An Adaptive and Deterministic Method for Initializing the Lloyd-Max Algorithm

Size: px
Start display at page:

Download "An Adaptive and Deterministic Method for Initializing the Lloyd-Max Algorithm"

Transcription

1 An Adaptive and Deterministic Method for Initializing the Lloyd-Max Algorithm Jared Vicory and M. Emre Celebi Department of Computer Science Louisiana State University, Shreveport, LA, USA ABSTRACT Gray-level quantization (reduction) is an important operation in image processing and analysis. The Lloyd- Max algorithm (LMA) is a classic scalar quantization algorithm that can be used for gray-level reduction with minimal mean squared distortion. However, the algorithm is known to be very sensitive to the choice of initial centers. In this paper, we introduce an adaptive and deterministic algorithm to initialize the LMA for gray-level quantization. Experiments on a diverse set of publicly available test images demonstrate that the presented method outperforms the commonly used uniform initialization method. Keywords: Gray-level reduction, scalar quantization, Lloyd-Max algorithm, center initialization 1. INTRODUCTION Gray-level quantization (reduction) is an important operation in image processing and analysis. The objective is to reduce the number of unique gray levels in an image from an initial value of L to a desired number of K (K L) with minimal distortion. In most applications, 8-bit pixels in an image can be reduced to 4-bits or fewer without introducing perceivable distortion. Immediate applications of gray-level quantization include: (i) image compression, (ii) image segmentation, (iii) image analysis, and (iv) content-based image retrieval. The Lloyd-Max algorithm (LMA) 1,2 is a well-known scalar quantization algorithm that can be used for graylevel reduction. This algorithm is known to be optimal when the distortion measure is taken as the mean squared error (MSE). While originally developed for the discretization of analog signals so that they can be easily stored and manipulated, the LMA can also be used to quantize discrete data, such as an image histogram. The first step in the LMA is to select an initial set of K points, or centers, from the data set to be quantized. The data can then be partitioned around these initial centers in such a way that each partition consists of a set of points that are best represented by their respective center in the MSE sense. It can be shown that for two adjacent centers c i and c i+1, the optimal partition boundary lying between them is given by their average, i.e. (c i +c i+1 )/2. In addition, for a given partition, the optimum center is given by the centroid of that partition, which is calculated as the weighted average of the bins that lie between the partition s boundaries. Once a new set of centers is obtained by calculating the centroid of each partition, new partition boundaries can be obtained by averaging the new centers. Each iteration of this procedure yields a new set of centers, which give an MSE less than or equal to that of the previous iteration. Therefore, repeating this procedure until the change in MSE becomes negligible yields the final set of centers. In the case of gray-level quantization, each pixel in the original image is mapped to the nearest center. This results in a quantized image, which is an optimal representation of the original image given the initial set of centers. The performance of the LMA deps heavily on the choice of the initial centers. While the algorithm is guaranteed to obtain a local minimum in MSE, this minimum may be far from the global minimum (the ideal quantization) if the initial centers are chosen poorly. Therefore, an intelligent initialization method will not only enhance the quality of the quantized images, but also accelerate the convergence of the algorithm. Thesimplestwaytodeterminethe initialcentersistoselectthem randomlyfromamongthe pointsinthe data set. This method has two seriousdrawbacks. First, while it is possible to obtain the globalminimum MSE for the input image, it is equally likely to get the worst possible result. Therefore, over time, the performance of a random Corresponding author information: ecelebi@lsus.edu, Telephone:

2 initialization scheme will be only mediocre. Second, this scheme is nondeterministic, allowing the same image to be quantized in multiple ways, some of which may be very different. This can be undesirable for applications such as content-based image retrieval, where it is important to be able to quantize an image the same way so that it can be accurately compared with previously quantized images. Scheunders 3 proposed an initialization method based on genetic algorithms. This method gives better results than random initialization, however it is still non-deterministic and the genetic optimization procedure is computationally demanding. An alternative initialization method involves the selection of the centers so that they are uniformly distributed throughout the data set. This commonly used method has the advantage of being deterministic, but it disregards the distribution of data, which is likely to yield suboptimal results in many cases. In this paper, we present an adaptive and deterministic initialization method for the LMA. Our method is loosely based on the farthest-first heuristic, 4,5 which is commonly used to initialize the multidimensional variant of the LMA, i.e. the Linde-Buzo-Gray (LBG) algorithm. 6 The rest of the paper is organized as follows. Section 2 describes the proposed initialization method. Section 3 presents the comparison of the proposed method with the commonly used uniform initialization method. Finally, Section 4 gives the conclusions. 2. PROPOSED INITIALIZATION METHOD In orderto initialize the LMA adaptively, we modify the farthest-first heuristic. 4,5 According to this method, the first center c 1 is calculated as the mean of the data vectors and the i-th center c i is chosen to be the point that has the largest minimum distance to the previously selected centers, i.e. c 1,c 2,...,c i 1. In the n-dimensional case, the distance function is often chosen as the squared Euclidean (L 2 ) distance. When dealing with scalar data, a different distance measure is required. In this study, the distance of center c to histogram bin b with height h is calculated using the following Gaussian weighted function: e ((c b)/255)2 e h3/2. The advantage of this function is that it weights bins not only by their distance from each center (difference in gray levels), but also by their height (the percentage of pixels that fall into the bin). There are several ways to choose the first center, including the bin with the largest height, the median of the histogram, and the center bin. In this study, the centroid of the histogram, which represents the mean gray-level in the input image, is chosen as the first center. The pseudocode of the overall initialization method is given in Algorithm 1. It is important to note that this algorithm does not produce the centers in sorted order. Since K is often a small number, the sorting of the centers can be accomplished easily by a simple algorithm such as insertion sort EXPERIMENTAL RESULTS AND DISCUSSION The proposed initialization method was compared to the uniform initialization method on 16 images taken from the USC SIPI Database. 8 Table 1 compares the methods for 4, 8, 12, and 16 gray-levels on six representative images. The columns from left to right represent the number of quantization levels (K), MSE obtained by the uniform initialization method, MSE obtained the proposed method, and the percent improvement (degradation) achieved by the proposed method, respectively. Performance statistics over the entire set of (16) images is as follows. The proposed method outperformed uniform initialization in 73% of the cases. In cases where the former method performed better, the average MSE improvement was 10.8%, whereas in the remaining cases the average MSE degradation was 5.34%. Overall, the proposed method obtained an average of 6.49% improvement in MSE. In summary, the proposed method generally outperforms uniform initialization with respect to distortion minimization. Furthermore, in cases where the former gives inferior results, the discrepancy between the two methods is insignificant. This was expected since the latter method allocates the quantization levels without regard to the gray level distribution of the image, whereas the former performs the allocation adaptively. Figures 1 and 2 shows sample quantization results for the Truck and Tiffany images and the corresponding error images, respectively. The error image for a particular initialization method was obtained by taking the pixelwise absolute difference between the original and quantized images. In order to obtain a better visualization,

