balance Color differences... Mark Pauly - ETH Zurich 337

60 Fairness Criteria Rate quality after decimation Approximation error Triangle shape Dihedral angles Valence balance Color differences... Mark Pauly - ETH Zurich 338

61 Fairness Criteria Rate quality after decimation Approximation error Triangle shape Dihedral angles Valence balance Color differences... Mark Pauly - ETH Zurich 339

62 Fairness Criteria Rate quality after decimation Approximation error Triangle shape Dihedral angles Valence balance Color differences... Mark Pauly - ETH Zurich 340

63 Fairness Criteria Rate quality after decimation Approximation error Triangle shape Dihedral angles Valence balance Color differences... Mark Pauly - ETH Zurich 341

64 Fairness Criteria Rate quality after decimation Approximation error Triangle shape Dihedral angles Valance balance Color differences... Mark Pauly - ETH Zurich 342

65 Incremental Decimation General Setup Decimation operators Error metrics Fairness criteria Topology changes Mark Pauly - ETH Zurich 343

66 Topology Changes? Merge vertices across non-edges Changes mesh topology Need spatial neighborhood information Generates non-manifold meshes Vertex Contraction Vertex Separation Mark Pauly - ETH Zurich 344

67 Topology Changes? Merge vertices across non-edges Changes mesh topology Need spatial neighborhood information Generates non-manifold meshes manifold non-manifold Mark Pauly - ETH Zurich 345

68 Comparison Vertex clustering fast, but difficult to control simplified mesh topology changes, non-manifold meshes global error bound, but often not close to optimum Iterative decimation with quadric error metrics good trade-off between mesh quality and speed explicit control over mesh topology restricting normal deviation improves mesh quality Mark Pauly - ETH Zurich 346

69 Outline Applications Problem Statement Mesh Decimation Methods Vertex Clustering Iterative Decimation Extensions Mark Pauly - ETH Zurich 347

70 Out-of-core Decimation Handle very large data sets that do not fit into main memory Key: Avoid random access to mesh data structure during simplification Examples Garland, Shaffer: A Multiphase Approach to Efficient Surface Simplification, IEEE Visualization 2002 Wu, Kobbelt: A Stream Algorithm for the Decimation of Massive Meshes, Graphics Interface 2003 Mark Pauly - ETH Zurich 348

71 Multiphase Simplification 1. Phase: Out-of-core clustering - compute accumulated error quadrics and vertex representative for each cell of uniform voxel grid 2. Phase: In-core iterative simplification - compute fundamental quadrics - iteratively contract edge of smallest cost Mark Pauly - ETH Zurich 349

72 Multiphase Simplification 1. Phase: Out-of-core clustering - compute accumulated error quadrics and vertex representative for each cell of uniform voxel grid 2. Phase: In-core iterative simplification - compute fundamental quadrics - use accumulated quadrics from clustering phase - iteratively contract edge of smallest cost achieves a coupling between the two phases Mark Pauly - ETH Zurich 350

73 Multiphase Simplification Original (8 million triangles) Uniform clustering (1157 triangles) Multiphase (1000 triangles) Garland, Shaffer: A Multiphase Approach to Efficient Surface Simplification, IEEE Visualization 2002 Mark Pauly - ETH Zurich 351

74 Multiphase Simplification Garland, Shaffer: A Multiphase Approach to Efficient Surface Simplification, IEEE Visualization 2002 Mark Pauly - ETH Zurich 352

75 Out-of-core Decimation Streaming approach based on edge collapse operations using QEM Pre-sorted input stream allows fixed-sized active working set independent of input and output model complexity Wu, Kobbelt: A Stream Algorithm for the Decimation of Massive Meshes, Graphics Interface 2003 Mark Pauly - ETH Zurich 353

76 Out-of-core Decimation Randomized multiple choice optimization avoids global heap data structure Special treatment for boundaries required Wu, Kobbelt: A Stream Algorithm for the Decimation of Massive Meshes, Graphics Interface 2003 Mark Pauly - ETH Zurich 354

Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles

Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles Mesh Simplification Applications Oversampled 3D scan data ~150k triangles ~80k triangles 2 Applications Overtessellation: E.g. iso-surface extraction 3 Applications Multi-resolution hierarchies for efficient

More information

Geometric Modeling. Mesh Decimation. Mesh Decimation. Applications. Copyright 2010 Gotsman, Pauly Page 1. Oversampled 3D scan data

