3D Modeling techniques

Size: px
Start display at page:

Download "3D Modeling techniques"

Transcription

1 3D Modeling techniques 0. Reconstruction From real data (not covered) 1. Procedural modeling Automatic modeling of a self-similar objects or scenes 2. Interactive modeling Provide tools to computer artists

2 Shape modeling: 2 viewpoints Modeling technique Shape representation Reconstruction of real objects Procedural modeling Interactive modeling Surface representation (B-Rep) Volume representation meshes parametric surfaces (splines) voxels implicit surfaces 2

3 Interactive Modeling Goal: enable artists to create shapes as easily as in real Quickly define a rough shape Refine it through deformations Assemble different parts Advantages of virtual design Store, undo/redo, cut, copy/paste, refine, deform, edit at any scale 3

4 Interactive Modeling Industrial software Maya, 3DSmax, Blender, Autocad, Catia Years of training Complex interfaces Need to understand DoF (splines, NURBS, subdivision surfaces ) Little creation through gesture: sometimes spoils creativity! 4

5 Interactive Modeling Practice in the industry Computers are not much used for conceptual design! [ Geri s game] Grand challenge (Rob Cook scientific director Pixar ) Make tools as transparent to the artists, as the special effects were made transparent to the general public 5

6 Interactive modeling Good shape representation? 1. Easily create smooth shapes 2. Real-time display after each interaction 3. No restriction on the created shape Geometry: holes, branches, details Topology: any genius, allow topological changes 4. Avoid unnecessary degrees of freedom Ex: closed objects: volumes vs. surfaces 5. Allow long modeling sessions Complexity function of shape, not of user gestures! 6. Local & global, constant volume deformations 6

7 Main shape representations Boundary representations (surfaces) Meshes (discrete surfaces) Splines, NURBS (parametric surfaces) Subdivision & multi-resolution surfaces Volumetric representations Voxels (discrete volumes) CSG (Constructive Solid Geometry) Implicit surfaces (smooth volumes) 7

8 Boundary representations Meshes Explicit enumeration of faces Many required to be smooth! Smooth deformation??? Smooth surfaces Compact representation Will remain smooth After zooming After any deformation! Converted into faces for rendering Better adapted to interactive design 8

9 Parametric curves and surfaces Defined by a parametric equation Curve: C(u) Surface: S(u,v) u Advantages Easy to compute points v Easy to discretize Parametrization u 9

10 Splines curves Most important models Interpolation P 1 P 2 Hermite curves C 1, cannot be local if C 2 Cardinal spline (Catmull Rom) P 3 Approximation Bézier curves Uniform, cubic B-spline Generalization to NURBS P 1 P 2 P 3 10

11 11 Cubic splines: matrix equation P 1 P 2 P 3 P 4 P 4 P 2 P 3 P 1 Q i (u) = (u 3 u 2 u 1) M spline [P i-1 P i P i+1 P i+2 ] t Cardinal spline B-spline M Catmull M Bspline

12 Splines surfaces «Tensor product»: product of spline curves in u and v Q i,j (u, v) = (u 3 u 2 u 1) M [P i,j ] M t (v 3 v 2 v 1) Exercice Order of smoothness of the surface? Locality of deformations? How to convert spline surfaces into meshes? Historic example «Utah teapot» 12

13 Interactive modeling with splines Make it intuitive? Inspire from real shape design! Iterative shape design 1. Create simple shapes ( primitives ) 2. Deform them locally or globally 3. Assemble them Iterate! 13

14 Step 1: Creating primitives Difficult to specify 3D data with a mouse! Idea: create shapes mostly from 2D input 1. Surfaces of revolution Rotation of a planar profile around an axis Mesh: grid of control points Exercise: define the control points required to generate this shape. Is your surface C1 everywhere? How can you ensure this? 14

15 Step 1: Creating primitives 2. Lofting Data: a planar section, an axis Translated instances of the section Generalization Sweeping gesture Exercise: how would you create this C0 only cross section? 15

16 Step 1: Creating primitives 3. Extrusion (also called Free-form Sweeping ) Data: A planar cross section A skeleton (3D curve) A planar profile The section is swept along the skeleton The profile is used as a scaling factor 16

17 Step 1: Creating primitives 3. Extrusion Place instances of the section regularly along the skeleton? Does not work properly! 17

18 Step 1: Creating primitives Create offsets of the skeleton Curves at fixed distance from skeleton, fixed angle / normal Adapt the offset distance using the profile d B N 18

19 Step 1: Creating primitives Issue : Offsets are NOT translated curves Translated copies of the skeleton Offsets Note: offsets of splines curves are NOT spline curves In practice, approximated using the same number of control points! 19

20 Step 2: Deform locally or Globally OK for local deformation, but is locality controllable? Exercise: If we add the yellow control point, will deformation be the same when pulling the red point? 20

