VI Workshop Brasileiro de Micrometeorologia

Size: px
Start display at page:

Download "VI Workshop Brasileiro de Micrometeorologia"

Transcription

1 Validation of a statistic algorithm applied to LES model Eduardo Bárbaro, Amauri Oliveira, Jacyra Soares November 2009

2 Index Objective 1 Objective 2 3 Vertical Profiles Flow properties 4

3 Objective 1 The main objective of this work is to develop a statistical algorithm to process the data generated by the Large-Eddy-Simulation model (LES) in real time. 2 Use the LES model to characterize the Convective and Stable PBL properties in order to validade the algorithm.

4 Objective 1 The main objective of this work is to develop a statistical algorithm to process the data generated by the Large-Eddy-Simulation model (LES) in real time. 2 Use the LES model to characterize the Convective and Stable PBL properties in order to validade the algorithm. 3 Investigate the Energy Budget vertical profile.

5 Objective 1 The main objective of this work is to develop a statistical algorithm to process the data generated by the Large-Eddy-Simulation model (LES) in real time. 2 Use the LES model to characterize the Convective and Stable PBL properties in order to validade the algorithm. 3 Investigate the Energy Budget vertical profile.

6 Numerical Modeling Basis - A Short Review Main Techniques Reynolds-Averaged Navier-Stokes - RANS Direct Numerical Simulation - DNS Large Eddy Simulation - LES

7 Modeling Basis Short Review - RANS and DNS RANS & DNS RANS - Navier-Stokes statistics ensemble. RANS - Turbulent fluxes simplified solution.

8 Modeling Basis Short Review - RANS and DNS RANS & DNS RANS - Navier-Stokes statistics ensemble. RANS - Turbulent fluxes simplified solution. DNS - The Navier-Stokes equations are resolved explicitly (Large-eddies to Kolmolgorov Scale).

9 Modeling Basis Short Review - RANS and DNS RANS & DNS RANS - Navier-Stokes statistics ensemble. RANS - Turbulent fluxes simplified solution. DNS - The Navier-Stokes equations are resolved explicitly (Large-eddies to Kolmolgorov Scale). DNS - More difficult to use in large areas due to computational problems.

10 Modeling Basis Short Review - RANS and DNS RANS & DNS RANS - Navier-Stokes statistics ensemble. RANS - Turbulent fluxes simplified solution. DNS - The Navier-Stokes equations are resolved explicitly (Large-eddies to Kolmolgorov Scale). DNS - More difficult to use in large areas due to computational problems.

11 Modeling Basis Short Review - LES model LES model - the best of the two worlds! The major eddies are geometry dependent. The minor eddies present a more universal characteristics.

12 Modeling Basis Short Review - LES model LES model - the best of the two worlds! The major eddies are geometry dependent. The minor eddies present a more universal characteristics. The LES model explicity resolve the major eddies and parameterize the minors, using a subgrid SGS model.

13 Modeling Basis Short Review - LES model LES model - the best of the two worlds! The major eddies are geometry dependent. The minor eddies present a more universal characteristics. The LES model explicity resolve the major eddies and parameterize the minors, using a subgrid SGS model.

14 Modeling Basis Short Review - LES model Figure: Energy Cascade; Three regions: (A) production, (B) Inertial Sub-interval and (C) dissipation. k is the wave number, λ m the wavelength associated with the most energetic eddy and η the Kolmogorov s microescale. The max wave number explicitely resolved by the LES is represented by k max (LES).

15 Modeling Basis Short Review - LES main properties Using this kind of model is possible to understand the PBL most important behaviors like momentum, temperature and humidity turbulent fluxes. The LES code used in this work was proposed by Moeng, 1984 and improved by Sullivan, 1994, mainly in the subgrid scheme.

16 Modeling Basis Short Review - LES main properties Using this kind of model is possible to understand the PBL most important behaviors like momentum, temperature and humidity turbulent fluxes. The LES code used in this work was proposed by Moeng, 1984 and improved by Sullivan, 1994, mainly in the subgrid scheme. Understanding this kind of model is possible to simulate several PBL conditions: stable (not very stable...), neutral or convective situation.

17 Modeling Basis Short Review - LES main properties Using this kind of model is possible to understand the PBL most important behaviors like momentum, temperature and humidity turbulent fluxes. The LES code used in this work was proposed by Moeng, 1984 and improved by Sullivan, 1994, mainly in the subgrid scheme. Understanding this kind of model is possible to simulate several PBL conditions: stable (not very stable...), neutral or convective situation. The particulates, momentum, temperature and humidity fields, develop a critical role in the environment and can be simulated using LES.

18 Modeling Basis Short Review - LES main properties Using this kind of model is possible to understand the PBL most important behaviors like momentum, temperature and humidity turbulent fluxes. The LES code used in this work was proposed by Moeng, 1984 and improved by Sullivan, 1994, mainly in the subgrid scheme. Understanding this kind of model is possible to simulate several PBL conditions: stable (not very stable...), neutral or convective situation. The particulates, momentum, temperature and humidity fields, develop a critical role in the environment and can be simulated using LES. The TKE budget can be simulated using LES technique.

19 Modeling Basis Short Review - LES main properties Using this kind of model is possible to understand the PBL most important behaviors like momentum, temperature and humidity turbulent fluxes. The LES code used in this work was proposed by Moeng, 1984 and improved by Sullivan, 1994, mainly in the subgrid scheme. Understanding this kind of model is possible to simulate several PBL conditions: stable (not very stable...), neutral or convective situation. The particulates, momentum, temperature and humidity fields, develop a critical role in the environment and can be simulated using LES. The TKE budget can be simulated using LES technique. These features become LES an excellent choice to simulate the PBL phenomena.

20 Modeling Basis Short Review - LES main properties Using this kind of model is possible to understand the PBL most important behaviors like momentum, temperature and humidity turbulent fluxes. The LES code used in this work was proposed by Moeng, 1984 and improved by Sullivan, 1994, mainly in the subgrid scheme. Understanding this kind of model is possible to simulate several PBL conditions: stable (not very stable...), neutral or convective situation. The particulates, momentum, temperature and humidity fields, develop a critical role in the environment and can be simulated using LES. The TKE budget can be simulated using LES technique. These features become LES an excellent choice to simulate the PBL phenomena.

21 - Some limitations but...there s no free lunch! In the Surface Layer the grid imposes some limitations; The small eddies are not well resolved near walls;

22 - Some limitations but...there s no free lunch! In the Surface Layer the grid imposes some limitations; The small eddies are not well resolved near walls; Regions with high instability levels present intermittent eddies.

