11 - Bump Mapping. Bump-Mapped Objects. Bump-Mapped Objects. Bump-Mapped Objects. Limitations Of Texture Mapping. Bumps: Perturbed Normals

Size: px
Start display at page:

Download "11 - Bump Mapping. Bump-Mapped Objects. Bump-Mapped Objects. Bump-Mapped Objects. Limitations Of Texture Mapping. Bumps: Perturbed Normals"

Transcription

1 CSc 155 Advanced Compter Graphics Limitations Of extre Mapping extre mapping paints srfaces o extre image is typically fixed Some characteristics are difficlt to textre o Roghness, Wrinkles extre illmination direction is fixed o extre looks wrong if scene lighting changes In smmary, it doesn t take into accont how lighting wold be deflected off of the textre 2 Bmps: Pertrbed ormals Bmp-Mapped Objects Srface normals on a real bmp Srface normals on a flat polygon Modified ( pertrbed ) normals 3 4 Bmp-Mapped Objects Bmp-Mapped Objects 5 6

2 Obtaining Bmp Fnctions Explicit Bmp Fnctions Original parametric srface Bmp fnction b( sin( π Modified bmpy srface 7 8 Compting Pertrbed ormals ew srface points are implied by and b( Implied bmpy srface ) ˆ P( P( P( ˆ * b( Approximating the normal at new srface point: Bmp fnction b( P( ˆ P( P( P( ˆ * b( slope of b( ˆ d b( d d b d A good approximation for the new normal is [Blinn] 9 10 Relationship of bmp fnction slope to modified normals: positive slope Bmp fnction b( slope = negative slope Similar steps apply for 3D srfaces: Srface implied by Bmp fnction b( v P( P P( ( B slope indirection B P( B slope invdirection v P( P( ˆ b( Vectors in local ( tangent ) space 11 12

3 v Approximating : P( ˆ P( B B ˆ v b( b( ˆ B ˆ P( P( ˆ b( P( P( ˆ b( B v v v B Smmary ( procedral bmp mapping ) o Given a parametric srface P(, o the existing normal at ( can be pertrbed in each of two directions and v o by adding small changes Δ and Δv respectively o where Δ and Δv are derived from the slope of a bmp fnction, b(. o he new normal is then sed in the lighting and shading eqations. Bmp fnction slope in v Vector in B direction Bmp fnction slope in Vector in direction ormal Mapping Encoding ormals In RGB Basic bmp-mapping goal: alter the normal Alternative: replace normals o eed a sorce of new normals ormals (when normalied) are nit length o hence, (x*x)+(y*y)+(*) = 1, and therefore -1 <= x,y, <= 1 ew normals can be stored in 3 bytes (e.g. in a color image): r = (x+1)/2 g = (y+1)/2 b = (+1)/2 A tre nit normal is perpendiclar to the srface (has vale [0 0 1]) o eed to represent Δx/Δy deviations (positive or negative) RGB vales can range from o Choose midrange R & G vales to represent Δx = Δy = 0 ˆ R G B Z As ints: Y As floats: Δx=0 Δy= A ormal Map image file Diffsely lit textred tors Generating ormal Maps meros software packages are available: GIMP Photoshop plgins SS_Bmp_Generator etc. ormal-mapped tors Image credit: Pal Baker,

4 Lighting Calclations angent Space L H V B L Problem: vectors freqently not in same space o ormal, Light, angent, Bitangent, eye, etc. Soltion: transform vectors to common local or tangent space eeded: Light vector in angent Space, for each vertex x Bx B x 0 B y 0 y y B Using B vales he B matrix doesn t sally have to be bilt, becase the comptations redce to: lightdir = vec3 ( (L ), (L B), (L ) ) eyedir = vec3 ( (V ), (V B), (V ) ) he binormal vector (B) is easily compted by x Storing B vales Mst be compted/saved per vertex Vertex3D... - normal : Vector3D - tangent : Vector3D - binormal : Vector3D - tangentspacelight : Vector3D... hs, the application only needs to obtain and. 21 graphicslib3d Vertex3D class has fields for storing the relevant vales, bt application code needs to provide them. 22 Y ors With B Vales Oter Radis B B Z Precision Ring 0 Inner Radis Precision Inner Radis Oter Radis Front View Y op View 23 angent Space In Shaders Application code: o Provide vertex tangent and normal vectors Vertex shader: o Use vertex tangent and normal to bild Binormal (B) vector o Use B to convert light and view vectors to tangent space o Compte vertex position sing ModelViewProjection matrix o Send to fragment processor: vertex position textre coordinates L and V in tangent space Fragment shader (two approaches): H L V o Procedral bmp fnction in fragment shader (seen previosly) o Get bmps / normals from a textre nit sing a sampler variable 24

5 Height Mapping A monochrome image where pixel intensity = height Low vales (black) = low height High vales (white) = high height Interpretation: Original Height Field Image Height Field Image 25 Edge-on (tilted) View 26 Expanded Portion Height Maps for lighting We can se the difference between adjacent pixels as an approximation of the slope Height map lighting example Pixel vale: Forward Diffs: A bmp map height field textre file A checker-board textred bmp-mapped cylinder Height Maps for altering position We can se the brightness of a texel to alter the actal y-coordinate of a position P.y = P.y P.y = P.y P.y = P.y example: height map in vertex shader #version 430 layot (location=0) in vec4 vertpos; layot (location=1) in vec2 tex_coord;... layot (binding=0) niform sampler2d s; layot (binding=1) niform sampler2d t;... void main(void) { vec4 P = vertpos; P.y = P.y + textre2d(s,tex_coord).r; P = mv_matrix * P;... } tc = tex_coord; gl_position = proj_matrix * P; // the vertex geometric position // textre coordinates // height map // textre image 30

6 height map in vertex shader (cont.) height map (textre 1) Limitations Vertex shaders are limited to vertices Height vales between vertices are interpolated, rather than looked p in the height map Details in the height map can therefore be lost. color map (textre 2) applied to a tors We need a way to modify locations in between the original model vertices. Later we will achieve this in the tessellation shader

Reading. 11. Texture Mapping. Texture mapping. Non-parametric texture mapping. Required. Watt, intro to Chapter 8 and intros to 8.1, 8.4, 8.6, 8.8.