21 Step 2: Deform locally or Globally Answer: controlling the range of deformation is difficult A full line of control points needs to be added. Consequences Difficult to get details where needed! (example: a face) Large scale editing is difficult once details have been added 21

22 Step 2: Deform locally or Globally Hierarchical Spline Surfaces [Forsey, Bartels SIGGRAPH 88] Tree-structure of control-point grids Local coordinated for points : P = G + O, G = S i (u 0,v 0 ) closest point on parent surface O offset vector, expressed in the local frame of the parent 22

23 Step 2: Deform locally or Globally Hierarchical Spline Surfaces [Forsey, Bartels SIGGRAPH 88] Compact: 24 editable control points instead of > 1000 Large scale deformations while keeping details! 23

24 Step 3: Assembly Fitting 2 surfaces : same number of control points? 24

25 Step 3: Assembly Closed surfaces can be modeled Generalized cylinder by duplicating rows of control points Closed extremity (with a degenerated spline surface) But, can we blend shapes together?? 25

26 Step 3: Assembly? Branches? 5 sided patch? joint between 5 patches? 26

27 Advanced bibliography Generalized B-spline Surfaces of Arbitrary Topology [Charles Loop & Tony DeRose, SIGGRAPH 1990] n-sided generalization of Bézier surfaces: Spatches 27

28 Subdivision Surfaces Topology defined by the control polygon Progressive refinement (interpolation or approximation) Butterfly Loop Catmull-Clark 28

29 Subdivision Curves & Surfaces Start with a control polygon or mesh progressive refinement rule (similar to B-spline) Smooth? use variance reduction! corner cutting Chaikin 29

30 How Chaikin s algorithm works? Q i = ¾ P i + ¼ P i+1 R i = ¼ P i + ¾ P i+1 30

31 Subdivision Surfaces Benefits Arbitrary topology & geometry (branching) Approximation at several levels of detail (LODs) Drawback: No parameterization, some unexpected results Loop 31

32 Advanced bibliography Subdivision Surfaces in Character Animation [Tony DeRose, Michael Kass, Tien Truong, Siggraph 98] Keeping some sharp creases where needed 32

Physically-Based Modeling and Animation. University of Missouri at Columbia

Physically-Based Modeling and Animation. University of Missouri at Columbia Overview of Geometric Modeling Overview 3D Shape Primitives: Points Vertices. Curves Lines, polylines, curves. Surfaces Triangle meshes, splines, subdivision surfaces, implicit surfaces, particles. Solids

More information

Shape modeling Modeling technique Shape representation! 3D Graphics Modeling Techniques

Shape modeling Modeling technique Shape representation! 3D Graphics   Modeling Techniques D Graphics http://chamilo2.grenet.fr/inp/courses/ensimag4mmgd6/ Shape Modeling technique Shape representation! Part : Basic techniques. Projective rendering pipeline 2. Procedural Modeling techniques Shape

More information

Curves and Surfaces 2

Curves and Surfaces 2 Curves and Surfaces 2 Computer Graphics Lecture 17 Taku Komura Today More about Bezier and Bsplines de Casteljau s algorithm BSpline : General form de Boor s algorithm Knot insertion NURBS Subdivision

More information

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2013 3D Object Representations Raw data Point cloud Range image Polygon soup Surfaces Mesh Subdivision Parametric Implicit Solids Voxels

More information

3D Modeling Parametric Curves & Surfaces

3D Modeling Parametric Curves & Surfaces 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2012 3D Object Representations Raw data Point cloud Range image Polygon soup Solids Voxels BSP tree CSG Sweep Surfaces Mesh Subdivision

More information

Subdivision Surfaces

Subdivision Surfaces Subdivision Surfaces 1 Geometric Modeling Sometimes need more than polygon meshes Smooth surfaces Traditional geometric modeling used NURBS Non uniform rational B-Spline Demo 2 Problems with NURBS A single

More information

Subdivision Surfaces

Subdivision Surfaces Subdivision Surfaces 1 Geometric Modeling Sometimes need more than polygon meshes Smooth surfaces Traditional geometric modeling used NURBS Non uniform rational B-Spline Demo 2 Problems with NURBS A single

More information

Introduction to the Mathematical Concepts of CATIA V5

Introduction to the Mathematical Concepts of CATIA V5 CATIA V5 Training Foils Introduction to the Mathematical Concepts of CATIA V5 Version 5 Release 19 January 2009 EDU_CAT_EN_MTH_FI_V5R19 1 About this course Objectives of the course Upon completion of this

More information

Subdivision Surfaces. Homework 1: Last Time? Today. Bilinear Patch. Tensor Product. Spline Surfaces / Patches