23 - Some limitations but...there s no free lunch! In the Surface Layer the grid imposes some limitations; The small eddies are not well resolved near walls; Regions with high instability levels present intermittent eddies. Clouds and radiation put uncertainties in the LES results.

24 - Some limitations but...there s no free lunch! In the Surface Layer the grid imposes some limitations; The small eddies are not well resolved near walls; Regions with high instability levels present intermittent eddies. Clouds and radiation put uncertainties in the LES results.

25 Objective LES in this work In this work we use a LES parallel version, modified by Moeng and Sullivan. The code was improved by Professor PhD. Umberto Rizza, Istituto di Scienze dell Atmosfera e del Clima - (CNR-ISAC), Lecce - Italy and DSc. Edson Marques Filho, UFRJ (IGEO), RJ - Brazil.

26 Objective LES in this work In this work we use a LES parallel version, modified by Moeng and Sullivan. The code was improved by Professor PhD. Umberto Rizza, Istituto di Scienze dell Atmosfera e del Clima - (CNR-ISAC), Lecce - Italy and DSc. Edson Marques Filho, UFRJ (IGEO), RJ - Brazil. The USP Group of Micrometeorology, (PhD. Amauri Oliveira - head), implemented the LES code in 2008 in a DELL-Cluster Tupandora R900 Intel 2-quad (8 cores) 12Gb RAM and 1.2 Tb HD. The Cluster runs 8 hours convective-pbl (128 3 points) in 40 hours.

27 Objective LES in this work In this work we use a LES parallel version, modified by Moeng and Sullivan. The code was improved by Professor PhD. Umberto Rizza, Istituto di Scienze dell Atmosfera e del Clima - (CNR-ISAC), Lecce - Italy and DSc. Edson Marques Filho, UFRJ (IGEO), RJ - Brazil. The USP Group of Micrometeorology, (PhD. Amauri Oliveira - head), implemented the LES code in 2008 in a DELL-Cluster Tupandora R900 Intel 2-quad (8 cores) 12Gb RAM and 1.2 Tb HD. The Cluster runs 8 hours convective-pbl (128 3 points) in 40 hours.

28 - Some details LES code Uses a pseudo-spectral method to resolve the momentum equations (horizontal components); Uses a FFT to the horizontal derivatives and a finite-difference method to the vertical ones;

29 - Some details LES code Uses a pseudo-spectral method to resolve the momentum equations (horizontal components); Uses a FFT to the horizontal derivatives and a finite-difference method to the vertical ones; The temporal derivatives are solved by a 2-order Adams-Bashforth scheme;

30 - Some details LES code Uses a pseudo-spectral method to resolve the momentum equations (horizontal components); Uses a FFT to the horizontal derivatives and a finite-difference method to the vertical ones; The temporal derivatives are solved by a 2-order Adams-Bashforth scheme; The model stability is checked in all time-steps.

31 - Some details LES code Uses a pseudo-spectral method to resolve the momentum equations (horizontal components); Uses a FFT to the horizontal derivatives and a finite-difference method to the vertical ones; The temporal derivatives are solved by a 2-order Adams-Bashforth scheme; The model stability is checked in all time-steps. LES uses a cyclic lateral boundary, (homogeneous surface) and a radiative top boundary.

32 - Some details LES code Uses a pseudo-spectral method to resolve the momentum equations (horizontal components); Uses a FFT to the horizontal derivatives and a finite-difference method to the vertical ones; The temporal derivatives are solved by a 2-order Adams-Bashforth scheme; The model stability is checked in all time-steps. LES uses a cyclic lateral boundary, (homogeneous surface) and a radiative top boundary.

33 Simulation Description Temporal Scale time-step dt caracteristic velocity scale - surface layer u PBL Height Z i Monin-Obukov Lenght L Stability parameter ζ = Z L Potential Temperature - Surface θ 0 Specific humidity - Surface q 0 Turbulent heat flux - Surface θ w 0 Turbulent latent flux - Surface q w 0 θ MixedLayer <θ w > w

34 Simulation Description Resolved and sub-grid spatial scales Velocities components variances < u 2 >, < v 2 >, < w 2 > θ and q variances < θ 2 >, < q 2 > Vertical flux - Sensible heat < w θ > Vertical flux - Latent heat < w q > Zonal flux - Sensible heat < u θ > Zonal flux - Latent heat < u q > Meridional Flux - Sensible heat < v θ > Meridional Flux - Latent heat < v q > Mean Zonal Velocity < u > Mean Meridinal Velocity < v > Momentum Flux Variance < u w > Momentum Flux Variance < v w > Momentum Flux Variance < u v > Shear Production u w ū z v w v z g Thermal Production θ w θ ( ) Transport z e w + w p ρ 0 Dissipation ɛ

35 The SGS Model Objective SGS The SGS model proposed by Sullivan considers that the turbulence can be split in a isotropic and non-homogeneous part. τ ij = 2ν tγs ij 2ν T S ij S ij = 1 ( ui + u ) j 2 x j x i θ τ θi = 2ν θ x i γ is the isotropy factor. This factor is responsible by the transition between the resolved and SGS scale.

36 Vertical profiles Objective Vertical Profiles Flow properties (a) Potential temperature The vertical profiles present the expected results for a Convective and Neutral/Stable PBLs. In the surface layer, the temperature presents a reduction with the height in the convective case. In the stable one a continuous increase in the temperature is observed. The properties s homogeneity is observed in the mixed-layer for convective and neutral cases. The PBL top is defined when Z/Zi = 1.

37 Momentum fluxes Objective Vertical Profiles Flow properties Figure: Vertical and horizontal second order statistical momentum

38 The subgrid importance Vertical Profiles Flow properties Figure: Thermal Production The SGS thermal production presents a major importance in the surface and in the PBL top. Therefore, is critically necessary to develop good parametrizations to simulate the subgrid phenomena.

39 Turbulent Kinetic Energy Budget Vertical Profiles Flow properties (a) Convective (b) Stable

40 TKE evolution Objective Vertical Profiles Flow properties Figure: Turbulent Kinetic Energy vertical profile for stable and convective PBLs

41 Vertical evolution Objective Vertical Profiles Flow properties Figure: Zonal and meridional wind components vertical profiles The fields present an expected profile, for all of the wind components. The red curves, convective, show an increasing in all the SBL. The mixed layer present constant values and the inversion layer a tendency to geostrophic value. To the neutral part one can see that the wind components present an increase in the mixed layer. The stable part shows the inertial oscilation pattern.