Reading. 11. Texture Mapping. Texture mapping. Non-parametric texture mapping. Required. Watt, intro to Chapter 8 and intros to 8.1, 8.4, 8.6, 8.8. Reading Reqired Watt, intro to Chapter 8 and intros to 8.1, 8.4, 8.6, 8.8. Optional 11. Textre Mapping Watt, the rest of Chapter 8 Woo, Neider, & Davis, Chapter 9 James F. Blinn and Martin E. Newell. Textre

More information

Reading. 13. Texture Mapping. Non-parametric texture mapping. Texture mapping. Required. Watt, intro to Chapter 8 and intros to 8.1, 8.4, 8.6, 8.8.

Reading. 13. Texture Mapping. Non-parametric texture mapping. Texture mapping. Required. Watt, intro to Chapter 8 and intros to 8.1, 8.4, 8.6, 8.8. Reading Reqired Watt, intro to Chapter 8 and intros to 8.1, 8.4, 8.6, 8.8. Recommended 13. Textre Mapping Pal S. Heckbert. Srvey of textre mapping. IEEE Compter Graphics and Applications 6(11): 56--67,

More information

7. Texture Mapping. Idea. Examples Image Textures. Motivation. Textures can be images or procedures. Textures can be 2D or 3D

7. Texture Mapping. Idea. Examples Image Textures. Motivation. Textures can be images or procedures. Textures can be 2D or 3D 3 4 Idea Add srface detail withot raising geometric complexity Textres can be images or procedres Textres can be D or 3D Motiation Wireframe Model + Lighting & Shading + Textre Mapping http://www.3drender.com/jbirn/prodctions.html

More information

OUTLINE. Implementing Texturing What Can Go Wrong and How to Fix It Mipmapping Filtering Perspective Correction

OUTLINE. Implementing Texturing What Can Go Wrong and How to Fix It Mipmapping Filtering Perspective Correction TEXTURE MAPPING 1 OUTLINE Implementing Texturing What Can Go Wrong and How to Fix It Mipmapping Filtering Perspective Correction 2 BASIC STRAGEGY Three steps to applying a texture 1. specify the texture

More information

Real-time mean-shift based tracker for thermal vision systems

Real-time mean-shift based tracker for thermal vision systems 9 th International Conference on Qantitative InfraRed Thermography Jly -5, 008, Krakow - Poland Real-time mean-shift based tracker for thermal vision systems G. Bieszczad* T. Sosnowski** * Military University

More information

Review. A single-cycle MIPS processor

Review. A single-cycle MIPS processor Review If three instrctions have opcodes, 7 and 5 are they all of the same type? If we were to add an instrction to IPS of the form OD $t, $t2, $t3, which performs $t = $t2 OD $t3, what wold be its opcode?

More information

Summer 2017 MATH Suggested Solution to Exercise Find the tangent hyperplane passing the given point P on each of the graphs: (a)

Summer 2017 MATH Suggested Solution to Exercise Find the tangent hyperplane passing the given point P on each of the graphs: (a) Smmer 2017 MATH2010 1 Sggested Soltion to Exercise 6 1 Find the tangent hyperplane passing the given point P on each of the graphs: (a) z = x 2 y 2 ; y = z log x z P (2, 3, 5), P (1, 1, 1), (c) w = sin(x

More information

Computer Graphics with OpenGL ES (J. Han) Chapter 6 Fragment shader

Computer Graphics with OpenGL ES (J. Han) Chapter 6 Fragment shader Computer Graphics with OpenGL ES (J. Han) Chapter 6 Fragment shader Vertex and Fragment Shaders The inputs to the fragment shader Varyings: The per-vertex output variables produced by the vertex shader

More information

CS 4204 Computer Graphics

CS 4204 Computer Graphics CS 424 Compter Graphics Crves and Srfaces Yong Cao Virginia Tech Reference: Ed Angle, Interactive Compter Graphics, University of New Mexico, class notes Crve and Srface Modeling Objectives Introdce types

More information

CS 432 Interactive Computer Graphics

CS 432 Interactive Computer Graphics CS 432 Interactive Computer Graphics Lecture 7 Part 2 Texture Mapping in OpenGL Matt Burlick - Drexel University - CS 432 1 Topics Texture Mapping in OpenGL Matt Burlick - Drexel University - CS 432 2

More information

Picking and Curves Week 6

Picking and Curves Week 6 CS 48/68 INTERACTIVE COMPUTER GRAPHICS Picking and Crves Week 6 David Breen Department of Compter Science Drexel University Based on material from Ed Angel, University of New Mexico Objectives Picking