Subdivision Surfaces. Homework 1: Last Time? Today. Bilinear Patch. Tensor Product. Spline Surfaces / Patches Homework 1: Questions/Comments? Subdivision Surfaces Last Time? Curves & Surfaces Continuity Definitions Spline Surfaces / Patches Tensor Product Bilinear Patches Bezier Patches Trimming Curves C0, G1,

More information

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple Curves and surfaces Escaping Flatland Until now we have worked with flat entities such as lines and flat polygons Fit well with graphics hardware Mathematically simple But the world is not composed of

More information

Subdivision curves and surfaces. Brian Curless CSE 557 Fall 2015

Subdivision curves and surfaces. Brian Curless CSE 557 Fall 2015 Subdivision curves and surfaces Brian Curless CSE 557 Fall 2015 1 Reading Recommended: Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications, 1996, section 6.1-6.3, 10.2,

More information

CS354 Computer Graphics Surface Representation IV. Qixing Huang March 7th 2018

CS354 Computer Graphics Surface Representation IV. Qixing Huang March 7th 2018 CS354 Computer Graphics Surface Representation IV Qixing Huang March 7th 2018 Today s Topic Subdivision surfaces Implicit surface representation Subdivision Surfaces Building complex models We can extend

More information

Free-Form Deformation and Other Deformation Techniques

Free-Form Deformation and Other Deformation Techniques Free-Form Deformation and Other Deformation Techniques Deformation Deformation Basic Definition Deformation: A transformation/mapping of the positions of every particle in the original object to those

More information

Subdivision Curves and Surfaces

Subdivision Curves and Surfaces Subdivision Surfaces or How to Generate a Smooth Mesh?? Subdivision Curves and Surfaces Subdivision given polyline(2d)/mesh(3d) recursively modify & add vertices to achieve smooth curve/surface Each iteration

More information

Subdivision Surfaces

Subdivision Surfaces Subdivision Surfaces CS 4620 Lecture 31 Cornell CS4620 Fall 2015 1 Administration A5 due on Friday Dreamworks visiting Thu/Fri Rest of class Surfaces, Animation, Rendering w/ prior instructor Steve Marschner

More information

Surface and Solid Geometry. 3D Polygons

Surface and Solid Geometry. 3D Polygons Surface and Solid Geometry D olygons Once we know our plane equation: Ax + By + Cz + D = 0, we still need to manage the truncation which leads to the polygon itself Functionally, we will need to do this

More information

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo Geometric Modeling Bing-Yu Chen National Taiwan University The University of Tokyo What are 3D Objects? 3D Object Representations What are 3D objects? The Graphics Process 3D Object Representations Raw

More information

Subdivision Surfaces. Homework 1: Questions on Homework? Last Time? Today. Tensor Product. What s an illegal edge collapse?

Subdivision Surfaces. Homework 1: Questions on Homework? Last Time? Today. Tensor Product. What s an illegal edge collapse? Homework 1: Questions/Comments? Subdivision Surfaces Questions on Homework? Last Time? What s an illegal edge collapse? Curves & Surfaces Continuity Definitions 2 3 C0, G1, C1, C 1 a b 4 Interpolation

More information

Images from 3D Creative Magazine. 3D Modelling Systems

Images from 3D Creative Magazine. 3D Modelling Systems Images from 3D Creative Magazine 3D Modelling Systems Contents Reference & Accuracy 3D Primitives Transforms Move (Translate) Rotate Scale Mirror Align 3D Booleans Deforms Bend Taper Skew Twist Squash

More information

Subdivision Surfaces. Homework 1: Questions/Comments?

Subdivision Surfaces. Homework 1: Questions/Comments? Subdivision Surfaces Homework 1: Questions/Comments? 1 Questions on Homework? What s an illegal edge collapse? 1 2 3 a b 4 7 To be legal, the ring of vertex neighbors must be unique (have no duplicates)!

More information

Spline Surfaces, Subdivision Surfaces

Spline Surfaces, Subdivision Surfaces CS-C3100 Computer Graphics Spline Surfaces, Subdivision Surfaces vectorportal.com Trivia Assignment 1 due this Sunday! Feedback on the starter code, difficulty, etc., much appreciated Put in your README

More information

CS354 Computer Graphics Surface Representation III. Qixing Huang March 5th 2018

CS354 Computer Graphics Surface Representation III. Qixing Huang March 5th 2018 CS354 Computer Graphics Surface Representation III Qixing Huang March 5th 2018 Today s Topic Bspline curve operations (Brief) Knot Insertion/Deletion Subdivision (Focus) Subdivision curves Subdivision

More information

3D Object Representation. Michael Kazhdan ( /657)

3D Object Representation. Michael Kazhdan ( /657) 3D Object Representation Michael Kazhdan (601.457/657) 3D Objects How can this object be represented in a computer? 3D Objects This one? H&B Figure 10.46 3D Objects This one? H&B Figure 9.9 3D Objects