42 Momentum fluxes Objective Vertical Profiles Flow properties Figure: Vertical and horizontal second order statistical momentum

43 Flow properties Objective Vertical Profiles Flow properties Figure: Monin-Obukhov length s Temporal Evolution L The theoretical atmosphere simulated in this work presents a instable/stable conditions with moderate winds. The Monin-Obukhov length gives a good idea about the (in)stability.

44 Objective The statistic analysis was successfully implemented and validated for a known case; The second order fluxes were implemented; The TKE budget was implemented for Convective and Stable cases. The main Convective and stable PBL properties were simulated using the LES model; The post-processing was eliminated; The results presented here indicate that the algorithm is ready to be applied to a diurnal cycle using CO as an inert scalar.

Boundary Layer Parameterization

Boundary Layer Parameterization Boundary Layer Parameterization Bob Plant With thanks to: R. Beare, S. Belcher, I. Boutle, O. Coceal, A. Grant, D. McNamara NWP Physics Lecture 3 Nanjing Summer School July 2014 Outline Motivation Some

More information

Continued Investigation of Small-Scale Air-Sea Coupled Dynamics Using CBLAST Data

Continued Investigation of Small-Scale Air-Sea Coupled Dynamics Using CBLAST Data Continued Investigation of Small-Scale Air-Sea Coupled Dynamics Using CBLAST Data Dick K.P. Yue Center for Ocean Engineering Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge,

More information

Large Eddy Simulation Applications to Meteorology

Large Eddy Simulation Applications to Meteorology Large Eddy Simulation Applications to Meteorology Marcelo Chamecki Department of Meteorology The Pennsylvania State University Tutorial School on Fluid Dynamics: Topics in Turbulence May 27 th 2010, College

More information

Bob Beare University of Exeter Thanks to Adrian Lock, John Thuburn and Bob Plant

Bob Beare University of Exeter Thanks to Adrian Lock, John Thuburn and Bob Plant Modelling convective boundary layers in the terra-incognita 4800 800 m resolution 3.0 h 4800 50 m resolution 3.0 h 2880 2880 960 960 y (m) y (m) -960-960 -2880-2880 -4800-4800 -2400 0 2400 4800 x (m) -4800-4800

More information

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement Lian Shen Department of Mechanical Engineering

More information

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement Lian Shen Department of Mechanical Engineering

More information

J4.3 LARGE-EDDY SIMULATION ACROSS A GRID REFINEMENT INTERFACE USING EXPLICIT FILTERING AND RECONSTRUCTION

J4.3 LARGE-EDDY SIMULATION ACROSS A GRID REFINEMENT INTERFACE USING EXPLICIT FILTERING AND RECONSTRUCTION J4.3 LARGE-EDDY SIMULATION ACROSS A GRID REFINEMENT INTERFACE USING EXPLICIT FILTERING AND RECONSTRUCTION Lauren Goodfriend 1, Fotini K. Chow 1, Marcos Vanella 2, and Elias Balaras 2 1 Civil and Environmental

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean 1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. A Direct Simulation-Based Study of Radiance in a Dynamic Ocean LONG-TERM GOALS Dick K.P. Yue Center for Ocean Engineering

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean A Direct Simulation-Based Study of Radiance in a Dynamic Ocean Dick K.P. Yue Center for Ocean Engineering Massachusetts Institute of Technology Room 5-321, 77 Massachusetts Ave, Cambridge, MA 02139 phone:

More information

Mass-flux parameterization in the shallow convection gray zone

Mass-flux parameterization in the shallow convection gray zone Mass-flux parameterization in the shallow convection gray zone LACE stay report Toulouse Centre National de Recherche Meteorologique, 15. September 2014 26. September 2014 Scientific supervisor: Rachel

More information

intermittency, mixing, and dispersion High-Resolution Simulations of Turbulence: Supported by NSF (CTS)

intermittency, mixing, and dispersion High-Resolution Simulations of Turbulence: Supported by NSF (CTS) High-Resolution Simulations of Turbulence: intermittency, mixing, and dispersion P.K. Yeung and Diego A. Donzis School of Aero. Engr., Georgia Tech, Atlanta, GA pk.yeung@ae.gatech.edu Close collaborators:

More information

Junhong Wei Goethe University of Frankfurt. Other contributor: Prof. Dr. Ulrich Achatz, Dr. Gergely Bölöni

Junhong Wei Goethe University of Frankfurt. Other contributor: Prof. Dr. Ulrich Achatz, Dr. Gergely Bölöni Efficient modelling of the gravity-wave interaction with unbalanced resolved flows: Pseudo-momentum-flux convergence vs direct approach Junhong Wei Goethe University of Frankfurt Other contributor: Prof.

More information

S. Di Sabatino 1, R. Buccolieri 1, P. Paradisi 2, L. Palatella 2, R. Corrado 1,2, E. Solazzo 3

S. Di Sabatino 1, R. Buccolieri 1, P. Paradisi 2, L. Palatella 2, R. Corrado 1,2, E. Solazzo 3 A FAST MODEL FOR FLOW AND POLLUTANT DISPERSION AT THE NEIGHBOURHOOD SCALE S. Di Sabatino 1, R. Buccolieri 1, P. Paradisi, L. Palatella, R. Corrado 1,, E. Solazzo 3 1 Dipartimento di Scienza dei Materiali,

More information

A Study of the Development of an Analytical Wall Function for Large Eddy Simulation of Turbulent Channel and Rectangular Duct Flow

A Study of the Development of an Analytical Wall Function for Large Eddy Simulation of Turbulent Channel and Rectangular Duct Flow University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations August 2014 A Study of the Development of an Analytical Wall Function for Large Eddy Simulation of Turbulent Channel and Rectangular

More information

Turbulent Structure underneath Air-Sea Wavy Interface: Large-Eddy Simulation Mostafa Bakhoday Paskyabi

Turbulent Structure underneath Air-Sea Wavy Interface: Large-Eddy Simulation Mostafa Bakhoday Paskyabi Turbulent Structure underneath Air-Sea Wavy Interface: Large-Eddy Simulation Mostafa Bakhoday Paskyabi Geophysical Institute, University of Bergen (Mostafa.Bakhoday@uib.no) Introduction Waves Planetary

More information

Super-Parameterization of Boundary Layer Roll Vortices in Tropical Cyclone Models

Super-Parameterization of Boundary Layer Roll Vortices in Tropical Cyclone Models DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Super-Parameterization of Boundary Layer Roll Vortices in Tropical Cyclone Models PI Isaac Ginis Graduate School of Oceanography