Geometric Modeling. Mesh Decimation. Mesh Decimation. Applications. Copyright 2010 Gotsman, Pauly Page 1. Oversampled 3D scan data Applications Oversampled 3D scan data ~150k triangles ~80k triangles 2 Copyright 2010 Gotsman, Pauly Page 1 Applications Overtessellation: E.g. iso-surface extraction 3 Applications Multi-resolution hierarchies

More information

Mesh and Mesh Simplification

Mesh and Mesh Simplification Slide Credit: Mirela Ben-Chen Mesh and Mesh Simplification Qixing Huang Mar. 21 st 2018 Mesh DataStructures Data Structures What should bestored? Geometry: 3D coordinates Attributes e.g. normal, color,

More information

Mesh Repairing and Simplification. Gianpaolo Palma

Mesh Repairing and Simplification. Gianpaolo Palma Mesh Repairing and Simplification Gianpaolo Palma Mesh Repairing Removal of artifacts from geometric model such that it becomes suitable for further processing Input: a generic 3D model Output: (hopefully)a

More information

Surface Simplification Using Quadric Error Metrics

Surface Simplification Using Quadric Error Metrics Surface Simplification Using Quadric Error Metrics Authors: Michael Garland & Paul Heckbert Presented by: Niu Xiaozhen Disclaimer: Some slides are modified from original slides, which were designed by

More information

Mesh Simplification. Mesh Simplification. Mesh Simplification Goals. Mesh Simplification Motivation. Vertex Clustering. Mesh Simplification Overview

Mesh Simplification. Mesh Simplification. Mesh Simplification Goals. Mesh Simplification Motivation. Vertex Clustering. Mesh Simplification Overview Mesh Simplification Mesh Simplification Adam Finkelstein Princeton University COS 56, Fall 008 Slides from: Funkhouser Division, Viewpoint, Cohen Mesh Simplification Motivation Interactive visualization

More information

A Developer s Survey of Polygonal Simplification algorithms. CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005

A Developer s Survey of Polygonal Simplification algorithms. CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005 A Developer s Survey of Polygonal Simplification algorithms CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005 Some questions to ask Why simplification? What are my models like? What matters

More information

CGAL. Mesh Simplification. (Slides from Tom Funkhouser, Adam Finkelstein)

CGAL. Mesh Simplification. (Slides from Tom Funkhouser, Adam Finkelstein) CGAL Mesh Simplification (Slides from Tom Funkhouser, Adam Finkelstein) Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 In a nutshell Problem: Meshes have too many polygons for storage, rendering,

More information

Overview. Efficient Simplification of Point-sampled Surfaces. Introduction. Introduction. Neighborhood. Local Surface Analysis

Overview. Efficient Simplification of Point-sampled Surfaces. Introduction. Introduction. Neighborhood. Local Surface Analysis Overview Efficient Simplification of Pointsampled Surfaces Introduction Local surface analysis Simplification methods Error measurement Comparison PointBased Computer Graphics Mark Pauly PointBased Computer

More information

Mesh Decimation Using VTK

Mesh Decimation Using VTK Mesh Decimation Using VTK Michael Knapp knapp@cg.tuwien.ac.at Institute of Computer Graphics and Algorithms Vienna University of Technology Abstract This paper describes general mesh decimation methods

More information

A Comparison of Mesh Simplification Algorithms

A Comparison of Mesh Simplification Algorithms A Comparison of Mesh Simplification Algorithms Nicole Ortega Project Summary, Group 16 Browser Based Constructive Solid Geometry for Anatomical Models - Orthotics for cerebral palsy patients - Fusiform

More information

A Short Survey of Mesh Simplification Algorithms

A Short Survey of Mesh Simplification Algorithms A Short Survey of Mesh Simplification Algorithms Jerry O. Talton III University of Illinois at Urbana-Champaign 1. INTRODUCTION The problem of approximating a given input mesh with a less complex but geometrically

More information

Appearance Preservation

Appearance Preservation CS 283 Advanced Computer Graphics Mesh Simplification James F. O Brien Professor U.C. Berkeley Based on slides by Ravi Ramamoorthi 1 Appearance Preservation Caltech & Stanford Graphics Labs and Jonathan

More information

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662 Geometry Processing & Geometric Queries Computer Graphics CMU 15-462/15-662 Last time: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: fans,