More information

Object representation

Object representation Object representation Geri s Game Pixar 1997 Subdivision surfaces Polhemus 3d scan Over 700 controls 2 Computer Graphics Quick test #1 Describe the picture Graphical systems, visualization and multimedia

More information

Subdivision overview

Subdivision overview Subdivision overview CS4620 Lecture 16 2018 Steve Marschner 1 Introduction: corner cutting Piecewise linear curve too jagged for you? Lop off the corners! results in a curve with twice as many corners

More information

Subdivision Curves and Surfaces: An Introduction

Subdivision Curves and Surfaces: An Introduction Subdivision Curves and Surfaces: An Introduction Corner Cutting De Casteljau s and de Boor s algorithms all use corner-cutting procedures. Corner cutting can be local or non-local. A cut is local if it

More information

Curve Corner Cutting

Curve Corner Cutting Subdivision ision Techniqueses Spring 2010 1 Curve Corner Cutting Take two points on different edges of a polygon and join them with a line segment. Then, use this line segment to replace all vertices

More information

From curves to surfaces. Parametric surfaces and solid modeling. Extrusions. Surfaces of revolution. So far have discussed spline curves in 2D

From curves to surfaces. Parametric surfaces and solid modeling. Extrusions. Surfaces of revolution. So far have discussed spline curves in 2D From curves to surfaces Parametric surfaces and solid modeling CS 465 Lecture 12 2007 Doug James & Steve Marschner 1 So far have discussed spline curves in 2D it turns out that this already provides of

More information

B-spline Curves. Smoother than other curve forms

B-spline Curves. Smoother than other curve forms Curves and Surfaces B-spline Curves These curves are approximating rather than interpolating curves. The curves come close to, but may not actually pass through, the control points. Usually used as multiple,

More information

Chapter 4-3D Modeling

Chapter 4-3D Modeling Chapter 4-3D Modeling Polygon Meshes Geometric Primitives Interpolation Curves Levels Of Detail (LOD) Constructive Solid Geometry (CSG) Extrusion & Rotation Volume- and Point-based Graphics 1 The 3D rendering

More information

Curves & Surfaces. Last Time? Progressive Meshes. Selective Refinement. Adjacency Data Structures. Mesh Simplification. Mesh Simplification

Curves & Surfaces. Last Time? Progressive Meshes. Selective Refinement. Adjacency Data Structures. Mesh Simplification. Mesh Simplification Last Time? Adjacency Data Structures Curves & Surfaces Geometric & topologic information Dynamic allocation Efficiency of access Mesh Simplification edge collapse/vertex split geomorphs progressive transmission

More information

Geometric Modeling Systems

Geometric Modeling Systems Geometric Modeling Systems Wireframe Modeling use lines/curves and points for 2D or 3D largely replaced by surface and solid models Surface Modeling wireframe information plus surface definitions supports

More information

MODELING AND HIERARCHY

MODELING AND HIERARCHY MODELING AND HIERARCHY Introduction Models are abstractions of the world both of the real world in which we live and of virtual worlds that we create with computers. We are all familiar with mathematical

More information

Overview of 3D Object Representations

Overview of 3D Object Representations Overview of 3D Object Representations Thomas Funkhouser Princeton University C0S 426, Fall 2000 Course Syllabus I. Image processing II. Rendering III. Modeling IV. Animation Image Processing (Rusty Coleman,

More information

Computer Graphics 1. Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2011

Computer Graphics 1. Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2011 Computer Graphics 1 Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling 1 The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons in

More information

Computergrafik. Matthias Zwicker. Herbst 2010

Computergrafik. Matthias Zwicker. Herbst 2010 Computergrafik Matthias Zwicker Universität Bern Herbst 2010 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling Piecewise Bézier curves Each segment

More information

Introduction to Geometry. Computer Graphics CMU /15-662

Introduction to Geometry. Computer Graphics CMU /15-662 Introduction to Geometry Computer Graphics CMU 15-462/15-662 Assignment 2: 3D Modeling You will be able to create your own models (This mesh was created in Scotty3D in about 5 minutes... you can do much

More information

3D Modeling I. CG08b Lior Shapira Lecture 8. Based on: Thomas Funkhouser,Princeton University. Thomas Funkhouser 2000

3D Modeling I. CG08b Lior Shapira Lecture 8. Based on: Thomas Funkhouser,Princeton University. Thomas Funkhouser 2000 3D Modeling I CG08b Lior Shapira Lecture 8 Based on: Thomas Funkhouser,Princeton University Course Syllabus I. Image processing II. Rendering III. Modeling IV. Animation Image Processing (Rusty Coleman,