More information

Vortex Method Applications. Peter S. Bernard University of Maryland

Vortex Method Applications. Peter S. Bernard University of Maryland Vortex Method Applications Peter S. Bernard University of Maryland Vortex Methods Flow field is represented using gridfree vortex elements Navier-Stokes equation governs the dynamics of the freely convecting

More information

Direct Numerical Simulation of a Low Pressure Turbine Cascade. Christoph Müller

Direct Numerical Simulation of a Low Pressure Turbine Cascade. Christoph Müller Low Pressure NOFUN 2015, Braunschweig, Overview PostProcessing Experimental test facility Grid generation Inflow turbulence Conclusion and slide 2 / 16 Project Scale resolving Simulations give insight

More information

Stochastic subgrid scale modeling

Stochastic subgrid scale modeling Stochastic subgrid scale modeling Daan Crommelin Centrum Wiskunde & Informatica, Amsterdam joint work with Eric Vanden-Eijnden, New York University NDNS+, 15 april 21 p. 1/24 The parameterization problem:

More information

CIBSE Application Manual AM11 Building Performance Modelling Chapter 6: Ventilation Modelling

CIBSE Application Manual AM11 Building Performance Modelling Chapter 6: Ventilation Modelling Contents Background Ventilation modelling tool categories Simple tools and estimation techniques Analytical methods Zonal network methods Computational Fluid Dynamics (CFD) Semi-external spaces Summary

More information

Where is the Interface of the Stratocumulus-Topped PBL?

Where is the Interface of the Stratocumulus-Topped PBL? 2626 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 62 Where is the Interface of the Stratocumulus-Topped PBL? C.-H. MOENG National Center for Atmospheric Research,* Boulder, Colorado

More information

Direct numerical simulation. in an annular pipe. of turbulent flow. Paolo Luchini & Maurizio Quadrio

Direct numerical simulation. in an annular pipe. of turbulent flow. Paolo Luchini & Maurizio Quadrio P.Luchini & M.Quadrio SIMAI 2000 - Ischia - 9.6.2000 Direct numerical simulation of turbulent flow in an annular pipe Paolo Luchini & Maurizio Quadrio Dipartimento di Ingegneria Aerospaziale del Politecnico

More information

GREYBLS: modelling GREY-zone Boundary LayerS

GREYBLS: modelling GREY-zone Boundary LayerS GREYBLS: modelling GREY-zone Boundary LayerS Bob Beare, Bob Plant, Omduth Coceal, John Thuburn, Adrian Lock, Humphrey Lean 25 Sept 2013 Introduction NWP at grid lengths 2 km - 100 m now possible. Introduction

More information

Thermo-Fluid-Dynamics using OpenFOAM - Heat transfer and vortex structures in plate-heatexchangers

Thermo-Fluid-Dynamics using OpenFOAM - Heat transfer and vortex structures in plate-heatexchangers Thermo-Fluid-Dynamics using OpenFOAM - Heat transfer and vortex structures in plate-heatexchangers Johann Turnow University of Rostock Faculty of Mechanical Engineering and Shipbuilding Chair of Modeling

More information

Horizontal Mixing in the WRF-ARW Model. Russ Schumacher AT April 2006

Horizontal Mixing in the WRF-ARW Model. Russ Schumacher AT April 2006 Horizontal Mixing in the WRF-ARW Model Russ Schumacher AT 730 5 April 2006 Overview Description of implicit and explicit horizontal mixing in WRF Evaluation of WRF s implicit mixing Model options for explicit

More information

Large-eddy simulations for internal combustion engines a review

Large-eddy simulations for internal combustion engines a review REVIEW PAPER 421 Large-eddy simulations for internal combustion engines a review C J Rutland Engine Research Center, University of Wisconsin - Madison, Madison, WI, USA. email: rutland@engr.wisc.edu The

More information

Explicit filtering and reconstruction turbulence modeling. for large-eddy simulation of neutral boundary layer flow

Explicit filtering and reconstruction turbulence modeling. for large-eddy simulation of neutral boundary layer flow Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow Fotini Katopodes Chow, Robert L. Street, Ming Xue, and Joel H. Ferziger September 23,

More information

MULTIRESOLUTION. APPROACHES in TURBULENCE. MULHSCALf and. Applications. LES, DES and Hybrid. 2nd Edition. RANS/LES Methods and Guidelines

MULTIRESOLUTION. APPROACHES in TURBULENCE. MULHSCALf and. Applications. LES, DES and Hybrid. 2nd Edition. RANS/LES Methods and Guidelines 2nd Edition MULHSCALf and MULTIRESOLUTION APPROACHES in TURBULENCE LES, DES and Hybrid Applications RANS/LES Methods and Guidelines Pierre Sagaut Uniuersite Pierre et Marie Curie-Paris 6, France Sebastien

More information

Turbulent Premixed Combustion with Flamelet Generated Manifolds in COMSOL Multiphysics

Turbulent Premixed Combustion with Flamelet Generated Manifolds in COMSOL Multiphysics Turbulent Premixed Combustion with Flamelet Generated Manifolds in COMSOL Multiphysics Rob J.M Bastiaans* Eindhoven University of Technology *Corresponding author: PO box 512, 5600 MB, Eindhoven, r.j.m.bastiaans@tue.nl

More information

Simulation of Turbulent Axisymmetric Waterjet Using Computational Fluid Dynamics (CFD)

Simulation of Turbulent Axisymmetric Waterjet Using Computational Fluid Dynamics (CFD) Simulation of Turbulent Axisymmetric Waterjet Using Computational Fluid Dynamics (CFD) PhD. Eng. Nicolae MEDAN 1 1 Technical University Cluj-Napoca, North University Center Baia Mare, Nicolae.Medan@cunbm.utcluj.ro

More information

Possibility of Implicit LES for Two-Dimensional Incompressible Lid-Driven Cavity Flow Based on COMSOL Multiphysics

Possibility of Implicit LES for Two-Dimensional Incompressible Lid-Driven Cavity Flow Based on COMSOL Multiphysics Possibility of Implicit LES for Two-Dimensional Incompressible Lid-Driven Cavity Flow Based on COMSOL Multiphysics Masanori Hashiguchi 1 1 Keisoku Engineering System Co., Ltd. 1-9-5 Uchikanda, Chiyoda-ku,

More information

CFD STUDY OF MIXING PROCESS IN RUSHTON TURBINE STIRRED TANKS

CFD STUDY OF MIXING PROCESS IN RUSHTON TURBINE STIRRED TANKS Third International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 10-12 December 2003 CFD STUDY OF MIXING PROCESS IN RUSHTON TURBINE STIRRED TANKS Guozhong ZHOU 1,2,