3 input : h[ ] (Normalized histogram of the input image) output: C = {c 1,c 2,...,c K } (K cluster centers) The first center is given by the histogram centroid; c 1 = 0; for g = 0;g 255;g = g +1 do c 1 = c 1 +g h[g]; Iterate over the required number of centers; for i = 2;i K;i = i+1 do Iterate over the histogram bins; max dist = ; max index = 0; for j = 0;j 255;j = j +1 do Iterate over the previously selected centers; min dist = ; for k = 1;k < i;k = k +1 do ( ) ck j dist = e e h[j]3/2 ; if dist < min dist then min dist = dist; if max dist < min dist then max dist = min dist; max index = j; c i = max index; Algorithm 1: Proposed Initialization Algorithm pixel values of the error images were multiplied by 8 and then negated. It can be seen that the proposed method produces visually pleasing results with less prominent contouring (see, for example, the top road in the Truck image and the neck area in the Tiffany image) and distortion. 4. CONCLUSIONS In this paper, we introduced an effective Lloyd-Max initialization algorithm for gray-level quantization. In contrast to other popular initialization schemes, this algorithm is adaptive, deterministic, and computationally efficient. Experiments on a large set of test images demonstrated that the presented method generally outperforms the commonly used uniform initialization method with respect to distortion minimization. ACKNOWLEDGMENTS This publication was made possible by grants from the Louisiana Board of Regents (LEQSF RD-A-12) and US National Science Foundation ( , ). REFERENCES [1] Max, J., Quantizing for Minimum Distortion, IRE Transactions on Information Theory 6(1), 7 12 (1960). [2] Lloyd, S., Least Squares Quantization in PCM, IEEE Transactions on Information Theory 28(2), (1982).

4 Table 1. MSE comparison of the LMA initialization methods K Uniform Proposed Delta (%) Airplane (216 gray levels) House (227 gray levels) Lenna (216 gray levels) Splash (234 gray levels) Tiffany (179 gray levels) Truck (144 gray levels)

5 (a) Original image (b) Uniform initialization (c) Error image (d) Proposed initialization (e) Error image Figure 1. Quantization results for the Truck image (K = 8)

6 (a) Original image (b) Uniform initialization (c) Error image (d) Proposed initialization (e) Error image Figure 2. Quantization results for the Tiffany image (K = 16)

7 [3] Scheunders, P., A Genetic Lloyd-Max Image Quantization Algorithm, Pattern Recognition Letters 17(5), (1996). [4] Gonzalez, T. F., Clustering to Minimize the Maximum Intercluster Distance, Theoretical Computer Science 38, (1985). [5] Hochbaum, D. and Shmoys, D., A Best Possible Heuristic for the k-center Problem, Mathematics of Operations Research 10(2), (1985). [6] Linde, Y., Buzo, A., and Gray, R., An Algorithm for Vector Quantizer Design, IEEE Transactions on Communications 28(1), (1980). [7] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., [Introduction to Algorithms], The MIT Press, third ed. (2009). [8] Weber, A., The USC-SIPI Image Database, Accessed: November 20, 2011).

An Accelerated Nearest Neighbor Search Method for the K-Means Clustering Algorithm

An Accelerated Nearest Neighbor Search Method for the K-Means Clustering Algorithm Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference An Accelerated Nearest Neighbor Search Method for the -Means Clustering Algorithm Adam Fausett

More information

An Effective Color Quantization Method Based on the Competitive Learning Paradigm

An Effective Color Quantization Method Based on the Competitive Learning Paradigm An Effective Color Quantization Method Based on the Competitive Learning Paradigm M. Emre Celebi Department of Computer Science Louisiana State University, Shreveport, LA, USA ecelebi@lsus.edu Abstract

More information

A COMPARATIVE STUDY OF K-MEANS AND FUZZY C-MEANS FOR COLOR REDUCTION. M. Emre Celebi

A COMPARATIVE STUDY OF K-MEANS AND FUZZY C-MEANS FOR COLOR REDUCTION. M. Emre Celebi A COMPARATIVE STUDY OF K-MEANS AND FUZZY C-MEANS FOR COLOR REDUCTION Quan Wen School of Computer Sci. & Eng. University of Elec. Sci. & Tech. of China Chengdu, P.R. China quanwen@uestc.edu.cn M. Emre Celebi