More information

Shape Modeling with Point-Sampled Geometry

Shape Modeling with Point-Sampled Geometry Shape Modeling with Point-Sampled Geometry Mark Pauly Richard Keiser Leif Kobbelt Markus Gross ETH Zürich ETH Zürich RWTH Aachen ETH Zürich Motivation Surface representations Explicit surfaces (B-reps)

More information

L1 - Introduction. Contents. Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming

L1 - Introduction. Contents. Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming L1 - Introduction Contents Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming 1 Definitions Computer-Aided Design (CAD) The technology concerned with the

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

Subdivision Surfaces. Course Syllabus. Course Syllabus. Modeling. Equivalence of Representations. 3D Object Representations

Subdivision Surfaces. Course Syllabus. Course Syllabus. Modeling. Equivalence of Representations. 3D Object Representations Subdivision Surfaces Adam Finkelstein Princeton University COS 426, Spring 2003 Course Syllabus I. Image processing II. Rendering III. Modeling IV. Animation Image Processing (Rusty Coleman, CS426, Fall99)

More information

Curves and Surfaces Computer Graphics I Lecture 10

Curves and Surfaces Computer Graphics I Lecture 10 15-462 Computer Graphics I Lecture 10 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] September 30, 2003 Doug James Carnegie

More information

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016 Computergrafik Matthias Zwicker Universität Bern Herbst 2016 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling 2 Piecewise Bézier curves Each

More information

Subdivision surfaces. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Subdivision surfaces. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Subdivision surfaces University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Reading Recommended: Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications,

More information

1. Introduction. 2. Parametrization of General CCSSs. 3. One-Piece through Interpolation. 4. One-Piece through Boolean Operations

1. Introduction. 2. Parametrization of General CCSSs. 3. One-Piece through Interpolation. 4. One-Piece through Boolean Operations Subdivision Surface based One-Piece Representation Shuhua Lai Department of Computer Science, University of Kentucky Outline. Introduction. Parametrization of General CCSSs 3. One-Piece through Interpolation

More information

Reading. Parametric surfaces. Surfaces of revolution. Mathematical surface representations. Required:

Reading. Parametric surfaces. Surfaces of revolution. Mathematical surface representations. Required: Reading Required: Angel readings for Parametric Curves lecture, with emphasis on 11.1.2, 11.1.3, 11.1.5, 11.6.2, 11.7.3, 11.9.4. Parametric surfaces Optional Bartels, Beatty, and Barsky. An Introduction

More information

GL9: Engineering Communications. GL9: CAD techniques. Curves Surfaces Solids Techniques

GL9: Engineering Communications. GL9: CAD techniques. Curves Surfaces Solids Techniques 436-105 Engineering Communications GL9:1 GL9: CAD techniques Curves Surfaces Solids Techniques Parametric curves GL9:2 x = a 1 + b 1 u + c 1 u 2 + d 1 u 3 + y = a 2 + b 2 u + c 2 u 2 + d 2 u 3 + z = a

More information

Modeling 3D Objects: Part 2

Modeling 3D Objects: Part 2 Modeling 3D Objects: Part 2 Patches, NURBS, Solids Modeling, Spatial Subdivisioning, and Implicit Functions 3D Computer Graphics by Alan Watt Third Edition, Pearson Education Limited, 2000 General Modeling

More information

Curves & Surfaces. MIT EECS 6.837, Durand and Cutler

Curves & Surfaces. MIT EECS 6.837, Durand and Cutler Curves & Surfaces Schedule Sunday October 5 th, * 3-5 PM * Review Session for Quiz 1 Extra Office Hours on Monday Tuesday October 7 th : Quiz 1: In class 1 hand-written 8.5x11 sheet of notes allowed Wednesday

More information

Information Coding / Computer Graphics, ISY, LiTH. Splines

Information Coding / Computer Graphics, ISY, LiTH. Splines 28(69) Splines Originally a drafting tool to create a smooth curve In computer graphics: a curve built from sections, each described by a 2nd or 3rd degree polynomial. Very common in non-real-time graphics,

More information

Advanced Computer Graphics

Advanced Computer Graphics Advanced Computer Graphics Lecture 2: Modeling (1): Polygon Meshes Bernhard Jung TU-BAF, Summer 2007 Overview Computer Graphics Icon: Utah teapot Polygon Meshes Subdivision Polygon Mesh Optimization high-level:

More information

Surface Modeling. Polygon Tables. Types: Generating models: Polygon Surfaces. Polygon surfaces Curved surfaces Volumes. Interactive Procedural

Surface Modeling. Polygon Tables. Types: Generating models: Polygon Surfaces. Polygon surfaces Curved surfaces Volumes. Interactive Procedural Surface Modeling Types: Polygon surfaces Curved surfaces Volumes Generating models: Interactive Procedural Polygon Tables We specify a polygon surface with a set of vertex coordinates and associated attribute

More information

Design by Subdivision

Design by Subdivision Bridges 2010: Mathematics, Music, Art, Architecture, Culture Design by Subdivision Michael Hansmeyer Department for CAAD - Institute for Technology in Architecture Swiss Federal Institute of Technology

More information

Recursive Subdivision Surfaces for Geometric Modeling

Recursive Subdivision Surfaces for Geometric Modeling Recursive Subdivision Surfaces for Geometric Modeling Weiyin Ma City University of Hong Kong, Dept. of Manufacturing Engineering & Engineering Management Ahmad Nasri American University of Beirut, Dept.