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo Geometric Modeling Bing-Yu Chen National Taiwan University The University of Tokyo Surface Simplification Motivation Basic Idea of LOD Discrete LOD Continuous LOD Simplification Problem Characteristics

More information

Isotopic Approximation within a Tolerance Volume

Isotopic Approximation within a Tolerance Volume Isotopic Approximation within a Tolerance Volume Manish Mandad David Cohen-Steiner Pierre Alliez Inria Sophia Antipolis - 1 Goals and Motivation - 2 Goals and Motivation Input: Tolerance volume of a surface

More information

3-Dimensional Object Modeling with Mesh Simplification Based Resolution Adjustment

3-Dimensional Object Modeling with Mesh Simplification Based Resolution Adjustment 3-Dimensional Object Modeling with Mesh Simplification Based Resolution Adjustment Özgür ULUCAY Sarp ERTÜRK University of Kocaeli Electronics & Communication Engineering Department 41040 Izmit, Kocaeli

More information

CSE 554 Lecture 6: Fairing and Simplification

CSE 554 Lecture 6: Fairing and Simplification CSE 554 Lecture 6: Fairing and Simplification Fall 2012 CSE554 Fairing and simplification Slide 1 Review Iso-contours in grayscale images and volumes Piece-wise linear representations Polylines (2D) and

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 6. Mesh Simplification Problems High resolution meshes becoming increasingly available 3D active scanners Computer

More information

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9.

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9. II.4 Surface Simplification 37 II.4 Surface Simplification In applications it is often necessary to simplify the data or its representation. One reason is measurement noise, which we would like to eliminate,

More information

Fast Stellar Mesh Simplification

Fast Stellar Mesh Simplification Fast Stellar Mesh Simplification ANTÔNIO W. VIEIRA 1,2, LUIZ VELHO 3, HÉLIO LOPES 1, GEOVAN TAVARES 1 AND THOMAS LEWINER 1,4 1 PUC Rio Laboratório Matmídia Rio de Janeiro 2 UNIMONTES CCET Montes Claros

More information

Multiresolution structures for interactive visualization of very large 3D datasets

Multiresolution structures for interactive visualization of very large 3D datasets Multiresolution structures for interactive visualization of very large 3D datasets Doctoral Thesis (Dissertation) to be awarded the degree of Doctor rerum naturalium (Dr.rer.nat.) submitted by Federico

More information

Simplification. Stolen from various places

Simplification. Stolen from various places Simplification Stolen from various places The Problem of Detail Graphics systems are awash in model data: highly detailed CAD models high-precision surface scans surface reconstruction algorithms Available

More information

Adjacency Data Structures

Adjacency Data Structures Last Time? Simple Transformations Adjacency Data Structures material from Justin Legakis Classes of Transformations Representation homogeneous coordinates Composition not commutative Orthographic & Perspective

More information

Mesh Simplification Method Using Principal Curvatures and Directions

Mesh Simplification Method Using Principal Curvatures and Directions Copyright 2011 Tech Science Press CMES, vol.77, no.4, pp.201-219, 2011 Mesh Simplification Method Using Principal Curvatures and Directions V. Ungvichian 1 and P. Kanongchaiyos 1 Abstract: This paper describes

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 17 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Digital Geometry Processing. Computer Graphics CMU /15-662

Digital Geometry Processing. Computer Graphics CMU /15-662 Digital Geometry Processing Computer Graphics CMU 15-462/15-662 Last time: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: fans, not fins

More information

Point-based Simplification Algorithm

Point-based Simplification Algorithm Point-based Simplification Algorithm Pai-Feng Lee 1, Bin-Shyan Jong 2 Department of Information Management, Hsing Wu College 1 Dept. of Information and Computer Engineering Engineering, Chung Yuan Christian

More information

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass University of California, Davis, USA http://www.cs.ucdavis.edu/~koehl/ims2017/ What is a shape? A shape is a 2-manifold with a Riemannian

More information

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform Overview Spectral Processing of Point- Sampled Geometry Introduction Fourier transform Spectral processing pipeline Spectral filtering Adaptive subsampling Summary Point-Based Computer Graphics Markus

More information

Illumination and Geometry Techniques. Karljohan Lundin Palmerius

Illumination and Geometry Techniques. Karljohan Lundin Palmerius Illumination and Geometry Techniques Karljohan Lundin Palmerius Objectives Complex geometries Translucency Huge areas Really nice graphics! Shadows Graceful degradation Acceleration Optimization Straightforward

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 15 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Out-of-Core Simplification with Guaranteed Error Tolerance

Out-of-Core Simplification with Guaranteed Error Tolerance Out-of-Core Simplification with Guaranteed Error Tolerance Pavel Borodin, Michael Guthe, Reinhard Klein University of Bonn, Institute of Computer Science II Römerstraße 164, 53117 Bonn, Germany Email:

More information

Deformation Sensitive Decimation

Deformation Sensitive Decimation Deformation Sensitive Decimation Alex Mohr Michael Gleicher University of Wisconsin, Madison Abstract In computer graphics, many automatic methods for simplifying polygonal meshes have been developed.