More information

Feature-Guided K-Means Algorithm for Optimal Image Vector Quantizer Design

Feature-Guided K-Means Algorithm for Optimal Image Vector Quantizer Design Journal of Information Hiding and Multimedia Signal Processing c 2017 ISSN 2073-4212 Ubiquitous International Volume 8, Number 6, November 2017 Feature-Guided K-Means Algorithm for Optimal Image Vector

More information

Module 8: Video Coding Basics Lecture 42: Sub-band coding, Second generation coding, 3D coding. The Lecture Contains: Performance Measures

Module 8: Video Coding Basics Lecture 42: Sub-band coding, Second generation coding, 3D coding. The Lecture Contains: Performance Measures The Lecture Contains: Performance Measures file:///d /...Ganesh%20Rana)/MY%20COURSE_Ganesh%20Rana/Prof.%20Sumana%20Gupta/FINAL%20DVSP/lecture%2042/42_1.htm[12/31/2015 11:57:52 AM] 3) Subband Coding It

More information

Hierarchical Minimum Spanning Trees for Lossy Image Set Compression

Hierarchical Minimum Spanning Trees for Lossy Image Set Compression Hierarchical Minimum Spanning Trees for Lossy Image Set Compression Anthony Schmieder, Barry Gergel, and Howard Cheng Department of Mathematics and Computer Science University of Lethbridge, Alberta, Canada

More information

Image Compression with Competitive Networks and Pre-fixed Prototypes*

Image Compression with Competitive Networks and Pre-fixed Prototypes* Image Compression with Competitive Networks and Pre-fixed Prototypes* Enrique Merida-Casermeiro^, Domingo Lopez-Rodriguez^, and Juan M. Ortiz-de-Lazcano-Lobato^ ^ Department of Applied Mathematics, University

More information

THREE DESCRIPTIONS OF SCALAR QUANTIZATION SYSTEM FOR EFFICIENT DATA TRANSMISSION

THREE DESCRIPTIONS OF SCALAR QUANTIZATION SYSTEM FOR EFFICIENT DATA TRANSMISSION THREE DESCRIPTIONS OF SCALAR QUANTIZATION SYSTEM FOR EFFICIENT DATA TRANSMISSION Hui Ting Teo and Mohd Fadzli bin Mohd Salleh School of Electrical and Electronic Engineering Universiti Sains Malaysia,

More information

Comparative Study on VQ with Simple GA and Ordain GA

Comparative Study on VQ with Simple GA and Ordain GA Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 204 Comparative Study on VQ with Simple GA and Ordain GA SADAF SAJJAD

More information

Dynamic local search algorithm for the clustering problem

Dynamic local search algorithm for the clustering problem UNIVERSITY OF JOENSUU DEPARTMENT OF COMPUTER SCIENCE Report Series A Dynamic local search algorithm for the clustering problem Ismo Kärkkäinen and Pasi Fränti Report A-2002-6 ACM I.4.2, I.5.3 UDK 519.712

More information

A Review on LBG Algorithm for Image Compression

A Review on LBG Algorithm for Image Compression A Review on LBG Algorithm for Image Compression Ms. Asmita A.Bardekar #1, Mr. P.A.Tijare #2 # CSE Department, SGBA University, Amravati. Sipna s College of Engineering and Technology, In front of Nemani

More information

Compression of Image Using VHDL Simulation

Compression of Image Using VHDL Simulation Compression of Image Using VHDL Simulation 1) Prof. S. S. Mungona (Assistant Professor, Sipna COET, Amravati). 2) Vishal V. Rathi, Abstract : Maintenance of all essential information without any deletion

More information

Chapter 7: Competitive learning, clustering, and self-organizing maps

Chapter 7: Competitive learning, clustering, and self-organizing maps Chapter 7: Competitive learning, clustering, and self-organizing maps António R. C. Paiva EEL 6814 Spring 2008 Outline Competitive learning Clustering Self-Organizing Maps What is competition in neural

More information

Operators-Based on Second Derivative double derivative Laplacian operator Laplacian Operator Laplacian Of Gaussian (LOG) Operator LOG

Operators-Based on Second Derivative double derivative Laplacian operator Laplacian Operator Laplacian Of Gaussian (LOG) Operator LOG Operators-Based on Second Derivative The principle of edge detection based on double derivative is to detect only those points as edge points which possess local maxima in the gradient values. Laplacian

More information

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong)

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) References: [1] http://homepages.inf.ed.ac.uk/rbf/hipr2/index.htm [2] http://www.cs.wisc.edu/~dyer/cs540/notes/vision.html

More information

Machine Learning for Signal Processing Clustering. Bhiksha Raj Class Oct 2016

Machine Learning for Signal Processing Clustering. Bhiksha Raj Class Oct 2016 Machine Learning for Signal Processing Clustering Bhiksha Raj Class 11. 13 Oct 2016 1 Statistical Modelling and Latent Structure Much of statistical modelling attempts to identify latent structure in the

More information

On the splitting method for vector quantization codebook generation

On the splitting method for vector quantization codebook generation On the splitting method for vector quantization codebook generation Pasi Fränti University of Joensuu Department of Computer Science P.O. Box 111 FIN-80101 Joensuu, Finland E-mail: franti@cs.joensuu.fi

More information

6. Dicretization methods 6.1 The purpose of discretization

6. Dicretization methods 6.1 The purpose of discretization 6. Dicretization methods 6.1 The purpose of discretization Often data are given in the form of continuous values. If their number is huge, model building for such data can be difficult. Moreover, many