More information

Pentagon Shield: Experiments with a nonosillatory forwardin-time CFD code (EuLag) to simulate flow around the Pentagon

Pentagon Shield: Experiments with a nonosillatory forwardin-time CFD code (EuLag) to simulate flow around the Pentagon Pentagon Shield: Experiments with a nonosillatory forwardin-time CFD code (EuLag) to simulate flow around the Pentagon 8 th GMU Conf. on Transport and Dispersion Modeling 15 July 2004 Piotr Smolarkiewicz

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean A Direct Simulation-Based Study of Radiance in a Dynamic Ocean Lian Shen Department of Civil Engineering Johns Hopkins University Baltimore, MD 21218 phone: (410) 516-5033 fax: (410) 516-7473 email: LianShen@jhu.edu

More information

Large Eddy Simulation of Flow over a Backward Facing Step using Fire Dynamics Simulator (FDS)

Large Eddy Simulation of Flow over a Backward Facing Step using Fire Dynamics Simulator (FDS) The 14 th Asian Congress of Fluid Mechanics - 14ACFM October 15-19, 2013; Hanoi and Halong, Vietnam Large Eddy Simulation of Flow over a Backward Facing Step using Fire Dynamics Simulator (FDS) Md. Mahfuz

More information

Keywords: flows past a cylinder; detached-eddy-simulations; Spalart-Allmaras model; flow visualizations

Keywords: flows past a cylinder; detached-eddy-simulations; Spalart-Allmaras model; flow visualizations A TURBOLENT FLOW PAST A CYLINDER *Vít HONZEJK, **Karel FRAŇA *Technical University of Liberec Studentská 2, 461 17, Liberec, Czech Republic Phone:+ 420 485 353434 Email: vit.honzejk@seznam.cz **Technical

More information

HPC Usage for Aerodynamic Flow Computation with Different Levels of Detail

HPC Usage for Aerodynamic Flow Computation with Different Levels of Detail DLR.de Folie 1 HPCN-Workshop 14./15. Mai 2018 HPC Usage for Aerodynamic Flow Computation with Different Levels of Detail Cornelia Grabe, Marco Burnazzi, Axel Probst, Silvia Probst DLR, Institute of Aerodynamics

More information

Interpolation error in DNS simulations of turbulence: consequences for particle tracking

Interpolation error in DNS simulations of turbulence: consequences for particle tracking Journal of Physics: Conference Series Interpolation error in DNS simulations of turbulence: consequences for particle tracking To cite this article: M A T van Hinsberg et al 2011 J. Phys.: Conf. Ser. 318

More information

Explicit Filtering and Reconstruction Turbulence Modeling for Large-Eddy Simulation of Neutral Boundary Layer Flow

Explicit Filtering and Reconstruction Turbulence Modeling for Large-Eddy Simulation of Neutral Boundary Layer Flow 2058 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 62 Explicit Filtering and Reconstruction Turbulence Modeling for Large-Eddy Simulation of Neutral Boundary Layer Flow FOTINI KATOPODES

More information

Microwell Mixing with Surface Tension

Microwell Mixing with Surface Tension Microwell Mixing with Surface Tension Nick Cox Supervised by Professor Bruce Finlayson University of Washington Department of Chemical Engineering June 6, 2007 Abstract For many applications in the pharmaceutical

More information

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn Backward facing step Homework Department of Fluid Mechanics Budapest University of Technology and Economics Budapest, 2010 autumn Updated: October 26, 2010 CONTENTS i Contents 1 Introduction 1 2 The problem

More information

Mesoscale Ocean Large Eddy Simulation (MOLES)

Mesoscale Ocean Large Eddy Simulation (MOLES) Mesoscale Ocean Large Eddy Simulation (MOLES) Baylor Fox-Kemper (Brown) Scott Bachman (Cambridge) Frank Bryan & David Bailey (NCAR) Viscosity Parameterizations GCMs use horizontal eddy viscosity to account

More information

NIA CFD Futures Conference Hampton, VA; August 2012

NIA CFD Futures Conference Hampton, VA; August 2012 Petascale Computing and Similarity Scaling in Turbulence P. K. Yeung Schools of AE, CSE, ME Georgia Tech pk.yeung@ae.gatech.edu NIA CFD Futures Conference Hampton, VA; August 2012 10 2 10 1 10 4 10 5 Supported

More information

LES Analysis on Shock-Vortex Ring Interaction

LES Analysis on Shock-Vortex Ring Interaction LES Analysis on Shock-Vortex Ring Interaction Yong Yang Jie Tang Chaoqun Liu Technical Report 2015-08 http://www.uta.edu/math/preprint/ LES Analysis on Shock-Vortex Ring Interaction Yong Yang 1, Jie Tang

More information

P. K. Yeung Georgia Tech,

P. K. Yeung Georgia Tech, Progress in Petascale Computations of Turbulence at high Reynolds number P. K. Yeung Georgia Tech, pk.yeung@ae.gatech.edu Blue Waters Symposium NCSA, Urbana-Champaign, May 2014 Thanks... NSF: PRAC and

More information

Forced Two-Dimensional Wall-Bounded Turbulence Using SPH

Forced Two-Dimensional Wall-Bounded Turbulence Using SPH Forced Two-Dimensional Wall-Bounded Turbulence Using SPH Martin Robinson School of Mathematical Sciences Monash University Clayton, Melbourne, Australia martin.robinson@sci.monash.edu.au Joseph Monaghan

More information

Developing LES Models for IC Engine Simulations. June 14-15, 2017 Madison, WI

Developing LES Models for IC Engine Simulations. June 14-15, 2017 Madison, WI Developing LES Models for IC Engine Simulations June 14-15, 2017 Madison, WI 1 2 RANS vs LES Both approaches use the same equation: u i u i u j 1 P 1 u i t x x x x j i j T j The only difference is turbulent

More information

INTERACTION BETWEEN TURBULENT DYNAMICAL PROCESSES AND STATISTICS IN DEFORMED AIR-LIQUID INTERFACES, VIA DNS

INTERACTION BETWEEN TURBULENT DYNAMICAL PROCESSES AND STATISTICS IN DEFORMED AIR-LIQUID INTERFACES, VIA DNS INTERACTION BETWEEN TURBULENT DYNAMICAL PROCESSES AND STATISTICS IN DEFORMED AIR-LIQUID INTERFACES, VIA DNS Yoshinobu Yamamoto Department of Nuclear Engineering, Kyoto University Yoshida Sakyo Kyoto, 66-85,