More information

Computer Graphics with OpenGL ES (J. Han) Chapter XI Normal Mapping

Computer Graphics with OpenGL ES (J. Han) Chapter XI Normal Mapping Chapter XI Normal Mapping Bumpy Surfaces Image texturing only Fast Not realistic Highly tessellated mesh Realistic Slow 11-2 Surface Normal and Lighting Recall the interaction among light sources, surfaces,

More information

EECS 487: Interactive Computer Graphics f

EECS 487: Interactive Computer Graphics f Interpolating Key Vales EECS 487: Interactive Compter Graphics f Keys Lectre 33: Keyframe interpolation and splines Cbic splines The key vales of each variable may occr at different frames The interpolation

More information

Lecture 10. Diffraction. incident

Lecture 10. Diffraction. incident 1 Introdction Lectre 1 Diffraction It is qite often the case that no line-of-sight path exists between a cell phone and a basestation. In other words there are no basestations that the cstomer can see

More information

Blended Deformable Models

Blended Deformable Models Blended Deformable Models (In IEEE Trans. Pattern Analysis and Machine Intelligence, April 996, 8:4, pp. 443-448) Doglas DeCarlo and Dimitri Metaxas Department of Compter & Information Science University

More information

Computer Graphics (CS 543) Lecture 10: Normal Maps, Parametrization, Tone Mapping

Computer Graphics (CS 543) Lecture 10: Normal Maps, Parametrization, Tone Mapping Computer Graphics (CS 543) Lecture 10: Normal Maps, Parametrization, Tone Mapping Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Normal Mapping Store normals in texture

More information

Review Multicycle: What is Happening. Controlling The Multicycle Design

Review Multicycle: What is Happening. Controlling The Multicycle Design Review lticycle: What is Happening Reslt Zero Op SrcA SrcB Registers Reg Address emory em Data Sign etend Shift left Sorce A B Ot [-6] [5-] [-6] [5-] [5-] Instrction emory IR RegDst emtoreg IorD em em

More information

EDAF80 Introduction to Computer Graphics. Seminar 3. Shaders. Michael Doggett. Slides by Carl Johan Gribel,

EDAF80 Introduction to Computer Graphics. Seminar 3. Shaders. Michael Doggett. Slides by Carl Johan Gribel, EDAF80 Introduction to Computer Graphics Seminar 3 Shaders Michael Doggett 2017 Slides by Carl Johan Gribel, 2010-13 Today OpenGL Shader Language (GLSL) Shading theory Assignment 3: (you guessed it) writing

More information

CSE 4431/ M Advanced Topics in 3D Computer Graphics. TA: Margarita Vinnikov

CSE 4431/ M Advanced Topics in 3D Computer Graphics. TA: Margarita Vinnikov CSE 4431/5331.03M Advanced Topics in 3D Computer Graphics TA: Margarita Vinnikov mvinni@cse.yorku.ca Debugging Shaders Can't print a number from a shader, but you can "print" a colour, most of our value-checking

More information

Object Pose from a Single Image

Object Pose from a Single Image Object Pose from a Single Image How Do We See Objects in Depth? Stereo Use differences between images in or left and right eye How mch is this difference for a car at 00 m? Moe or head sideways Or, the

More information

The final datapath. M u x. Add. 4 Add. Shift left 2. PCSrc. RegWrite. MemToR. MemWrite. Read data 1 I [25-21] Instruction. Read. register 1 Read.

The final datapath. M u x. Add. 4 Add. Shift left 2. PCSrc. RegWrite. MemToR. MemWrite. Read data 1 I [25-21] Instruction. Read. register 1 Read. The final path PC 4 Add Reg Shift left 2 Add PCSrc Instrction [3-] Instrction I [25-2] I [2-6] I [5 - ] register register 2 register 2 Registers ALU Zero Reslt ALUOp em Data emtor RegDst ALUSrc em I [5

More information

5.0 Curve and Surface Theory

5.0 Curve and Surface Theory 5. Cre and Srface Theor 5.1 arametric Representation of Cres Consider the parametric representation of a cre as a ector t: t [t t t] 5.1 The deriatie of sch a ector ealated at t t is gien b t [ t t t ]

More information

Use Trigonometry with Right Triangles

Use Trigonometry with Right Triangles . a., a.4, 2A.2.A; G.5.D TEKS Use Trigonometr with Right Triangles Before Yo sed the Pthagorean theorem to find lengths. Now Yo will se trigonometric fnctions to find lengths. Wh? So o can measre distances

More information

Curves and Surfaces. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science

Curves and Surfaces. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science Crves and Srfaces CS 57 Interactive Compter Graphics Prof. David E. Breen Department of Compter Science E. Angel and D. Shreiner: Interactive Compter Graphics 6E Addison-Wesley 22 Objectives Introdce types

More information

The single-cycle design from last time

The single-cycle design from last time lticycle path Last time we saw a single-cycle path and control nit for or simple IPS-based instrction set. A mlticycle processor fies some shortcomings in the single-cycle CPU. Faster instrctions are not

More information

METAMODEL FOR SOFTWARE SOLUTIONS IN COMPUTED TOMOGRAPHY

METAMODEL FOR SOFTWARE SOLUTIONS IN COMPUTED TOMOGRAPHY VOL. 10, NO 22, DECEBER, 2015 ISSN 1819-6608 ETAODEL FOR SOFTWARE SOLUTIONS IN COPUTED TOOGRAPHY Vitaliy ezhyev Faclty of Compter Systems and Software Engineering, Universiti alaysia Pahang, Gambang, alaysia