More information

Progressive Mesh. Reddy Sambavaram Insomniac Games

Progressive Mesh. Reddy Sambavaram Insomniac Games Progressive Mesh Reddy Sambavaram Insomniac Games LOD Schemes Artist made LODs (time consuming, old but effective way) ViewDependentMesh (usually used for very large complicated meshes. CAD apps. Probably

More information

Handles. The justification: For a 0 genus triangle mesh we can write the formula as follows:

Handles. The justification: For a 0 genus triangle mesh we can write the formula as follows: Handles A handle in a 3d mesh is a through hole. The number of handles can be extracted of the genus of the 3d mesh. Genus is the number of times we can cut 2k edges without disconnecting the 3d mesh.

More information

Voronoi Diagram. Xiao-Ming Fu

Voronoi Diagram. Xiao-Ming Fu Voronoi Diagram Xiao-Ming Fu Outlines Introduction Post Office Problem Voronoi Diagram Duality: Delaunay triangulation Centroidal Voronoi tessellations (CVT) Definition Applications Algorithms Outlines

More information

Efficient Representation and Extraction of 2-Manifold Isosurfaces Using kd-trees

Efficient Representation and Extraction of 2-Manifold Isosurfaces Using kd-trees Efficient Representation and Extraction of 2-Manifold Isosurfaces Using kd-trees Alexander Greß and Reinhard Klein University of Bonn Institute of Computer Science II Römerstraße 164, 53117 Bonn, Germany

More information

and Recent Extensions Progressive Meshes Progressive Meshes Multiresolution Surface Modeling Multiresolution Surface Modeling Hugues Hoppe

and Recent Extensions Progressive Meshes Progressive Meshes Multiresolution Surface Modeling Multiresolution Surface Modeling Hugues Hoppe Progressive Meshes Progressive Meshes and Recent Extensions Hugues Hoppe Microsoft Research SIGGRAPH 97 Course SIGGRAPH 97 Course Multiresolution Surface Modeling Multiresolution Surface Modeling Meshes

More information

Finding Shortest Path on Land Surface

Finding Shortest Path on Land Surface Finding Shortest Path on Land Surface Lian Liu, Raymond Chi-Wing Wong Hong Kong University of Science and Technology June 14th, 211 Introduction Land Surface Land surfaces are modeled as terrains A terrain

More information

Motivation. Freeform Shape Representations for Efficient Geometry Processing. Operations on Geometric Objects. Functional Representations

Motivation. Freeform Shape Representations for Efficient Geometry Processing. Operations on Geometric Objects. Functional Representations Motivation Freeform Shape Representations for Efficient Geometry Processing Eurographics 23 Granada, Spain Geometry Processing (points, wireframes, patches, volumes) Efficient algorithms always have to

More information

Simplification and Streaming of GIS Terrain for Web Client

Simplification and Streaming of GIS Terrain for Web Client Simplification and Streaming of GIS Terrain for Web Client Web3D 2012 Geomod Liris : Pierre-Marie Gandoin Geomod Liris : Raphaëlle Chaine Atos Wordline : Aurélien Barbier-Accary Fabien CELLIER Université

More information

Occluder Simplification using Planar Sections

Occluder Simplification using Planar Sections Occluder Simplification using Planar Sections Ari Silvennoinen Hannu Saransaari Samuli Laine Jaakko Lehtinen Remedy Entertainment Aalto University Umbra Software NVIDIA NVIDIA Aalto University Coping with

More information

All the Polygons You Can Eat. Doug Rogers Developer Relations

All the Polygons You Can Eat. Doug Rogers Developer Relations All the Polygons You Can Eat Doug Rogers Developer Relations doug@nvidia.com Future of Games Very high resolution models 20,000 triangles per model Lots of them Complex Lighting Equations Floating point