More information

Large Eddy Simulation of a Turbulent Jet Impinging on a Flat Plate at Large Stand-off Distance

Large Eddy Simulation of a Turbulent Jet Impinging on a Flat Plate at Large Stand-off Distance Large Eddy Simulation of a Turbulent Jet Impinging on a Flat Plate at Large Stand-off Distance M. Shademan 1, R. Balachandar 2 and R.M. Barron 3 1 PhD Student, Department of Mechanical, Automotive & Materials

More information

CFD wake modeling using a porous disc

CFD wake modeling using a porous disc CFD wake modeling using a porous disc Giorgio Crasto, Arne Reidar Gravdahl giorgio@windsim.com, arne@windsim.com WindSim AS Fjordgaten 5 N-325 Tønsberg Norway Tel. +47 33 38 8 Fax +47 33 38 8 8 http://www.windsim.com

More information

ALADIN-2007-Oslo (Norway) April 2007

ALADIN-2007-Oslo (Norway) April 2007 Improving the SURFEX/TEB scheme: 1 D validation in a street canyon R. Hamdi and V. Masson SURFEX coupled off line to ALADIN: preliminary results over Belgium R. Hamdi and A. Deckmyn ALADIN-2007-Oslo (Norway)

More information

NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOR INTO THE INLET GUIDE VANE SYSTEM (IGV)

NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOR INTO THE INLET GUIDE VANE SYSTEM (IGV) University of West Bohemia» Department of Power System Engineering NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOR INTO THE INLET GUIDE VANE SYSTEM (IGV) Publication was supported by project: Budování excelentního

More information

LAGRANGIAN TRANSPORT MODELING

LAGRANGIAN TRANSPORT MODELING LAGRANGIAN TRANSPORT MODELING R. Corrado, F. Grasso, G. Lacorata, L. Palatella, U. Rizza, R. Santoleri CNR - Institute of Atmospheric and Climate Sciences Group of Ocean Satellite monitoring and marine

More information

Development of Hybrid Fluid Jet / Float Polishing Process

Development of Hybrid Fluid Jet / Float Polishing Process COMSOL Conference - Tokyo 2013 Development of Hybrid Fluid Jet / Float Polishing Process A. Beaucamp, Y. Namba Dept. of Mechanical Engineering, Chubu University, Japan Zeeko LTD, United Kingdom Research

More information

DES Turbulence Modeling for ICE Flow Simulation in OpenFOAM

DES Turbulence Modeling for ICE Flow Simulation in OpenFOAM 2 nd Two-day Meeting on ICE Simulations Using OpenFOAM DES Turbulence Modeling for ICE Flow Simulation in OpenFOAM V. K. Krastev 1, G. Bella 2 and G. Campitelli 1 University of Tuscia, DEIM School of Engineering

More information

The Ventilated Ocean: What controls ocean stratification and overturning circulation and Lagrangian ocean modeling. Alexey Fedorov

The Ventilated Ocean: What controls ocean stratification and overturning circulation and Lagrangian ocean modeling. Alexey Fedorov The Ventilated Ocean: What controls ocean stratification and overturning circulation and Lagrangian ocean modeling Alexey Fedorov Many thanks to Patrick Haertel Yale University July 2011 1 What controls

More information

Mesh Adaptive LES for micro-scale air pollution dispersion and effect of tall buildings.

Mesh Adaptive LES for micro-scale air pollution dispersion and effect of tall buildings. HARMO17, Budapest, 9 12 May, 2016. Mesh Adaptive LES for micro-scale air pollution dispersion and effect of tall buildings. Elsa Aristodemou, Luz Maria Boganegra, Christopher Pain, Alan Robins, and Helen

More information

APPLICATIONS OF THE LAGRANGIAN DYNAMIC MODEL IN LES OF TURBULENT FLOW OVER SURFACES WITH HETEROGENEOUS ROUGHNESS DISTRIBUTIONS

APPLICATIONS OF THE LAGRANGIAN DYNAMIC MODEL IN LES OF TURBULENT FLOW OVER SURFACES WITH HETEROGENEOUS ROUGHNESS DISTRIBUTIONS Proceedings of HT-FED2004: 2004 ASME Heat Transfer/Fluids Engineering Summer Conference July 11-15, 2004, Charlotte, North Carolina, USA HT-FED2004-56127 APPLICATIONS OF THE LAGRANGIAN DYNAMIC MODEL IN

More information

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Vol. 12, Issue 1/2016, 63-68 DOI: 10.1515/cee-2016-0009 MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Juraj MUŽÍK 1,* 1 Department of Geotechnics, Faculty of Civil Engineering, University

More information

Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs)

Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs) OBJECTIVE FLUID SIMULATIONS Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs) The basic objective of the project is the implementation of the paper Stable Fluids (Jos Stam, SIGGRAPH 99). The final

More information

Table of contents for: Waves and Mean Flows by Oliver Bühler Cambridge University Press 2009 Monographs on Mechanics. Contents.

Table of contents for: Waves and Mean Flows by Oliver Bühler Cambridge University Press 2009 Monographs on Mechanics. Contents. Table of contents for: Waves and Mean Flows by Oliver Bühler Cambridge University Press 2009 Monographs on Mechanics. Preface page 2 Part I Fluid Dynamics and Waves 7 1 Elements of fluid dynamics 9 1.1

More information

High-order solutions of transitional flow over the SD7003 airfoil using compact finite-differencing and filtering

High-order solutions of transitional flow over the SD7003 airfoil using compact finite-differencing and filtering High-order solutions of transitional flow over the SD7003 airfoil using compact finite-differencing and filtering Daniel J. Garmann and Miguel R. Visbal Air Force Research Laboratory, Wright-Patterson

More information

Computational Fluid Dynamics

Computational Fluid Dynamics Computational Fluid Dynamics Prof. Dr.-Ing. Siegfried Wagner Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70550 Stuttgart A large number of highly qualified papers

More information

Cloud-based simulation of plasma sources for surface treatment

Cloud-based simulation of plasma sources for surface treatment Cloud-based simulation of plasma sources for surface treatment Using the PlasmaSolve Simulation Suite (P3S) Adam Obrusnik, Petr Zikan June 7, 2018 Outline 1. About PlasmaSolve 2. PlasmaSolve Simulation

More information

A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity

More information

Footprint Modelling for Flux Towers

Footprint Modelling for Flux Towers College of Science Swansea University Footprint Modelling for Flux Towers Natascha Kljun*, Eva van Gorsel *Email: n.kljun@swansea.ac.uk / Swansea University, UK Footprint Estimates wind Footprint Estimates