More information

The Intersection of Two Ringed Surfaces and Some Related Problems

The Intersection of Two Ringed Surfaces and Some Related Problems Graphical Models 63, 8 44 001) doi:10.1006/gmod.001.0553, available online at http://www.idealibrary.com on The Intersection of Two Ringed Srfaces and Some Related Problems Hee-Seok Heo and Sng Je Hong

More information

Today. B-splines. B-splines. B-splines. Computergrafik. Curves NURBS Surfaces. Bilinear patch Bicubic Bézier patch Advanced surface modeling

Today. B-splines. B-splines. B-splines. Computergrafik. Curves NURBS Surfaces. Bilinear patch Bicubic Bézier patch Advanced surface modeling Comptergrafik Matthias Zwicker Uniersität Bern Herbst 29 Cres Srfaces Parametric srfaces Bicbic Bézier patch Adanced srface modeling Piecewise Bézier cres Each segment spans for control points Each segment

More information

Evaluating Influence Diagrams

Evaluating Influence Diagrams Evalating Inflence Diagrams Where we ve been and where we re going Mark Crowley Department of Compter Science University of British Colmbia crowley@cs.bc.ca Agst 31, 2004 Abstract In this paper we will

More information

Networks An introduction to microcomputer networking concepts

Networks An introduction to microcomputer networking concepts Behavior Research Methods& Instrmentation 1978, Vol 10 (4),522-526 Networks An introdction to microcompter networking concepts RALPH WALLACE and RICHARD N. JOHNSON GA TX, Chicago, Illinois60648 and JAMES

More information

CS 153 Design of Operating Systems

CS 153 Design of Operating Systems CS 53 Design of Operating Systems Spring 8 Lectre 6: Paging Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Some slides modified from originals by Dave

More information

GLSL Introduction. Fu-Chung Huang. Thanks for materials from many other people

GLSL Introduction. Fu-Chung Huang. Thanks for materials from many other people GLSL Introduction Fu-Chung Huang Thanks for materials from many other people Shader Languages Currently 3 major shader languages Cg (Nvidia) HLSL (Microsoft) Derived from Cg GLSL (OpenGL) Main influences

More information

Waves, Displacement, Reflections. Arun Rao CS 594

Waves, Displacement, Reflections. Arun Rao CS 594 Waves, Displacement, Reflections Arun Rao CS 594 Goals Simple looking waves Waves displace and change orientation of things on top Reflections on surface Partially see through How do we create the Waves?

More information

Bias of Higher Order Predictive Interpolation for Sub-pixel Registration

Bias of Higher Order Predictive Interpolation for Sub-pixel Registration Bias of Higher Order Predictive Interpolation for Sb-pixel Registration Donald G Bailey Institte of Information Sciences and Technology Massey University Palmerston North, New Zealand D.G.Bailey@massey.ac.nz

More information

Projective Textures & Shadow Mapping. Prof. Aaron Lanterman School of Electrical and Computer Engineering Georgia Institute of Technology

Projective Textures & Shadow Mapping. Prof. Aaron Lanterman School of Electrical and Computer Engineering Georgia Institute of Technology Projective Textures & Shadow Mapping Prof. Aaron Lanterman School of Electrical and Computer Engineering Georgia Institute of Technology What is projective texturing? An intuition for projective texturing

More information

Shadows. Prof. George Wolberg Dept. of Computer Science City College of New York

Shadows. Prof. George Wolberg Dept. of Computer Science City College of New York Shadows Prof. George Wolberg Dept. of Computer Science City College of New York Objectives Introduce Shadow Algorithms Expand to projective textures 2 Flashlight in the Eye Graphics When do we not see

More information

The extra single-cycle adders

The extra single-cycle adders lticycle Datapath As an added bons, we can eliminate some of the etra hardware from the single-cycle path. We will restrict orselves to sing each fnctional nit once per cycle, jst like before. Bt since

More information

OUTLINE. Tessellation in OpenGL Tessellation of Bezier Surfaces Tessellation for Terrain/Height Maps Level of Detail

OUTLINE. Tessellation in OpenGL Tessellation of Bezier Surfaces Tessellation for Terrain/Height Maps Level of Detail TESSELLATION 1 OUTLINE Tessellation in OpenGL Tessellation of Bezier Surfaces Tessellation for Terrain/Height Maps Level of Detail 2 THE EXAMPLE TESSELLATION SHADING Instead of specifying vertices, you

More information

TSBK 07! Computer Graphics! Ingemar Ragnemalm, ISY

TSBK 07! Computer Graphics! Ingemar Ragnemalm, ISY 1(84) Information Coding / Computer Graphics, ISY, LiTH TSBK 07 Computer Graphics Ingemar Ragnemalm, ISY 1(84) Lecture 5 3D graphics part 3 Illumination Illumination applied: Shading Surface detail: Mappings

More information

The Rasterization Pipeline

The Rasterization Pipeline Lecture 5: The Rasterization Pipeline Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2016 What We ve Covered So Far z x y z x y (0, 0) (w, h) Position objects and the camera in the world

More information

Comp 303 Computer Architecture A Pipelined Datapath Control. Lecture 13

Comp 303 Computer Architecture A Pipelined Datapath Control. Lecture 13 Comp 33 Compter Architectre A Pipelined path Lectre 3 Pipelined path with Signals PCSrc IF/ ID ID/ EX EX / E E / Add PC 4 Address Instrction emory RegWr ra rb rw Registers bsw [5-] [2-6] [5-] bsa bsb Sign

More information

BUMP MAPPING. Programação 3D Simulação e Jogos Prof. João A. Madeiras Pereira MEIC-A/IST