More information

Overview of 3D Object Representations

Overview of 3D Object Representations Overview of 3D Object Representations Thomas Funkhouser Princeton University C0S 597D, Fall 2003 3D Object Representations What makes a good 3D object representation? Stanford and Hearn & Baker 1 3D Object

More information

INF3320 Computer Graphics and Discrete Geometry

INF3320 Computer Graphics and Discrete Geometry INF3320 Computer Graphics and Discrete Geometry More smooth Curves and Surfaces Christopher Dyken, Michael Floater and Martin Reimers 10.11.2010 Page 1 More smooth Curves and Surfaces Akenine-Möller, Haines

More information

Sculpting 3D Models. Glossary

Sculpting 3D Models. Glossary A Array An array clones copies of an object in a pattern, such as in rows and columns, or in a circle. Each object in an array can be transformed individually. Array Flyout Array flyout is available in

More information

Implicit Surfaces & Solid Representations COS 426

Implicit Surfaces & Solid Representations COS 426 Implicit Surfaces & Solid Representations COS 426 3D Object Representations Desirable properties of an object representation Easy to acquire Accurate Concise Intuitive editing Efficient editing Efficient

More information

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a coordinate system and then the measuring of the point with

More information

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li.

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li. Fall 2014 CSCI 420: Computer Graphics 4.2 Splines Hao Li http://cs420.hao-li.com 1 Roller coaster Next programming assignment involves creating a 3D roller coaster animation We must model the 3D curve

More information

CS-184: Computer Graphics. Today

CS-184: Computer Graphics. Today CS-84: Computer Graphics Lecture #5: Curves and Surfaces Prof. James O Brien University of California, Berkeley V25F-5-. Today General curve and surface representations Splines and other polynomial bases

More information

ERC Expressive Seminar

ERC Expressive Seminar ERC Expressive Seminar March 7th - 2013 Models and Intuitive Modeling Loïc Barthe VORTEX group IRIT Université de Toulouse Plan Context and introduction Intuitive modeling Modeling with meshes only Other

More information

Chapter 9 3D Modeling

Chapter 9 3D Modeling Chapter 9 3D Modeling Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 3D Modeling Snapshot Since Mid 1980 s become common place in industry Software Types Wireframe

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 6. Mesh Simplification Problems High resolution meshes becoming increasingly available 3D active scanners Computer

More information

CS 352: Computer Graphics. Hierarchical Graphics, Modeling, And Animation

CS 352: Computer Graphics. Hierarchical Graphics, Modeling, And Animation CS 352: Computer Graphics Hierarchical Graphics, Modeling, And Animation Chapter 9-2 Overview Modeling Animation Data structures for interactive graphics CSG-tree BSP-tree Quadtrees and Octrees Visibility

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to Computer Graphics 2016 Spring National Cheng Kung University Instructors: Min-Chun Hu 胡敏君 Shih-Chin Weng 翁士欽 ( 西基電腦動畫 ) Data Representation Curves and Surfaces Limitations of Polygons Inherently

More information

CS-184: Computer Graphics

CS-184: Computer Graphics CS-184: Computer Graphics Lecture #12: Curves and Surfaces Prof. James O Brien University of California, Berkeley V2007-F-12-1.0 Today General curve and surface representations Splines and other polynomial

More information

Approximate Catmull-Clark Patches. Scott Schaefer Charles Loop

Approximate Catmull-Clark Patches. Scott Schaefer Charles Loop Approximate Catmull-Clark Patches Scott Schaefer Charles Loop Approximate Catmull-Clark Patches Scott Schaefer Charles Loop Catmull-Clark Surface ACC-Patches Polygon Models Prevalent in game industry Very

More information

Mathematical Tools in Computer Graphics with C# Implementations Table of Contents

Mathematical Tools in Computer Graphics with C# Implementations Table of Contents Mathematical Tools in Computer Graphics with C# Implementations by Hardy Alexandre, Willi-Hans Steeb, World Scientific Publishing Company, Incorporated, 2008 Table of Contents List of Figures Notation

More information

Shape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include

Shape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include Shape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include motion, behavior Graphics is a form of simulation and

More information

Character Modeling COPYRIGHTED MATERIAL

Character Modeling COPYRIGHTED MATERIAL 38 Character Modeling p a r t _ 1 COPYRIGHTED MATERIAL 39 Character Modeling Character Modeling 40 1Subdivision & Polygon Modeling Many of Maya's features have seen great improvements in recent updates