More information

CHAPTER 6 INFORMATION HIDING USING VECTOR QUANTIZATION

CHAPTER 6 INFORMATION HIDING USING VECTOR QUANTIZATION CHAPTER 6 INFORMATION HIDING USING VECTOR QUANTIZATION In the earlier part of the thesis different methods in the spatial domain and transform domain are studied This chapter deals with the techniques

More information

Today. Lecture 4: Last time. The EM algorithm. We examine clustering in a little more detail; we went over it a somewhat quickly last time

Today. Lecture 4: Last time. The EM algorithm. We examine clustering in a little more detail; we went over it a somewhat quickly last time Today Lecture 4: We examine clustering in a little more detail; we went over it a somewhat quickly last time The CAD data will return and give us an opportunity to work with curves (!) We then examine

More information

Binary vector quantizer design using soft centroids

Binary vector quantizer design using soft centroids Signal Processing: Image Communication 14 (1999) 677}681 Binary vector quantizer design using soft centroids Pasi FraK nti *, Timo Kaukoranta Department of Computer Science, University of Joensuu, P.O.

More information

Clustering. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

Clustering. CE-717: Machine Learning Sharif University of Technology Spring Soleymani Clustering CE-717: Machine Learning Sharif University of Technology Spring 2016 Soleymani Outline Clustering Definition Clustering main approaches Partitional (flat) Hierarchical Clustering validation

More information

A GENETIC C-MEANS CLUSTERING ALGORITHM APPLIED TO COLOR IMAGE QUANTIZATION

A GENETIC C-MEANS CLUSTERING ALGORITHM APPLIED TO COLOR IMAGE QUANTIZATION A GENETIC C-MEANS CLUSTERING ALGORITHM APPLIED TO COLOR IMAGE QUANTIZATION P. Scheunders Vision Lab, Dept. of Physics, RUCA University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium email:

More information

Kapitel 4: Clustering

Kapitel 4: Clustering Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Knowledge Discovery in Databases WiSe 2017/18 Kapitel 4: Clustering Vorlesung: Prof. Dr.

More information

An Initial Seed Selection Algorithm for K-means Clustering of Georeferenced Data to Improve

An Initial Seed Selection Algorithm for K-means Clustering of Georeferenced Data to Improve An Initial Seed Selection Algorithm for K-means Clustering of Georeferenced Data to Improve Replicability of Cluster Assignments for Mapping Application Fouad Khan Central European University-Environmental

More information

Supervised vs. Unsupervised Learning

Supervised vs. Unsupervised Learning Clustering Supervised vs. Unsupervised Learning So far we have assumed that the training samples used to design the classifier were labeled by their class membership (supervised learning) We assume now

More information

Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric.

Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric. CS 188: Artificial Intelligence Fall 2008 Lecture 25: Kernels and Clustering 12/2/2008 Dan Klein UC Berkeley Case-Based Reasoning Similarity for classification Case-based reasoning Predict an instance

More information

CS 188: Artificial Intelligence Fall 2008

CS 188: Artificial Intelligence Fall 2008 CS 188: Artificial Intelligence Fall 2008 Lecture 25: Kernels and Clustering 12/2/2008 Dan Klein UC Berkeley 1 1 Case-Based Reasoning Similarity for classification Case-based reasoning Predict an instance

More information

Iterative split-and-merge algorithm for VQ codebook generation published in Optical Engineering, 37 (10), pp , October 1998

Iterative split-and-merge algorithm for VQ codebook generation published in Optical Engineering, 37 (10), pp , October 1998 Iterative split-and-merge algorithm for VQ codebook generation published in Optical Engineering, 37 (10), pp. 2726-2732, October 1998 Timo Kaukoranta 1, Pasi Fränti 2 and Olli Nevalainen 1 1 Turku Centre

More information

Texture Image Segmentation using FCM

Texture Image Segmentation using FCM Proceedings of 2012 4th International Conference on Machine Learning and Computing IPCSIT vol. 25 (2012) (2012) IACSIT Press, Singapore Texture Image Segmentation using FCM Kanchan S. Deshmukh + M.G.M

More information

APPLICATION OF MULTIPLE RANDOM CENTROID (MRC) BASED K-MEANS CLUSTERING ALGORITHM IN INSURANCE A REVIEW ARTICLE

APPLICATION OF MULTIPLE RANDOM CENTROID (MRC) BASED K-MEANS CLUSTERING ALGORITHM IN INSURANCE A REVIEW ARTICLE APPLICATION OF MULTIPLE RANDOM CENTROID (MRC) BASED K-MEANS CLUSTERING ALGORITHM IN INSURANCE A REVIEW ARTICLE Sundari NallamReddy, Samarandra Behera, Sanjeev Karadagi, Dr. Anantha Desik ABSTRACT: Tata

More information

Genetic algorithm with deterministic crossover for vector quantization

Genetic algorithm with deterministic crossover for vector quantization Pattern Recognition Letters 21 (2000) 61±68 www.elsevier.nl/locate/patrec Genetic algorithm with deterministic crossover for vector quantization Pasi Franti * Department of Computer Science, University

More information

Lecture 2 The k-means clustering problem

Lecture 2 The k-means clustering problem CSE 29: Unsupervised learning Spring 2008 Lecture 2 The -means clustering problem 2. The -means cost function Last time we saw the -center problem, in which the input is a set S of data points and the

More information

Available online at ScienceDirect. Procedia Computer Science 89 (2016 )

Available online at   ScienceDirect. Procedia Computer Science 89 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 89 (2016 ) 778 784 Twelfth International Multi-Conference on Information Processing-2016 (IMCIP-2016) Color Image Compression

More information

A Study on the Effect of Codebook and CodeVector Size on Image Retrieval Using Vector Quantization

A Study on the Effect of Codebook and CodeVector Size on Image Retrieval Using Vector Quantization Computer Science and Engineering. 0; (): -7 DOI: 0. 593/j.computer.000.0 A Study on the Effect of Codebook and CodeVector Size on Image Retrieval Using Vector Quantization B. Janet *, A. V. Reddy Dept.