More information

Simplification of Meshes into Curved PN Triangles

Simplification of Meshes into Curved PN Triangles Simplification of Meshes into Curved PN Triangles Xiaoqun Wu, Jianmin Zheng, Xunnian Yang, Yiyu Cai Nanyang Technological University, Singapore Email: {wuxi0006,asjmzheng,xnyang,myycai}@ntu.edu.sg Abstract

More information

Curvature-Adaptive Remeshing with Feature Preservation of Manifold Triangle Meshes with Boundary

Curvature-Adaptive Remeshing with Feature Preservation of Manifold Triangle Meshes with Boundary Curvature-Adaptive Remeshing with Feature Preservation of Manifold Triangle Meshes with Boundary Master s Project Tanja Munz Master of Science Computer Animation and Visual Effects 24th August, 2015 Abstract

More information

Simple Silhouettes for Complex Surfaces

Simple Silhouettes for Complex Surfaces Eurographics Symposium on Geometry Processing(2003) L. Kobbelt, P. Schröder, H. Hoppe (Editors) Simple Silhouettes for Complex Surfaces D. Kirsanov, P. V. Sander, and S. J. Gortler Harvard University Abstract

More information

Final Project, Digital Geometry Processing

Final Project, Digital Geometry Processing Final Project, Digital Geometry Processing Shayan Hoshyari Student #: 81382153 December 2016 Introduction In this project an adaptive surface remesher has been developed based on the paper [1]. An algorithm

More information

Large Mesh Deformation Using the Volumetric Graph Laplacian

Large Mesh Deformation Using the Volumetric Graph Laplacian Large Mesh Deformation Using the Volumetric Graph Laplacian Kun Zhou1 Jin Huang2 John Snyder3 Xinguo Liu1 Hujun Bao2 Baining Guo1 Heung-Yeung Shum1 1 Microsoft Research Asia 2 Zhejiang University 3 Microsoft

More information

Level Set Extraction from Gridded 2D and 3D Data

Level Set Extraction from Gridded 2D and 3D Data Level Set Extraction from Gridded 2D and 3D Data David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International

More information

Curves & Surfaces. Last Time? Progressive Meshes. Selective Refinement. Adjacency Data Structures. Mesh Simplification. Mesh Simplification

Curves & Surfaces. Last Time? Progressive Meshes. Selective Refinement. Adjacency Data Structures. Mesh Simplification. Mesh Simplification Last Time? Adjacency Data Structures Curves & Surfaces Geometric & topologic information Dynamic allocation Efficiency of access Mesh Simplification edge collapse/vertex split geomorphs progressive transmission

More information

A General Framework for Mesh Decimation

A General Framework for Mesh Decimation A General Framework for Mesh Decimation Leif Kobbelt Swen Campagna Hans-Peter Seidel Computer Sciences Department, University of Erlangen-Nürnberg Am Weichselgarten 9, 91058 Erlangen, Germany kobbelt@informatik.uni-erlangen.de

More information

Alex Li 11/20/2009. Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk

Alex Li 11/20/2009. Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk Alex Li 11/20/2009 Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk duction Overview of Lagrangian of Topological s Altering the Topology 2 Presents a method for accurately tracking the moving surface

More information

Geometric Features for Non-photorealistiic Rendering

Geometric Features for Non-photorealistiic Rendering CS348a: Computer Graphics Handout # 6 Geometric Modeling and Processing Stanford University Monday, 27 February 2017 Homework #4: Due Date: Mesh simplification and expressive rendering [95 points] Wednesday,

More information

3/1/2010. Acceleration Techniques V1.2. Goals. Overview. Based on slides from Celine Loscos (v1.0)

3/1/2010. Acceleration Techniques V1.2. Goals. Overview. Based on slides from Celine Loscos (v1.0) Acceleration Techniques V1.2 Anthony Steed Based on slides from Celine Loscos (v1.0) Goals Although processor can now deal with many polygons (millions), the size of the models for application keeps on

More information

Out of Core continuous LoD-Hierarchies for Large Triangle Meshes

Out of Core continuous LoD-Hierarchies for Large Triangle Meshes Out of Core continuous LoD-Hierarchies for Large Triangle Meshes Hermann Birkholz Research Assistant Albert-Einstein-Str. 21 Germany, 18059, Rostock hb01@informatik.uni-rostock.de ABSTRACT In this paper,