More information

Optimization Results for Consistent Steady-State Plasma Solution

Optimization Results for Consistent Steady-State Plasma Solution Optimization Results for Consistent Steady-State Plasma Solution A.D. Turnbull, R. Buttery, M. Choi, L.L Lao, S. Smith, H. St John General Atomics ARIES Team Meeting Gaithersburg Md October 14 2011 Progress

More information

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 11, November

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 11, November P P P P IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue, November 205. Numerical Simulation for Steady Incompressible Laminar Fluid Flow and Heat Transfer inside

More information

Large Eddy Simulation of Turbulent Flow Past a Bluff Body using OpenFOAM

Large Eddy Simulation of Turbulent Flow Past a Bluff Body using OpenFOAM Large Eddy Simulation of Turbulent Flow Past a Bluff Body using OpenFOAM A Thesis Presented By David Joseph Hensel To The Department of Mechanical and Industrial Engineering in partial fulfillment of the

More information

Reproducibility of Complex Turbulent Flow Using Commercially-Available CFD Software

Reproducibility of Complex Turbulent Flow Using Commercially-Available CFD Software Reports of Research Institute for Applied Mechanics, Kyushu University No.150 (71 83) March 2016 Reproducibility of Complex Turbulent Flow Using Commercially-Available CFD Software Report 3: For the Case

More information

Quasi-3D Computation of the Taylor-Green Vortex Flow

Quasi-3D Computation of the Taylor-Green Vortex Flow Quasi-3D Computation of the Taylor-Green Vortex Flow Tutorials November 25, 2017 Department of Aeronautics, Imperial College London, UK Scientific Computing and Imaging Institute, University of Utah, USA

More information

Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM)

Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM) Computational Methods and Experimental Measurements XVII 235 Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM) K. Rehman Department of Mechanical Engineering,

More information

ALE Seamless Immersed Boundary Method with Overset Grid System for Multiple Moving Objects

ALE Seamless Immersed Boundary Method with Overset Grid System for Multiple Moving Objects Tenth International Conference on Computational Fluid Dynamics (ICCFD10), Barcelona,Spain, July 9-13, 2018 ICCFD10-047 ALE Seamless Immersed Boundary Method with Overset Grid System for Multiple Moving

More information

Numerical Simulation of Heat Transfer by Natural Convection in Horizontal Finned Channels

Numerical Simulation of Heat Transfer by Natural Convection in Horizontal Finned Channels Numerical Simulation of Heat Transfer by Natural Convection in Horizontal Finned Channels Gabriel Gonçalves da Silva Ferreira, Luiz Fernando Lopes Rodrigues Silva Escola de Química, UFRJ Paulo L. C. Lage

More information

Transition modeling using data driven approaches

Transition modeling using data driven approaches Center for urbulence Research Proceedings of the Summer Program 2014 427 ransition modeling using data driven approaches By K. Duraisamy AND P.A. Durbin An intermittency transport-based model for bypass

More information

A Novel Approach to High Speed Collision

A Novel Approach to High Speed Collision A Novel Approach to High Speed Collision Avril Slone University of Greenwich Motivation High Speed Impact Currently a very active research area. Generic projectile- target collision 11 th September 2001.

More information

Modeling Supersonic Jet Screech Noise Using Direct Computational Aeroacoustics (CAA) 14.5 Release

Modeling Supersonic Jet Screech Noise Using Direct Computational Aeroacoustics (CAA) 14.5 Release Modeling Supersonic Jet Screech Noise Using Direct Computational Aeroacoustics (CAA) 14.5 Release 2011 ANSYS, Inc. November 7, 2012 1 Workshop Advanced ANSYS FLUENT Acoustics Introduction This tutorial

More information

Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions. Milovan Perić

Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions. Milovan Perić Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions Milovan Perić Contents The need to couple STAR-CCM+ with other theoretical or numerical solutions Coupling approaches: surface and volume

More information

Reproducibility of Complex Turbulent Flow Using Commercially-Available CFD Software

Reproducibility of Complex Turbulent Flow Using Commercially-Available CFD Software Reports of Research Institute for Applied Mechanics, Kyushu University, No.150 (60-70) March 2016 Reproducibility of Complex Turbulent Flow Using Commercially-Available CFD Software Report 2: For the Case

More information

NUMERICAL DIFFUSION AND DISSIPATION IN HYDROSTATIC MODELS OF INTERNAL WAVES

NUMERICAL DIFFUSION AND DISSIPATION IN HYDROSTATIC MODELS OF INTERNAL WAVES NUMERICAL DIFFUSION AND DISSIPATION IN HYDROSTATIC MODELS OF INTERNAL WAVES Ben R. Hodges 1 (A.M., ASCE) and Sarah Kelly Delavan 2 ABSTRACT Analysis of numerical diffusion and dissipation rates in a hydrostatic

More information

Numerical Simulation of Coastal Wave Processes with the Use of Smoothed Particle Hydrodynamics (SPH) Method

Numerical Simulation of Coastal Wave Processes with the Use of Smoothed Particle Hydrodynamics (SPH) Method Aristotle University of Thessaloniki Faculty of Engineering Department of Civil Engineering Division of Hydraulics and Environmental Engineering Laboratory of Maritime Engineering Christos V. Makris Dipl.

More information

Numerical Analysis of Shock Tube Problem by using TVD and ACM Schemes

Numerical Analysis of Shock Tube Problem by using TVD and ACM Schemes Numerical Analysis of Shock Tube Problem by using TVD and Schemes Dr. Mukkarum Husain, Dr. M. Nauman Qureshi, Syed Zaid Hasany IST Karachi, Email: mrmukkarum@yahoo.com Abstract Computational Fluid Dynamics

More information

Incompressible Viscous Flow Simulations Using the Petrov-Galerkin Finite Element Method

Incompressible Viscous Flow Simulations Using the Petrov-Galerkin Finite Element Method Copyright c 2007 ICCES ICCES, vol.4, no.1, pp.11-18, 2007 Incompressible Viscous Flow Simulations Using the Petrov-Galerkin Finite Element Method Kazuhiko Kakuda 1, Tomohiro Aiso 1 and Shinichiro Miura

More information

NUMERICAL SIMULATION OF THE WIND FLOW AROUND A CUBE IN CHANNEL

NUMERICAL SIMULATION OF THE WIND FLOW AROUND A CUBE IN CHANNEL BBAA VI International Colloquium on: Bluff Bodies Aerodynamics & Applications Milano, Italy, July, 0-4 008 NUMERICAL SIMULATION OF THE WIND FLOW AROUND A CUBE IN CHANNEL Mohammad Omidyeganeh and Jalal