BUMP MAPPING. Programação 3D Simulação e Jogos Prof. João A. Madeiras Pereira MEIC-A/IST UMP MAPPIG Programação 3D Simulação e Jogos Prof. João A. Madeiras Pereira MEIC-A/IS Eamples Shading Generating ormal Map ase teture (RG) Height map (Gre scale) ormal map (normal encoded RG) Displacement

More information

Image Enhancement in the Frequency Domain Periodicity and the need for Padding:

Image Enhancement in the Frequency Domain Periodicity and the need for Padding: Prepared B: Dr. Hasan Demirel PhD Image Enhancement in the Freqenc Domain Periodicit and the need for Padding: Periodicit propert of the DFT: The discrete Forier Transform and the inverse Forier transforms

More information

Texture Mapping. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science

Texture Mapping. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science Texture Mapping CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science 1 Objectives Introduce Mapping Methods - Texture Mapping - Environment Mapping - Bump Mapping Consider

More information

Digital Image Processing Chapter 5: Image Restoration

Digital Image Processing Chapter 5: Image Restoration Digital Image Processing Chapter 5: Image Restoration Concept of Image Restoration Image restoration is to restore a degraded image back to the original image while image enhancement is to maniplate the

More information

Computergraphics Exercise 15/ Shading & Texturing

Computergraphics Exercise 15/ Shading & Texturing Computergraphics Exercise 15/16 3. Shading & Texturing Jakob Wagner for internal use only Shaders Vertex Specification define vertex format & data in model space Vertex Processing transform to clip space

More information

Shader Programming 1. Examples. Vertex displacement mapping. Daniel Wesslén 1. Post-processing, animated procedural textures

Shader Programming 1. Examples. Vertex displacement mapping. Daniel Wesslén 1. Post-processing, animated procedural textures Shader Programming 1 Examples Daniel Wesslén, dwn@hig.se Per-pixel lighting Texture convolution filtering Post-processing, animated procedural textures Vertex displacement mapping Daniel Wesslén 1 Fragment

More information

ECS 175 COMPUTER GRAPHICS. Ken Joy.! Winter 2014

ECS 175 COMPUTER GRAPHICS. Ken Joy.! Winter 2014 ECS 175 COMPUTER GRAPHICS Ken Joy Winter 2014 Shading To be able to model shading, we simplify Uniform Media no scattering of light Opaque Objects No Interreflection Point Light Sources RGB Color (eliminating

More information

Hardware-Accelerated Free-Form Deformation

Hardware-Accelerated Free-Form Deformation Hardware-Accelerated Free-Form Deformation Clint Cha and Ulrich Nemann Compter Science Department Integrated Media Systems Center University of Sothern California Abstract Hardware-acceleration for geometric

More information

Relief mapping for urban and natural environments rendering

Relief mapping for urban and natural environments rendering Relief mapping for urban and natural environments rendering D. Janković * and Ž. Mihajlović ** * AVL/AST -- Advanced Simulation Technologies, Zagreb, Croatia ** University of Zagreb, Faculty of Electrical

More information

EEC 483 Computer Organization

EEC 483 Computer Organization EEC 483 Compter Organization Chapter 4.4 A Simple Implementation Scheme Chans Y The Big Pictre The Five Classic Components of a Compter Processor Control emory Inpt path Otpt path & Control 2 path and

More information

EFFECTS OF OPTICALLY SHALLOW BOTTOMS ON WATER-LEAVING RADIANCES. Curtis D. Mobley and Lydia Sundman Sequoia Scientific, Inc. th

EFFECTS OF OPTICALLY SHALLOW BOTTOMS ON WATER-LEAVING RADIANCES. Curtis D. Mobley and Lydia Sundman Sequoia Scientific, Inc. th EFFECTS OF OPTICALLY SHALLOW BOTTOMS ON WATER-LEAVING RADIANCES Crtis D. Mobley and Lydia Sndman Seqoia Scientific, Inc. th 15317 NE 90 Street Redmond, WA 98052 USA mobley@seqoiasci.com phone: 425-867-2464

More information

The multicycle datapath. Lecture 10 (Wed 10/15/2008) Finite-state machine for the control unit. Implementing the FSM

The multicycle datapath. Lecture 10 (Wed 10/15/2008) Finite-state machine for the control unit. Implementing the FSM Lectre (Wed /5/28) Lab # Hardware De Fri Oct 7 HW #2 IPS programming, de Wed Oct 22 idterm Fri Oct 2 IorD The mlticycle path SrcA Today s objectives: icroprogramming Etending the mlti-cycle path lti-cycle

More information

Computer Graphics. Illumination and Shading

Computer Graphics. Illumination and Shading () Illumination and Shading Dr. Ayman Eldeib Lighting So given a 3-D triangle and a 3-D viewpoint, we can set the right pixels But what color should those pixels be? If we re attempting to create a realistic

More information

OUTLINE. Learn the basic design of a graphics system Introduce pipeline architecture Examine software components for a graphics system

OUTLINE. Learn the basic design of a graphics system Introduce pipeline architecture Examine software components for a graphics system GRAPHICS PIPELINE 1 OUTLINE Learn the basic design of a graphics system Introduce pipeline architecture Examine software components for a graphics system 2 IMAGE FORMATION REVISITED Can we mimic the synthetic

More information

From Vertices to Fragments: Rasterization. Reading Assignment: Chapter 7. Special memory where pixel colors are stored.