More information

Free-form deformation (FFD)

Free-form deformation (FFD) T.D. DeRose, M. Meyer, Harmonic Coordinates. Pixar Technical Memo #06-02 Free-form deformation (FFD) Advanced Computer Animation Techniques Aug-Dec 2014 cesteves@cimat.mx Free-form deformation (FFD) 2d

More information

Advanced Geometric Modeling CPSC789

Advanced Geometric Modeling CPSC789 Advanced Geometric Modeling CPSC789 Fall 2004 General information about the course CPSC 789 Advanced Geometric Modeling Fall 2004 Lecture Time and Place ENF 334 TR 9:30 10:45 Instructor : Office: MS 618

More information

Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL

Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL International Edition Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL Sixth Edition Edward Angel Dave Shreiner Interactive Computer Graphics: A Top-Down Approach with Shader-Based

More information

G 2 Interpolation for Polar Surfaces

G 2 Interpolation for Polar Surfaces 1 G 2 Interpolation for Polar Surfaces Jianzhong Wang 1, Fuhua Cheng 2,3 1 University of Kentucky, jwangf@uky.edu 2 University of Kentucky, cheng@cs.uky.edu 3 National Tsinhua University ABSTRACT In this

More information

Honeycomb Subdivision

Honeycomb Subdivision Honeycomb Subdivision Ergun Akleman and Vinod Srinivasan Visualization Sciences Program, Texas A&M University Abstract In this paper, we introduce a new subdivision scheme which we call honeycomb subdivision.

More information

Local Modification of Subdivision Surfaces Based on Curved Mesh

Local Modification of Subdivision Surfaces Based on Curved Mesh Local Modification of Subdivision Surfaces Based on Curved Mesh Yoshimasa Tokuyama Tokyo Polytechnic University tokuyama@image.t-kougei.ac.jp Kouichi Konno Iwate University konno@cis.iwate-u.ac.jp Junji

More information

Solid Modeling. Ron Goldman Department of Computer Science Rice University

Solid Modeling. Ron Goldman Department of Computer Science Rice University Solid Modeling Ron Goldman Department of Computer Science Rice University Solids Definition 1. A model which has a well defined inside and outside. 2. For each point, we can in principle determine whether

More information

2D Spline Curves. CS 4620 Lecture 13

2D Spline Curves. CS 4620 Lecture 13 2D Spline Curves CS 4620 Lecture 13 2008 Steve Marschner 1 Motivation: smoothness In many applications we need smooth shapes [Boeing] that is, without discontinuities So far we can make things with corners

More information

3D Modeling: Surfaces

3D Modeling: Surfaces CS 430/536 Computer Graphics I 3D Modeling: Surfaces Week 8, Lecture 16 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel

More information

INSTRUCTIONAL PLAN L( 3 ) T ( ) P ( ) Instruction Plan Details: DELHI COLLEGE OF TECHNOLOGY & MANAGEMENT(DCTM), PALWAL

INSTRUCTIONAL PLAN L( 3 ) T ( ) P ( ) Instruction Plan Details: DELHI COLLEGE OF TECHNOLOGY & MANAGEMENT(DCTM), PALWAL DELHI COLLEGE OF TECHNOLOGY & MANAGEMENT(DCTM), PALWAL INSTRUCTIONAL PLAN RECORD NO.: QF/ACD/009 Revision No.: 00 Name of Faculty: Course Title: Theory of elasticity L( 3 ) T ( ) P ( ) Department: Mechanical

More information

CHARMS: A Simple Framework for Adaptive Simulation SIGGRAPH Presented by Jose Guerra

CHARMS: A Simple Framework for Adaptive Simulation SIGGRAPH Presented by Jose Guerra CHARMS: A Simple Framework for Adaptive Simulation SIGGRAPH 2002 Eitan Grinspun Caltech Petr Krysl UCSD Peter Schröder Caltech Presented by Jose Guerra 1 Outline Background Motivation (Element vs. Basis

More information

CATIA Surface Design

CATIA Surface Design CATIA V5 Training Exercises CATIA Surface Design Version 5 Release 19 September 2008 EDU_CAT_EN_GS1_FX_V5R19 Table of Contents (1/2) Creating Wireframe Geometry: Recap Exercises 4 Creating Wireframe Geometry:

More information

Lecture 4b. Surface. Lecture 3 1

Lecture 4b. Surface. Lecture 3 1 Lecture 4b Surface Lecture 3 1 Surface More complete and less ambiguous representation than its wireframe representation Can be considered as extension to wireframe representation In finite element, surface

More information

UNIVERSITY OF CALGARY. Subdivision Surfaces. Advanced Geometric Modeling Faramarz Samavati