More information

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College Topological Data Analysis - I Afra Zomorodian Department of Computer Science Dartmouth College September 3, 2007 1 Acquisition Vision: Images (2D) GIS: Terrains (3D) Graphics: Surfaces (3D) Medicine: MRI

More information

Efficient Representation and Extraction of 2-Manifold Isosurfaces Using kd-trees

Efficient Representation and Extraction of 2-Manifold Isosurfaces Using kd-trees Efficient Representation and Extraction of 2-Manifold Isosurfaces Using kd-trees Alexander Greß gress@cs.uni-bonn.de Reinhard Klein rk@cs.uni-bonn.de University of Bonn Institute of Computer Science II

More information

Interpolating and Approximating Implicit Surfaces from Polygon Soup

Interpolating and Approximating Implicit Surfaces from Polygon Soup Interpolating and Approimating Implicit Surfaces from Polygon Soup Chen Shen, James F. O Brien, Jonathan R. Shewchuk University of California, Berkeley Geometric Algorithms Seminar CS 468 Fall 2005 Overview

More information

To Do. Resources. Algorithm Outline. Simplifications. Advanced Computer Graphics (Spring 2013) Surface Simplification: Goals (Garland)

To Do. Resources. Algorithm Outline. Simplifications. Advanced Computer Graphics (Spring 2013) Surface Simplification: Goals (Garland) Advanced omputer Graphics (Spring 213) S 283, Lecture 6: Quadric Error Metrics Ravi Ramamoorthi To Do Assignment 1, Due Feb 22. Should have made some serious progress by end of week This lecture reviews

More information

A Study on View-Dependent Representation of 3-D Mesh Models Using Hierarchical Partitioning

A Study on View-Dependent Representation of 3-D Mesh Models Using Hierarchical Partitioning Thesis for Master s Degree A Study on View-Dependent Representation of 3-D Mesh Models Using Hierarchical Partitioning Sung-Yeol Kim Department of Information and Communications Kwangju Institute of Science

More information

Variational Shape Approximation

Variational Shape Approximation Movie, anyone? Variational Shape Approximation Scanned vs. Concise Geometry Abundant repositories of surface meshes with subtle details exquisitely sampled but so as all the less interesting parts From

More information

K-structure, Separating Chain, Gap Tree, and Layered DAG

K-structure, Separating Chain, Gap Tree, and Layered DAG K-structure, Separating Chain, Gap Tree, and Layered DAG Presented by Dave Tahmoush Overview Improvement on Gap Tree and K-structure Faster point location Encompasses Separating Chain Better storage Designed

More information

Surface Simplification Using Quadric Error Metrics

Surface Simplification Using Quadric Error Metrics Surface Simplification Using Quadric Error Metrics Michael Garland Paul S. Heckbert Carnegie Mellon University Abstract Many applications in computer graphics require complex, highly detailed models. However,

More information

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight Three-Dimensional Object Reconstruction from Layered Spatial Data Michael Dangl and Robert Sablatnig Vienna University of Technology, Institute of Computer Aided Automation, Pattern Recognition and Image

More information

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Anti-aliased and accelerated ray tracing University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Reading Required: Watt, sections 12.5.3 12.5.4, 14.7 Further reading: A. Glassner.

More information

Saab. Kyle McDonald. Polygon Meshes

Saab. Kyle McDonald. Polygon Meshes Saab Kyle McDonald Polygon Meshes Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 What is a polygon mesh? Like a point cloud, it is a discrete sampling of a surface... but, it adds linear (flat)

More information

Intersection Acceleration

Intersection Acceleration Advanced Computer Graphics Intersection Acceleration Matthias Teschner Computer Science Department University of Freiburg Outline introduction bounding volume hierarchies uniform grids kd-trees octrees

More information

Rafael Jose Falcon Lins. Submitted in partial fulfillment of the requirements for the degree of Master of Computer Science

Rafael Jose Falcon Lins. Submitted in partial fulfillment of the requirements for the degree of Master of Computer Science Feature-Based Mesh Simplification With Quadric Error Metric Using A Line Simplification Algorithm by Rafael Jose Falcon Lins Submitted in partial fulfillment of the requirements for the degree of Master

More information

CSC Computer Graphics

CSC Computer Graphics // CSC. Computer Graphics Lecture Kasun@dscs.sjp.ac.lk Department of Computer Science University of Sri Jayewardanepura Polygon Filling Scan-Line Polygon Fill Algorithm Span Flood-Fill Algorithm Inside-outside