From Vertices to Fragments: Rasterization. Reading Assignment: Chapter 7. Special memory where pixel colors are stored. From Vertices to Fragments: Rasterization Reading Assignment: Chapter 7 Frame Buffer Special memory where pixel colors are stored. System Bus CPU Main Memory Graphics Card -- Graphics Processing Unit (GPU)

More information

Computer Graphics Coursework 1

Computer Graphics Coursework 1 Computer Graphics Coursework 1 Deadline Deadline: 4pm, 24/10/2016 4pm 23/10/2015 Outline The aim of the coursework is to modify the vertex and fragment shaders in the provided OpenGL framework to implement

More information

TSBK 07! Computer Graphics! Ingemar Ragnemalm, ISY

TSBK 07! Computer Graphics! Ingemar Ragnemalm, ISY 1(61) Information Coding / Computer Graphics, ISY, LiTH TSBK 07 Computer Graphics Ingemar Ragnemalm, ISY 1(61) Lecture 6 Texture mapping Skyboxes Environment mapping Bump mapping 2(61)2(61) Texture mapping

More information

INFOGR Computer Graphics

INFOGR Computer Graphics INFOGR Computer Graphics Jacco Bikker & Debabrata Panja - April-July 2018 Lecture 4: Graphics Fundamentals Welcome! Today s Agenda: Rasters Colors Ray Tracing Assignment P2 INFOGR Lecture 4 Graphics Fundamentals

More information

INFOGR Computer Graphics

INFOGR Computer Graphics INFOGR Computer Graphics Jacco Bikker & Debabrata Panja - April-July 2017 Lecture 10: Shaders Welcome! INFOGR2016/17 Today s Agenda: Recap: Diffuse Materials The Phong Shading Model Environment

More information

3-D SURFACE ROUGHNESS PROFILE OF 316-STAINLESS STEEL USING VERTICAL SCANNING INTERFEROMETRY WITH A SUPERLUMINESCENT DIODE

3-D SURFACE ROUGHNESS PROFILE OF 316-STAINLESS STEEL USING VERTICAL SCANNING INTERFEROMETRY WITH A SUPERLUMINESCENT DIODE IMEKO 1 TC3, TC5 and TC Conferences Metrology in Modern Context November 5, 1, Pattaya, Chonbri, Thailand 3-D SURFACE ROUGHNESS PROFILE OF 316-STAINLESS STEEL USING VERTICAL SCANNING INTERFEROMETRY WITH

More information

Stereopsis Raul Queiroz Feitosa

Stereopsis Raul Queiroz Feitosa Stereopsis Ral Qeiroz Feitosa 5/24/2017 Stereopsis 1 Objetie This chapter introdces the basic techniqes for a 3 dimensional scene reconstrction based on a set of projections of indiidal points on two calibrated

More information

Computergrafik. Matthias Zwicker. Herbst 2010

Computergrafik. Matthias Zwicker. Herbst 2010 Computergrafik Matthias Zwicker Universität Bern Herbst 2010 Today Bump mapping Shadows Shadow mapping Shadow mapping in OpenGL Bump mapping Surface detail is often the result of small perturbations in

More information

Introduction to Visualization and Computer Graphics

Introduction to Visualization and Computer Graphics Introduction to Visualization and Computer Graphics DH2320, Fall 2015 Prof. Dr. Tino Weinkauf Introduction to Visualization and Computer Graphics Visibility Shading 3D Rendering Geometric Model Color Perspective

More information

Chapter 6 Enhancing Performance with. Pipelining. Pipelining. Pipelined vs. Single-Cycle Instruction Execution: the Plan. Pipelining: Keep in Mind

Chapter 6 Enhancing Performance with. Pipelining. Pipelining. Pipelined vs. Single-Cycle Instruction Execution: the Plan. Pipelining: Keep in Mind Pipelining hink of sing machines in landry services Chapter 6 nhancing Performance with Pipelining 6 P 7 8 9 A ime ask A B C ot pipelined Assme 3 min. each task wash, dry, fold, store and that separate

More information

INSTANCE VARIABLES (1/2) P. 1

INSTANCE VARIABLES (1/2) P. 1 SHADOWS: THE CODE 1 OUTLINE 2 INSTANCE VARIABLES (1/2) P. 1 private GLCanvas mycanvas; private Material thismaterial; private String[] vblinn1shadersource, vblinn2shadersource, fblinn2shadersource; private

More information

Programming with OpenGL Part 3: Shaders. Ed Angel Professor of Emeritus of Computer Science University of New Mexico

Programming with OpenGL Part 3: Shaders. Ed Angel Professor of Emeritus of Computer Science University of New Mexico Programming with OpenGL Part 3: Shaders Ed Angel Professor of Emeritus of Computer Science University of New Mexico 1 Objectives Simple Shaders - Vertex shader - Fragment shaders Programming shaders with

More information

Buffers. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Buffers. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015 Buffers 1 Objectives Introduce additional WebGL buffers Reading and writing buffers Buffers and Images 2 Buffer Define a buffer by its spatial resolution (n x m) and its depth (or precision) k, the number

More information

Mechanical Design Technology

Mechanical Design Technology Mechanical Design Technology rof. Tamots Mrakami Assignment #2: Tool ath and NC Code Generation Make a program that generates a tool path for milling a ezier srface sing a ball end mill shos the tool path

More information

CS4621/5621 Fall Basics of OpenGL/GLSL Textures Basics

CS4621/5621 Fall Basics of OpenGL/GLSL Textures Basics CS4621/5621 Fall 2015 Basics of OpenGL/GLSL Textures Basics Professor: Kavita Bala Instructor: Nicolas Savva with slides from Balazs Kovacs, Eston Schweickart, Daniel Schroeder, Jiang Huang and Pramook