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervised Learning and Clustering Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)

More information

3D Surface Recovery via Deterministic Annealing based Piecewise Linear Surface Fitting Algorithm

3D Surface Recovery via Deterministic Annealing based Piecewise Linear Surface Fitting Algorithm 3D Surface Recovery via Deterministic Annealing based Piecewise Linear Surface Fitting Algorithm Bing Han, Chris Paulson, and Dapeng Wu Department of Electrical and Computer Engineering University of Florida

More information

Accelerating Unique Strategy for Centroid Priming in K-Means Clustering

Accelerating Unique Strategy for Centroid Priming in K-Means Clustering IJIRST International Journal for Innovative Research in Science & Technology Volume 3 Issue 07 December 2016 ISSN (online): 2349-6010 Accelerating Unique Strategy for Centroid Priming in K-Means Clustering

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Unsupervised Learning: Clustering Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com (Some material

More information

Review of the Robust K-means Algorithm and Comparison with Other Clustering Methods

Review of the Robust K-means Algorithm and Comparison with Other Clustering Methods Review of the Robust K-means Algorithm and Comparison with Other Clustering Methods Ben Karsin University of Hawaii at Manoa Information and Computer Science ICS 63 Machine Learning Fall 8 Introduction

More information

Clustering. Unsupervised Learning

Clustering. Unsupervised Learning Clustering. Unsupervised Learning Maria-Florina Balcan 03/02/2016 Clustering, Informal Goals Goal: Automatically partition unlabeled data into groups of similar datapoints. Question: When and why would

More information

Discrete geometry. Lecture 2. Alexander & Michael Bronstein tosca.cs.technion.ac.il/book

Discrete geometry. Lecture 2. Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Discrete geometry Lecture 2 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 The world is continuous, but the mind is discrete

More information

MRT based Adaptive Transform Coder with Classified Vector Quantization (MATC-CVQ)

MRT based Adaptive Transform Coder with Classified Vector Quantization (MATC-CVQ) 5 MRT based Adaptive Transform Coder with Classified Vector Quantization (MATC-CVQ) Contents 5.1 Introduction.128 5.2 Vector Quantization in MRT Domain Using Isometric Transformations and Scaling.130 5.2.1

More information

Topic 4 Image Segmentation

Topic 4 Image Segmentation Topic 4 Image Segmentation What is Segmentation? Why? Segmentation important contributing factor to the success of an automated image analysis process What is Image Analysis: Processing images to derive

More information

Data Mining. Part 2. Data Understanding and Preparation. 2.4 Data Transformation. Spring Instructor: Dr. Masoud Yaghini. Data Transformation

Data Mining. Part 2. Data Understanding and Preparation. 2.4 Data Transformation. Spring Instructor: Dr. Masoud Yaghini. Data Transformation Data Mining Part 2. Data Understanding and Preparation 2.4 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Normalization Attribute Construction Aggregation Attribute Subset Selection Discretization

More information

Differential Compression and Optimal Caching Methods for Content-Based Image Search Systems

Differential Compression and Optimal Caching Methods for Content-Based Image Search Systems Differential Compression and Optimal Caching Methods for Content-Based Image Search Systems Di Zhong a, Shih-Fu Chang a, John R. Smith b a Department of Electrical Engineering, Columbia University, NY,

More information

Summary of Last Chapter. Course Content. Chapter 3 Objectives. Chapter 3: Data Preprocessing. Dr. Osmar R. Zaïane. University of Alberta 4

Summary of Last Chapter. Course Content. Chapter 3 Objectives. Chapter 3: Data Preprocessing. Dr. Osmar R. Zaïane. University of Alberta 4 Principles of Knowledge Discovery in Data Fall 2004 Chapter 3: Data Preprocessing Dr. Osmar R. Zaïane University of Alberta Summary of Last Chapter What is a data warehouse and what is it for? What is

More information

9.913 Pattern Recognition for Vision. Class 8-2 An Application of Clustering. Bernd Heisele

9.913 Pattern Recognition for Vision. Class 8-2 An Application of Clustering. Bernd Heisele 9.913 Class 8-2 An Application of Clustering Bernd Heisele Fall 2003 Overview Problem Background Clustering for Tracking Examples Literature Homework Problem Detect objects on the road: Cars, trucks, motorbikes,

More information

Cluster Analysis. Jia Li Department of Statistics Penn State University. Summer School in Statistics for Astronomers IV June 9-14, 2008

Cluster Analysis. Jia Li Department of Statistics Penn State University. Summer School in Statistics for Astronomers IV June 9-14, 2008 Cluster Analysis Jia Li Department of Statistics Penn State University Summer School in Statistics for Astronomers IV June 9-1, 8 1 Clustering A basic tool in data mining/pattern recognition: Divide a