More information

Iso-surface cell search. Iso-surface Cells. Efficient Searching. Efficient search methods. Efficient iso-surface cell search. Problem statement:

Iso-surface cell search. Iso-surface Cells. Efficient Searching. Efficient search methods. Efficient iso-surface cell search. Problem statement: Iso-Contouring Advanced Issues Iso-surface cell search 1. Efficiently determining which cells to examine. 2. Using iso-contouring as a slicing mechanism 3. Iso-contouring in higher dimensions 4. Texturing

More information

Cross-Parameterization and Compatible Remeshing of 3D Models

Cross-Parameterization and Compatible Remeshing of 3D Models Cross-Parameterization and Compatible Remeshing of 3D Models Vladislav Kraevoy Alla Sheffer University of British Columbia Authors Vladislav Kraevoy Ph.D. Student Alla Sheffer Assistant Professor Outline

More information

Scalar Algorithms: Contouring

Scalar Algorithms: Contouring Scalar Algorithms: Contouring Computer Animation and Visualisation Lecture tkomura@inf.ed.ac.uk Institute for Perception, Action & Behaviour School of Informatics Contouring Scaler Data Last Lecture...

More information

Grafica 3D per i beni culturali: MeshLab features. Lezione 7: 22 Marzo 2013

Grafica 3D per i beni culturali: MeshLab features. Lezione 7: 22 Marzo 2013 Grafica 3D per i beni culturali: MeshLab features Lezione 7: 22 Marzo 2013 0 Cleaning Cleaning Cleaning a mesh is an operation which is often necessary before, during and after the processing of a mesh

More information

EECS 487: Interactive Computer Graphics

EECS 487: Interactive Computer Graphics EECS 487: Interactive Computer Graphics Lecture 36: Polygonal mesh simplification The Modeling-Rendering Paradigm Modeler: Modeling complex shapes no equation for a chair, face, etc. instead, achieve complexity

More information

Manipulating the Boundary Mesh

Manipulating the Boundary Mesh Chapter 7. Manipulating the Boundary Mesh The first step in producing an unstructured grid is to define the shape of the domain boundaries. Using a preprocessor (GAMBIT or a third-party CAD package) you

More information

: Mesh Processing. Chapter 8

: Mesh Processing. Chapter 8 600.657: Mesh Processing Chapter 8 Handling Mesh Degeneracies [Botsch et al., Polygon Mesh Processing] Class of Approaches Geometric: Preserve the mesh where it s good. Volumetric: Can guarantee no self-intersection.

More information

Fast marching methods

Fast marching methods 1 Fast marching methods Lecture 3 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Metric discretization 2 Approach I:

More information

Parameterization with Manifolds

Parameterization with Manifolds Parameterization with Manifolds Manifold What they are Why they re difficult to use When a mesh isn t good enough Problem areas besides surface models A simple manifold Sphere, torus, plane, etc. Using

More information

CS 283: Assignment 1 Geometric Modeling and Mesh Simplification

CS 283: Assignment 1 Geometric Modeling and Mesh Simplification CS 283: Assignment 1 Geometric Modeling and Mesh Simplification Ravi Ramamoorthi 1 Introduction This assignment is about triangle meshes as a tool for geometric modeling. As the complexity of models becomes

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Semiautomatic Simplification

Semiautomatic Simplification Semiautomatic Simplification ABSTRACT Gong Li gongli@cs.ualberta.ca Dept. Computing Science Univ. Alberta Edmonton, Alberta CANADA T6G 2H1 We present semisimp, a tool for semiautomatic simplification of

More information

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON S RBE 550 Collision Detection Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Euler Angle RBE

More information

Fast and accurate Hausdorff distance calculation between meshes

Fast and accurate Hausdorff distance calculation between meshes Fast and accurate Hausdorff distance calculation between meshes Michael Guthe guthe@cs.uni-bonn.de Pavel Borodin University of Bonn Institute of Computer Science II Römerstraße 164 D-53117, Bonn, Germany

More information

Meshes: Catmull-Clark Subdivision and Simplification

Meshes: Catmull-Clark Subdivision and Simplification Meshes: Catmull-Clark Subdivision and Simplification Part 1: What I did CS 838, Project 1 Eric Aderhold My main goal with this project was to learn about and better understand three-dimensional mesh surfaces.