More information

The LS-STAG Method : A new Immersed Boundary / Level-Set Method for the Computation of Incompressible Viscous Flows in Complex Geometries

The LS-STAG Method : A new Immersed Boundary / Level-Set Method for the Computation of Incompressible Viscous Flows in Complex Geometries The LS-STAG Method : A new Immersed Bondary / Level-Set Method for the Comptation of Incompressible Viscos Flows in Complex Geometries Yoann Cheny & Olivier Botella Nancy Universités LEMTA - UMR 7563 (CNRS-INPL-UHP)

More information

Tutorial 12: Real-Time Lighting B

Tutorial 12: Real-Time Lighting B Tutorial 12: Real-Time Lighting B Summary The last tutorial taught you the basics of real time lighting, including using the normal of a surface to calculate the diffusion and specularity. Surfaces are

More information

Fog example. Fog is atmospheric effect. Better realism, helps determine distances

Fog example. Fog is atmospheric effect. Better realism, helps determine distances Fog example Fog is atmospheric effect Better realism, helps determine distances Fog Fog was part of OpenGL fixed function pipeline Programming fixed function fog Parameters: Choose fog color, fog model

More information

CS 130 Exam I. Fall 2015

CS 130 Exam I. Fall 2015 S 3 Exam I Fall 25 Name Student ID Signature You may not ask any questions during the test. If you believe that there is something wrong with a question, write down what you think the question is trying

More information

Lecture 17: Shading in OpenGL. CITS3003 Graphics & Animation

Lecture 17: Shading in OpenGL. CITS3003 Graphics & Animation Lecture 17: Shading in OpenGL CITS3003 Graphics & Animation E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012 Objectives Introduce the OpenGL shading methods - per vertex shading

More information

Today. Rendering - III. Outline. Texturing: The 10,000m View. Texture Coordinates. Specifying Texture Coordinates in GL

Today. Rendering - III. Outline. Texturing: The 10,000m View. Texture Coordinates. Specifying Texture Coordinates in GL Today Rendering - III CS148, Summer 2010 Graphics Pipeline and Programmable Shaders Artist Workflow Siddhartha Chaudhuri 1 2 Outline Texturing: The 10,000m View Intro to textures The fixed-function graphics

More information

How to use tessellation to add geometric detail to your scenes. How to use geometry shaders to process whole primitives and create geometry on the fly

How to use tessellation to add geometric detail to your scenes. How to use geometry shaders to process whole primitives and create geometry on the fly Chapter 8 Primitive Processing WHAT YOU LL LEARN IN THIS CHAPTER How to use tessellation to add geometric detail to your scenes How to use geometry shaders to process whole primitives and create geometry

More information

Preparing for Texture Access. Stored Texture Shaders. Accessing Texture Maps. Vertex Shader Texture Access

Preparing for Texture Access. Stored Texture Shaders. Accessing Texture Maps. Vertex Shader Texture Access Stored Texture Shaders Preparing for Texture Access These steps are the same when using a shader as when using fixed functionality Make a specific texture unit active by calling glactivetexture Create

More information

Stored Texture Shaders

Stored Texture Shaders Stored Texture Shaders 157 Preparing for Texture Access These steps are the same when using a shader as when using fixed functionality Make a specific texture unit active by calling glactivetexture Create

More information

Today s Agenda. Basic design of a graphics system. Introduction to OpenGL

Today s Agenda. Basic design of a graphics system. Introduction to OpenGL Today s Agenda Basic design of a graphics system Introduction to OpenGL Image Compositing Compositing one image over another is most common choice can think of each image drawn on a transparent plastic

More information

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016 Computergrafik Matthias Zwicker Universität Bern Herbst 2016 2 Today Basic shader for texture mapping Texture coordinate assignment Antialiasing Fancy textures 3 Texture mapping Glue textures (images)

More information

Uncertainty Determination for Dimensional Measurements with Computed Tomography

Uncertainty Determination for Dimensional Measurements with Computed Tomography Uncertainty Determination for Dimensional Measrements with Compted Tomography Kim Kiekens 1,, Tan Ye 1,, Frank Welkenhyzen, Jean-Pierre Krth, Wim Dewlf 1, 1 Grop T even University College, KU even Association

More information

Introduction to Shaders for Visualization. The Basic Computer Graphics Pipeline

Introduction to Shaders for Visualization. The Basic Computer Graphics Pipeline Introduction to Shaders for Visualization Mike Bailey The Basic Computer Graphics Pipeline Model Transform View Transform Per-vertex Lighting Projection Transform Homogeneous Division Viewport Transform

More information

OPENGL RENDERING PIPELINE

OPENGL RENDERING PIPELINE CPSC 314 03 SHADERS, OPENGL, & JS UGRAD.CS.UBC.CA/~CS314 Textbook: Appendix A* (helpful, but different version of OpenGL) Alla Sheffer Sep 2016 OPENGL RENDERING PIPELINE 1 OPENGL RENDERING PIPELINE Javascript

More information

EEC 483 Computer Organization. Branch (Control) Hazards

EEC 483 Computer Organization. Branch (Control) Hazards EEC 483 Compter Organization Section 4.8 Branch Hazards Section 4.9 Exceptions Chans Y Branch (Control) Hazards While execting a previos branch, next instrction address might not yet be known. s n i o