More information

REAL-TIME IMPLEME TATIO OF ORDER-STATISTICS BASED DIRECTIO AL FILTERS ABSTRACT

REAL-TIME IMPLEME TATIO OF ORDER-STATISTICS BASED DIRECTIO AL FILTERS ABSTRACT REAL-TIME IMPLEME TATIO OF ORDER-STATISTICS BASED DIRECTIO AL FILTERS M. Emre Celebi ecelebi@lsus.edu Department of Computer Science, Louisiana State University in Shreveport One University Place, Shreveport,

More information

Hard clustering. Each object is assigned to one and only one cluster. Hierarchical clustering is usually hard. Soft (fuzzy) clustering

Hard clustering. Each object is assigned to one and only one cluster. Hierarchical clustering is usually hard. Soft (fuzzy) clustering An unsupervised machine learning problem Grouping a set of objects in such a way that objects in the same group (a cluster) are more similar (in some sense or another) to each other than to those in other

More information

Non-Parametric Vector Quantization Algorithm

Non-Parametric Vector Quantization Algorithm Non-Parametric Vector Quantization Algorithm 31 Non-Parametric Vector Quantization Algorithm Haemwaan Sivaraks and Athasit Surarerks, Non-members ABSTRACT Recently researches in vector quantization domain

More information

k-means Clustering David S. Rosenberg April 24, 2018 New York University

k-means Clustering David S. Rosenberg April 24, 2018 New York University k-means Clustering David S. Rosenberg New York University April 24, 2018 David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 April 24, 2018 1 / 19 Contents 1 k-means Clustering 2 k-means:

More information

Robust Shape Retrieval Using Maximum Likelihood Theory

Robust Shape Retrieval Using Maximum Likelihood Theory Robust Shape Retrieval Using Maximum Likelihood Theory Naif Alajlan 1, Paul Fieguth 2, and Mohamed Kamel 1 1 PAMI Lab, E & CE Dept., UW, Waterloo, ON, N2L 3G1, Canada. naif, mkamel@pami.uwaterloo.ca 2

More information

Clustering Algorithms. Margareta Ackerman

Clustering Algorithms. Margareta Ackerman Clustering Algorithms Margareta Ackerman A sea of algorithms As we discussed last class, there are MANY clustering algorithms, and new ones are proposed all the time. They are very different from each

More information

Segmentation by Clustering

Segmentation by Clustering KECE471 Computer Vision Segmentation by Clustering Chang-Su Kim Chapter 14, Computer Vision by Forsyth and Ponce Note: Dr. Forsyth s notes are partly used. Jae-Kyun Ahn in Korea University made the first

More information

Overcompressing JPEG images with Evolution Algorithms

Overcompressing JPEG images with Evolution Algorithms Author manuscript, published in "EvoIASP2007, Valencia : Spain (2007)" Overcompressing JPEG images with Evolution Algorithms Jacques Lévy Véhel 1, Franklin Mendivil 2 and Evelyne Lutton 1 1 Inria, Complex

More information

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Cluster Analysis Mu-Chun Su Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Introduction Cluster analysis is the formal study of algorithms and methods

More information

Pasi Fränti K-means properties on six clustering benchmark datasets Pasi Fränti and Sami Sieranoja Algorithms, 2017.

Pasi Fränti K-means properties on six clustering benchmark datasets Pasi Fränti and Sami Sieranoja Algorithms, 2017. K-means properties Pasi Fränti 17.4.2017 K-means properties on six clustering benchmark datasets Pasi Fränti and Sami Sieranoja Algorithms, 2017. Goal of k-means Input N points: X={x 1, x 2,, x N } Output

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

Clustering. Unsupervised Learning

Clustering. Unsupervised Learning Clustering. Unsupervised Learning Maria-Florina Balcan 11/05/2018 Clustering, Informal Goals Goal: Automatically partition unlabeled data into groups of similar datapoints. Question: When and why would

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervised Learning and Clustering Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2008 CS 551, Spring 2008 c 2008, Selim Aksoy (Bilkent University)

More information

Digital Image Fundamentals

Digital Image Fundamentals Digital Image Fundamentals Image Quality Objective/ subjective Machine/human beings Mathematical and Probabilistic/ human intuition and perception 6 Structure of the Human Eye photoreceptor cells 75~50

More information

AN EFFICIENT CODEBOOK INITIALIZATION APPROACH FOR LBG ALGORITHM

AN EFFICIENT CODEBOOK INITIALIZATION APPROACH FOR LBG ALGORITHM AN EFFICIENT CODEBOOK INITIALIZATION APPROACH FOR ALGORITHM Arup Kumar Pal 1 and Anup Sar 2 1 Department of Computer Science and Engineering, NIT Jamshedpur, India arupkrpal@gmail.com 2 Department of Electronics

More information

DIFFERENTIAL IMAGE COMPRESSION BASED ON ADAPTIVE PREDICTION

DIFFERENTIAL IMAGE COMPRESSION BASED ON ADAPTIVE PREDICTION DIFFERENTIAL IMAGE COMPRESSION BASED ON ADAPTIVE PREDICTION M.V. Gashnikov Samara National Research University, Samara, Russia Abstract. The paper describes the adaptive prediction algorithm for differential

More information

N-Candidate methods for location invariant dithering of color images

N-Candidate methods for location invariant dithering of color images Image and Vision Computing 18 (2000) 493 500 www.elsevier.com/locate/imavis N-Candidate methods for location invariant dithering of color images K. Lemström a,1, *, P. Fränti b,2 a Department of Computer

More information

Two Algorithms of Image Segmentation and Measurement Method of Particle s Parameters

Two Algorithms of Image Segmentation and Measurement Method of Particle s Parameters Appl. Math. Inf. Sci. 6 No. 1S pp. 105S-109S (2012) Applied Mathematics & Information Sciences An International Journal @ 2012 NSP Natural Sciences Publishing Cor. Two Algorithms of Image Segmentation