More information

Tutorial 9 - Fast Marching Methods

Tutorial 9 - Fast Marching Methods 236861 Numerical Geometry of Images Tutorial 9 Fast Marching Methods c 2012 Why measure distances? Shape analysis Image analysis Registration Morphology Navigation And many other uses.. There are many

More information

Multiresolution model generation of. texture-geometry for the real-time rendering 1

Multiresolution model generation of. texture-geometry for the real-time rendering 1 Multiresolution model generation of texture-geometry for the real-time rendering 1 Contents Contents...i Figures...iv 1. Introduction...1 1.1. Real-time rendering for complex object...1 1.2. Background...3

More information

Parallel Physically Based Path-tracing and Shading Part 3 of 2. CIS565 Fall 2012 University of Pennsylvania by Yining Karl Li

Parallel Physically Based Path-tracing and Shading Part 3 of 2. CIS565 Fall 2012 University of Pennsylvania by Yining Karl Li Parallel Physically Based Path-tracing and Shading Part 3 of 2 CIS565 Fall 202 University of Pennsylvania by Yining Karl Li Jim Scott 2009 Spatial cceleration Structures: KD-Trees *Some portions of these

More information

Multi-level Partition of Unity Implicits

Multi-level Partition of Unity Implicits Multi-level Partition of Unity Implicits Diego Salume October 23 rd, 2013 Author: Ohtake, et.al. Overview Goal: Use multi-level partition of unity (MPU) implicit surface to construct surface models. 3

More information

Lecture notes: Object modeling

Lecture notes: Object modeling Lecture notes: Object modeling One of the classic problems in computer vision is to construct a model of an object from an image of the object. An object model has the following general principles: Compact

More information

Multiresolution Meshes. COS 526 Tom Funkhouser, Fall 2016 Slides by Guskov, Praun, Sweldens, etc.

Multiresolution Meshes. COS 526 Tom Funkhouser, Fall 2016 Slides by Guskov, Praun, Sweldens, etc. Multiresolution Meshes COS 526 Tom Funkhouser, Fall 2016 Slides by Guskov, Praun, Sweldens, etc. Motivation Huge meshes are difficult to render store transmit edit Multiresolution Meshes! [Guskov et al.]

More information

Moving Least Squares Multiresolution Surface Approximation

Moving Least Squares Multiresolution Surface Approximation Moving Least Squares Multiresolution Surface Approximation BORIS MEDEROS LUIZ VELHO LUIZ HENRIQUE DE FIGUEIREDO IMPA Instituto de Matemática Pura e Aplicada Estrada Dona Castorina 110, 22461-320 Rio de

More information

ITK Mesh Simplification using Error Quadrics and Directed Edges

ITK Mesh Simplification using Error Quadrics and Directed Edges GRAZ UNIVERSITY OF TECHNOLOGY INSTITUTE FOR COMPUTER GRAPHICS AND VISION ITK Mesh Simplification using Error Quadrics and Directed Edges Bachelor s Thesis Markus Pröll proell@student.tugraz.at Graz, September

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

5.2 Surface Registration

5.2 Surface Registration Spring 2018 CSCI 621: Digital Geometry Processing 5.2 Surface Registration Hao Li http://cs621.hao-li.com 1 Acknowledgement Images and Slides are courtesy of Prof. Szymon Rusinkiewicz, Princeton University

More information

A General Simplification Algorithm

A General Simplification Algorithm A General Simplification Algorithm Boštjan Pivec, Vid Domiter Abstract In this article a new general algorithm for triangular mesh simplification is proposed. The algorithm extends Krivograd's work from

More information

improving raytracing speed

improving raytracing speed ray tracing II computer graphics ray tracing II 2006 fabio pellacini 1 improving raytracing speed computer graphics ray tracing II 2006 fabio pellacini 2 raytracing computational complexity ray-scene intersection

More information

Convex Hulls (3D) O Rourke, Chapter 4

Convex Hulls (3D) O Rourke, Chapter 4 Convex Hulls (3D) O Rourke, Chapter 4 Outline Polyhedra Polytopes Euler Characteristic (Oriented) Mesh Representation Polyhedra Definition: A polyhedron is a solid region in 3D space whose boundary is

More information

CS133 Computational Geometry

CS133 Computational Geometry CS133 Computational Geometry Voronoi Diagram Delaunay Triangulation 5/17/2018 1 Nearest Neighbor Problem Given a set of points P and a query point q, find the closest point p P to q p, r P, dist p, q dist(r,

More information