UNIVERSITY OF CALGARY. Subdivision Surfaces. Advanced Geometric Modeling Faramarz Samavati Subdivision Surfaces Surfaces Having arbitrary Topologies Tensor Product Surfaces Non Tensor Surfaces We can t find u-curves and v-curves in general surfaces General Subdivision Coarse mesh Subdivision

More information

Surfaces for CAGD. FSP Tutorial. FSP-Seminar, Graz, November

Surfaces for CAGD. FSP Tutorial. FSP-Seminar, Graz, November Surfaces for CAGD FSP Tutorial FSP-Seminar, Graz, November 2005 1 Tensor Product Surfaces Given: two curve schemes (Bézier curves or B splines): I: x(u) = m i=0 F i(u)b i, u [a, b], II: x(v) = n j=0 G

More information

In this course we will need a set of techniques to represent curves and surfaces in 2-d and 3-d. Some reasons for this include

In this course we will need a set of techniques to represent curves and surfaces in 2-d and 3-d. Some reasons for this include Parametric Curves and Surfaces In this course we will need a set of techniques to represent curves and surfaces in 2-d and 3-d. Some reasons for this include Describing curves in space that objects move

More information

Modeling Technology Group

Modeling Technology Group Modeling Technology Group Hiroshi Hayashi David Ogirala Matt Nedrich Jeff Ridenbaugh Spencer Smith Saba Bokhari John Gray Charles Hellstrom Bryan Linthicum Polygon Models (part-1) What are polygons? -

More information

Constructive Solid Geometry and Procedural Modeling. Stelian Coros

Constructive Solid Geometry and Procedural Modeling. Stelian Coros Constructive Solid Geometry and Procedural Modeling Stelian Coros Somewhat unrelated Schedule for presentations February 3 5 10 12 17 19 24 26 March 3 5 10 12 17 19 24 26 30 April 2 7 9 14 16 21 23 28

More information

Subdivision surfaces for CAD: integration through parameterization and local correction

Subdivision surfaces for CAD: integration through parameterization and local correction Workshop: New trends in subdivision and related applications September 4 7, 212 Department of Mathematics and Applications, University of Milano-Bicocca, Italy Subdivision surfaces for CAD: integration

More information

Level of Details in Computer Rendering

Level of Details in Computer Rendering Level of Details in Computer Rendering Ariel Shamir Overview 1. Photo realism vs. Non photo realism (NPR) 2. Objects representations 3. Level of details Photo Realism Vs. Non Pixar Demonstrations Sketching,

More information

Extrude & Revolve Maya 2013

Extrude & Revolve Maya 2013 2000-2013 Michael O'Rourke Extrude & Revolve Maya 2013 Concept There are several basic modeling techniques shared by all 3D programs These can be used either to create your final model For example, a vase

More information

Curves and Surfaces 1

Curves and Surfaces 1 Curves and Surfaces 1 Representation of Curves & Surfaces Polygon Meshes Parametric Cubic Curves Parametric Bi-Cubic Surfaces Quadric Surfaces Specialized Modeling Techniques 2 The Teapot 3 Representing

More information

CS 465 Program 4: Modeller

CS 465 Program 4: Modeller CS 465 Program 4: Modeller out: 30 October 2004 due: 16 November 2004 1 Introduction In this assignment you will work on a simple 3D modelling system that uses simple primitives and curved surfaces organized

More information

A 3-Dimensional Modeling System Inspired by the Cognitive Process of Sketching

A 3-Dimensional Modeling System Inspired by the Cognitive Process of Sketching A 3-Dimensional Modeling System Inspired by the Cognitive Process of Sketching Matthew Thomas Cook University of Kansas Department of Electrical Engineering and Computer Science Introduction 3-D modeling

More information

CSG obj. oper3. obj1 obj2 obj3. obj5. obj4

CSG obj. oper3. obj1 obj2 obj3. obj5. obj4 Solid Modeling Solid: Boundary + Interior Volume occupied by geometry Solid representation schemes Constructive Solid Geometry (CSG) Boundary representations (B-reps) Space-partition representations Operations

More information

Distance Functions 1

Distance Functions 1 Distance Functions 1 Distance function Given: geometric object F (curve, surface, solid, ) Assigns to each point the shortest distance from F Level sets of the distance function are trimmed offsets F p

More information

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link)

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link) Advanced Computer Graphics (Spring 03) CS 83, Lecture 7: Subdivision Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs83/sp3 Slides courtesy of Szymon Rusinkiewicz, James O Brien with material from Denis

More information

Bezier Curves, B-Splines, NURBS

Bezier Curves, B-Splines, NURBS Bezier Curves, B-Splines, NURBS Example Application: Font Design and Display Curved objects are everywhere There is always need for: mathematical fidelity high precision artistic freedom and flexibility

More information