More information

Fast color quantization using weighted sort-means clustering

Fast color quantization using weighted sort-means clustering 2434 J. Opt. Soc. Am. A/ Vol. 26, No. 11/ November 2009 M. Emre Celebi Fast color quantization using weighted sort-means clustering M. Emre Celebi Department of Computer Science, Louisiana State University

More information

Image Segmentation Based on Watershed and Edge Detection Techniques

Image Segmentation Based on Watershed and Edge Detection Techniques 0 The International Arab Journal of Information Technology, Vol., No., April 00 Image Segmentation Based on Watershed and Edge Detection Techniques Nassir Salman Computer Science Department, Zarqa Private

More information

Evaluation of texture features for image segmentation

Evaluation of texture features for image segmentation RIT Scholar Works Articles 9-14-2001 Evaluation of texture features for image segmentation Navid Serrano Jiebo Luo Andreas Savakis Follow this and additional works at: http://scholarworks.rit.edu/article

More information

INF4820. Clustering. Erik Velldal. Nov. 17, University of Oslo. Erik Velldal INF / 22

INF4820. Clustering. Erik Velldal. Nov. 17, University of Oslo. Erik Velldal INF / 22 INF4820 Clustering Erik Velldal University of Oslo Nov. 17, 2009 Erik Velldal INF4820 1 / 22 Topics for Today More on unsupervised machine learning for data-driven categorization: clustering. The task

More information

Sampling-based Planning 2

Sampling-based Planning 2 RBE MOTION PLANNING Sampling-based Planning 2 Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Problem with KD-tree RBE MOTION PLANNING Curse of dimension

More information

Clustering. Robert M. Haralick. Computer Science, Graduate Center City University of New York

Clustering. Robert M. Haralick. Computer Science, Graduate Center City University of New York Clustering Robert M. Haralick Computer Science, Graduate Center City University of New York Outline K-means 1 K-means 2 3 4 5 Clustering K-means The purpose of clustering is to determine the similarity

More information

k-center Problems Joey Durham Graphs, Combinatorics and Convex Optimization Reading Group Summer 2008

k-center Problems Joey Durham Graphs, Combinatorics and Convex Optimization Reading Group Summer 2008 k-center Problems Joey Durham Graphs, Combinatorics and Convex Optimization Reading Group Summer 2008 Outline General problem definition Several specific examples k-center, k-means, k-mediod Approximation

More information

High Dimensional Indexing by Clustering

High Dimensional Indexing by Clustering Yufei Tao ITEE University of Queensland Recall that, our discussion so far has assumed that the dimensionality d is moderately high, such that it can be regarded as a constant. This means that d should

More information

4.1 QUANTIZATION NOISE

4.1 QUANTIZATION NOISE DIGITAL SIGNAL PROCESSING UNIT IV FINITE WORD LENGTH EFFECTS Contents : 4.1 Quantization Noise 4.2 Fixed Point and Floating Point Number Representation 4.3 Truncation and Rounding 4.4 Quantization Noise

More information

FPGA implementation of a predictive vector quantization image compression algorithm for image sensor applications

FPGA implementation of a predictive vector quantization image compression algorithm for image sensor applications University of Wollongong Research Online Faculty of Health and Behavioural Sciences - Papers (Archive) Faculty of Science, Medicine and Health 2008 FPGA implementation of a predictive vector quantization

More information

New Approach of Estimating PSNR-B For Deblocked

New Approach of Estimating PSNR-B For Deblocked New Approach of Estimating PSNR-B For Deblocked Images K.Silpa, Dr.S.Aruna Mastani 2 M.Tech (DECS,)Department of ECE, JNTU College of Engineering, Anantapur, Andhra Pradesh, India Email: k.shilpa4@gmail.com,

More information

Clustering and Visualisation of Data

Clustering and Visualisation of Data Clustering and Visualisation of Data Hiroshi Shimodaira January-March 28 Cluster analysis aims to partition a data set into meaningful or useful groups, based on distances between data points. In some

More information

Clustering. Unsupervised Learning

Clustering. Unsupervised Learning Clustering. Unsupervised Learning Maria-Florina Balcan 04/06/2015 Reading: Chapter 14.3: Hastie, Tibshirani, Friedman. Additional resources: Center Based Clustering: A Foundational Perspective. Awasthi,

More information

A Novel Approach to Image Segmentation for Traffic Sign Recognition Jon Jay Hack and Sidd Jagadish

A Novel Approach to Image Segmentation for Traffic Sign Recognition Jon Jay Hack and Sidd Jagadish A Novel Approach to Image Segmentation for Traffic Sign Recognition Jon Jay Hack and Sidd Jagadish Introduction/Motivation: As autonomous vehicles, such as Google s self-driving car, have recently become

More information

CHAPTER 6 MODIFIED FUZZY TECHNIQUES BASED IMAGE SEGMENTATION

CHAPTER 6 MODIFIED FUZZY TECHNIQUES BASED IMAGE SEGMENTATION CHAPTER 6 MODIFIED FUZZY TECHNIQUES BASED IMAGE SEGMENTATION 6.1 INTRODUCTION Fuzzy logic based computational techniques are becoming increasingly important in the medical image analysis arena. The significant

More information

CS443: Digital Imaging and Multimedia Binary Image Analysis. Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University

CS443: Digital Imaging and Multimedia Binary Image Analysis. Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University CS443: Digital Imaging and Multimedia Binary Image Analysis Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines A Simple Machine Vision System Image segmentation by thresholding