More information

arxiv: v1 [physics.flu-dyn] 29 Jul 2017

arxiv: v1 [physics.flu-dyn] 29 Jul 2017 Northwestern University Large Eddy Simulation of Flow Interactions Between a Turbulent Free-Stream and a arxiv:1707.09541v1 [physics.flu-dyn] 29 Jul 2017 Permeable Bed A DISSERTATION SUBMITTED TO THE GRADUATE

More information

Preliminary investigation into two-way fluid structure interaction of heliostat wind loads Josh Wolmarans

Preliminary investigation into two-way fluid structure interaction of heliostat wind loads Josh Wolmarans Preliminary investigation into two-way fluid structure interaction of heliostat wind loads Josh Wolmarans Supervisor: Prof Ken Craig Clean Energy Research Group (CERG), Department of Mechanical and Aeronautical

More information

Axisymmetric Viscous Flow Modeling for Meridional Flow Calculation in Aerodynamic Design of Half-Ducted Blade Rows

Axisymmetric Viscous Flow Modeling for Meridional Flow Calculation in Aerodynamic Design of Half-Ducted Blade Rows Memoirs of the Faculty of Engineering, Kyushu University, Vol.67, No.4, December 2007 Axisymmetric Viscous Flow Modeling for Meridional Flow alculation in Aerodynamic Design of Half-Ducted Blade Rows by

More information

Computational Fluid Dynamics using OpenCL a Practical Introduction

Computational Fluid Dynamics using OpenCL a Practical Introduction 19th International Congress on Modelling and Simulation, Perth, Australia, 12 16 December 2011 http://mssanz.org.au/modsim2011 Computational Fluid Dynamics using OpenCL a Practical Introduction T Bednarz

More information

Dimensioning and Airflow Simulation of the Wing of an Ultralight Aircraft

Dimensioning and Airflow Simulation of the Wing of an Ultralight Aircraft Dimensioning and Airflow Simulation of the Wing of an Ultralight Aircraft Richárd Molnár 1 Gergely Dezső 2* Abstract: Increasing interest to ultralight aircrafts usually made of composite materials leads

More information

Resolved Turbulence Characteristics in Large-Eddy Simulations Nested within Mesoscale Simulations Using the Weather Research and Forecasting Model

Resolved Turbulence Characteristics in Large-Eddy Simulations Nested within Mesoscale Simulations Using the Weather Research and Forecasting Model 806 M O N T H L Y W E A T H E R R E V I E W VOLUME 142 Resolved Turbulence Characteristics in Large-Eddy Simulations Nested within Mesoscale Simulations Using the Weather Research and Forecasting Model

More information

CFD Application in Offshore Structures Design at PETROBRAS

CFD Application in Offshore Structures Design at PETROBRAS CFD Application in Offshore Structures Design at PETROBRAS Marcus Reis ESSS CFD Director Mooring System Design of Floating Production Systems; Current and Wind Loads; Wave Induced Drag Coefficients. Case

More information

Validation of the Pressure Code using JHU DNS Database

Validation of the Pressure Code using JHU DNS Database Validation of the Pressure Code using JHU DNS Database JHU turbulence DNS database (http://turbulence.pha.jhu.edu ) The data is from a direct numerical simulation of forced isotropic turbulence on a 1024

More information

Improvement of Reduced Order Modeling based on POD

Improvement of Reduced Order Modeling based on POD Author manuscript, published in "The Fifth International Conference on Computational Fluid Dynamics (28)" Improvement of Reduced Order Modeling based on POD M. Bergmann 1, C.-H. Bruneau 2, and A. Iollo

More information

A THREE-DIMENSIONAL ADAPTIVE WAVELET METHOD FOR FLUID STRUCTURE INTERACTION

A THREE-DIMENSIONAL ADAPTIVE WAVELET METHOD FOR FLUID STRUCTURE INTERACTION A THREE-DIMENSIONAL ADAPTIVE WAVELET METHOD FOR FLUID STRUCTURE INTERACTION N.K.-R. Kevlahan 1, O.V. Vasilyev 2, D. Goldstein 2, and A. Jay 1,3 kevlahan@mcmaster.ca 1 Department of Mathematics & Statistics,

More information

Downscaling and Parameterization. by Jun-Ichi Yano

Downscaling and Parameterization. by Jun-Ichi Yano Downscaling and Parameterization by Jun-Ichi Yano main references: J.-I. Yano, J.-L. Redelsperger, F. Guichard, and P. Bechtold, 2005: Mode Decomposition As a Methodology For Developing Convective-Scale

More information

1 Scalar Transport and Diffusion

1 Scalar Transport and Diffusion ME 543 Scalar Transport and Diffusion February 8 Scalar Transport and Diffusion As we will see, scalar transport is most naturally addressed in Lagrangian form, although it is often used in Eulerian form.

More information

Numerical Study of Turbulent Flow over Backward-Facing Step with Different Turbulence Models

Numerical Study of Turbulent Flow over Backward-Facing Step with Different Turbulence Models Numerical Study of Turbulent Flow over Backward-Facing Step with Different Turbulence Models D. G. Jehad *,a, G. A. Hashim b, A. K. Zarzoor c and C. S. Nor Azwadi d Department of Thermo-Fluids, Faculty

More information

Computational Fluid Dynamics (CFD) for Built Environment

Computational Fluid Dynamics (CFD) for Built Environment Computational Fluid Dynamics (CFD) for Built Environment Seminar 4 (For ASHRAE Members) Date: Sunday 20th March 2016 Time: 18:30-21:00 Venue: Millennium Hotel Sponsored by: ASHRAE Oryx Chapter Dr. Ahmad

More information

Baylor Fox-Kemper (Brown Geo.) CARTHE Spring 2014 All-Hands Meeting

Baylor Fox-Kemper (Brown Geo.) CARTHE Spring 2014 All-Hands Meeting Frontogenesis in the Presence of Stokes Forces Baylor Fox-Kemper (Brown Geo.) with Jim McWilliams (UCLA), Nobu Suzuki (Brown), and Qing Li (Brown) Expanding on past work with: Peter Hamlington (CU-Boulder),

More information

Best Practices: Electronics Cooling. Ruben Bons - CD-adapco

Best Practices: Electronics Cooling. Ruben Bons - CD-adapco Best Practices: Electronics Cooling Ruben Bons - CD-adapco Best Practices Outline Geometry Mesh Materials Conditions Solution Results Design exploration / Optimization Best Practices Outline Geometry Solids

More information