More information

Image Restoration Image Degradation and Restoration

Image Restoration Image Degradation and Restoration Image Degradation and Restoration hxy Image Degradation Model: Spatial domain representation can be modeled by: g x y h x y f x y x y Freqency domain representation can be modeled by: G F N Prepared By:

More information

Computer Graphics MTAT Raimond Tunnel

Computer Graphics MTAT Raimond Tunnel Computer Graphics MTAT.03.015 Raimond Tunnel The Road So Far... Last week This week Color What is color? Color We represent color values with 3 channels: Red Green Blue Color We represent color values

More information

10.2 Solving Quadratic Equations by Completing the Square

10.2 Solving Quadratic Equations by Completing the Square . Solving Qadratic Eqations b Completing the Sqare Consider the eqation We can see clearl that the soltions are However, What if the eqation was given to s in standard form, that is 6 How wold we go abot

More information

Method to build an initial adaptive Neuro-Fuzzy controller for joints control of a legged robot

Method to build an initial adaptive Neuro-Fuzzy controller for joints control of a legged robot Method to bild an initial adaptive Nero-Fzzy controller for joints control of a legged robot J-C Habmremyi, P. ool and Y. Badoin Royal Military Academy-Free University of Brssels 08 Hobbema str, box:mrm,

More information

1 of 5 9/10/ :11 PM

1 of 5 9/10/ :11 PM Shader programs Summary: This tutorial shows how to write a simple shader in X3D. Shader program definition Keywords: tutorial, X3D, world, rendering Author(s): Yvonne Jung Date: 2007-02-05 First an example

More information

CGT520 Lighting. Lighting. T-vertices. Normal vector. Color of an object can be specified 1) Explicitly as a color buffer

CGT520 Lighting. Lighting. T-vertices. Normal vector. Color of an object can be specified 1) Explicitly as a color buffer CGT520 Lighting Lighting Color of an object can be specified 1) Explicitly as a color buffer Bedrich Benes, Ph.D. Purdue University Department of Computer Graphics 2) Implicitly from the illumination model.

More information

C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE. Mikhail Bessmeltsev

C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE. Mikhail Bessmeltsev C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE UGRAD.CS.UBC.C A/~CS314 Mikhail Bessmeltsev 1 WHAT IS RENDERING? Generating image from a 3D scene 2 WHAT IS RENDERING? Generating image

More information

CISC 3620 Lecture 7 Lighting and shading. Topics: Exam results Buffers Texture mapping intro Texture mapping basics WebGL texture mapping

CISC 3620 Lecture 7 Lighting and shading. Topics: Exam results Buffers Texture mapping intro Texture mapping basics WebGL texture mapping CISC 3620 Lecture 7 Lighting and shading Topics: Exam results Buffers Texture mapping intro Texture mapping basics WebGL texture mapping Exam results Grade distribution 12 Min: 26 10 Mean: 74 8 Median:

More information

INFOGR Computer Graphics

INFOGR Computer Graphics INFOGR Computer Graphics Jacco Bikker & Debabrata Panja - April-July 2018 Lecture 10: Shaders Welcome! Ƹ Ƹ Ƹ x M final = T totorso R T down R = x y z 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 Operations: 1. Translate

More information

A RECOGNITION METHOD FOR AIRPLANE TARGETS USING 3D POINT CLOUD DATA

A RECOGNITION METHOD FOR AIRPLANE TARGETS USING 3D POINT CLOUD DATA A RECOGNITION METHOD FOR AIRPLANE TARGETS USING 3D POINT CLOUD DATA Mei Zho*, Ling-li Tang, Chan-rong Li, Zhi Peng, Jing-mei Li Academy of Opto-Electronics, Chinese Academy of Sciences, No.9, Dengzhang

More information

Content. Building Geometry Appearance Lights Model Loaders

Content. Building Geometry Appearance Lights Model Loaders Content Building Geometry Appearance Lights Model Loaders Building Geometry A Geometry represents a 3D object: Mesh: The form or structure of a shape (What to draw) Material: The color, transparency, and

More information

EEC 483 Computer Organization

EEC 483 Computer Organization EEC 83 Compter Organization Chapter.6 A Pipelined path Chans Y Pipelined Approach 2 - Cycle time, No. stages - Resorce conflict E E A B C D 3 E E 5 E 2 3 5 2 6 7 8 9 c.y9@csohio.ed Resorces sed in 5 Stages

More information

Lighting and Shading II. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Lighting and Shading II. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015 Lighting and Shading II 1 Objectives Continue discussion of shading Introduce modified Phong model Consider computation of required vectors 2 Ambient Light Ambient light is the result of multiple interactions

More information

Forward rendering. Unity 5's rendering paths. Which lights get what treatment?

Forward rendering. Unity 5's rendering paths. Which lights get what treatment? Unity 5's rendering paths Introduction to Surface Shaders Prof. Aaron Lanterman School of Electrical and Computer Engineering Georgia Institute of Technology Deferred Shading: Deferred pass Forward Rendering:

More information

CSE 4431/ M Advanced Topics in 3D Computer Graphics. TA: Margarita Vinnikov

CSE 4431/ M Advanced Topics in 3D Computer Graphics. TA: Margarita Vinnikov CSE 4431/5331.03M Advanced Topics in 3D Computer Graphics TA: Margarita Vinnikov mvinni@cse.yorku.ca The OpenGL 4.x pipeline 2 new Programmable stages Tessellation Control Shader(GL_TESS_CONTROL_SHADER)

More information