More information

Finite Element Methods for the Poisson Equation and its Applications

Finite Element Methods for the Poisson Equation and its Applications Finite Element Methods for the Poisson Equation and its Applications Charles Crook July 30, 2013 Abstract The finite element method is a fast computational method that also has a solid mathematical theory

More information

2D image segmentation based on spatial coherence

2D image segmentation based on spatial coherence 2D image segmentation based on spatial coherence Václav Hlaváč Czech Technical University in Prague Center for Machine Perception (bridging groups of the) Czech Institute of Informatics, Robotics and Cybernetics

More information

Image Transformation Techniques Dr. Rajeev Srivastava Dept. of Computer Engineering, ITBHU, Varanasi

Image Transformation Techniques Dr. Rajeev Srivastava Dept. of Computer Engineering, ITBHU, Varanasi Image Transformation Techniques Dr. Rajeev Srivastava Dept. of Computer Engineering, ITBHU, Varanasi 1. Introduction The choice of a particular transform in a given application depends on the amount of

More information

Clustering in R d. Clustering. Widely-used clustering methods. The k-means optimization problem CSE 250B

Clustering in R d. Clustering. Widely-used clustering methods. The k-means optimization problem CSE 250B Clustering in R d Clustering CSE 250B Two common uses of clustering: Vector quantization Find a finite set of representatives that provides good coverage of a complex, possibly infinite, high-dimensional

More information

PSD2B Digital Image Processing. Unit I -V

PSD2B Digital Image Processing. Unit I -V PSD2B Digital Image Processing Unit I -V Syllabus- Unit 1 Introduction Steps in Image Processing Image Acquisition Representation Sampling & Quantization Relationship between pixels Color Models Basics

More information

A Course in Machine Learning

A Course in Machine Learning A Course in Machine Learning Hal Daumé III 13 UNSUPERVISED LEARNING If you have access to labeled training data, you know what to do. This is the supervised setting, in which you have a teacher telling

More information

What to come. There will be a few more topics we will cover on supervised learning

What to come. There will be a few more topics we will cover on supervised learning Summary so far Supervised learning learn to predict Continuous target regression; Categorical target classification Linear Regression Classification Discriminative models Perceptron (linear) Logistic regression

More information

Iterative random projections for high-dimensional data clustering

Iterative random projections for high-dimensional data clustering Iterative random projections for high-dimensional data clustering Ângelo Cardoso, Andreas Wichert INESC-ID Lisboa and Instituto Superior Técnico, Technical University of Lisbon Av. Prof. Dr. Aníbal Cavaco

More information

UNSUPERVISED STATIC DISCRETIZATION METHODS IN DATA MINING. Daniela Joiţa Titu Maiorescu University, Bucharest, Romania

UNSUPERVISED STATIC DISCRETIZATION METHODS IN DATA MINING. Daniela Joiţa Titu Maiorescu University, Bucharest, Romania UNSUPERVISED STATIC DISCRETIZATION METHODS IN DATA MINING Daniela Joiţa Titu Maiorescu University, Bucharest, Romania danielajoita@utmro Abstract Discretization of real-valued data is often used as a pre-processing

More information

Segmentation of Mushroom and Cap Width Measurement Using Modified K-Means Clustering Algorithm

Segmentation of Mushroom and Cap Width Measurement Using Modified K-Means Clustering Algorithm Segmentation of Mushroom and Cap Width Measurement Using Modified K-Means Clustering Algorithm Eser SERT, Ibrahim Taner OKUMUS Computer Engineering Department, Engineering and Architecture Faculty, Kahramanmaras

More information

Data Preprocessing. Why Data Preprocessing? MIT-652 Data Mining Applications. Chapter 3: Data Preprocessing. Multi-Dimensional Measure of Data Quality

Data Preprocessing. Why Data Preprocessing? MIT-652 Data Mining Applications. Chapter 3: Data Preprocessing. Multi-Dimensional Measure of Data Quality Why Data Preprocessing? Data in the real world is dirty incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data e.g., occupation = noisy: containing

More information

MRT based Fixed Block size Transform Coding

MRT based Fixed Block size Transform Coding 3 MRT based Fixed Block size Transform Coding Contents 3.1 Transform Coding..64 3.1.1 Transform Selection...65 3.1.2 Sub-image size selection... 66 3.1.3 Bit Allocation.....67 3.2 Transform coding using

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Data Mining by I. H. Witten and E. Frank 7 Engineering the input and output Attribute selection Scheme-independent, scheme-specific Attribute discretization Unsupervised, supervised, error-

More information

Image Enhancement. Digital Image Processing, Pratt Chapter 10 (pages ) Part 1: pixel-based operations

Image Enhancement. Digital Image Processing, Pratt Chapter 10 (pages ) Part 1: pixel-based operations Image Enhancement Digital Image Processing, Pratt Chapter 10 (pages 243-261) Part 1: pixel-based operations Image Processing Algorithms Spatial domain Operations are performed in the image domain Image

More information

Water-Filling: A Novel Way for Image Structural Feature Extraction

Water-Filling: A Novel Way for Image Structural Feature Extraction Water-Filling: A Novel Way for Image Structural Feature Extraction Xiang Sean Zhou Yong Rui Thomas S. Huang Beckman Institute for Advanced Science and Technology University of Illinois at Urbana Champaign,

More information

Spatial Enhancement Definition

Spatial Enhancement Definition Spatial Enhancement Nickolas Faust The Electro- Optics, Environment, and Materials Laboratory Georgia Tech Research Institute Georgia Institute of Technology Definition Spectral enhancement relies on changing

More information