CSE 214 Computer Science II Introduction to Tree

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CSE 214 Computer Science II Introduction to Tree"

Transcription

1 CSE 214 Computer Science II Introduction to Tree Fall 2017 Stony Brook University Instructor: Shebuti Rayana

2 Tree Tree is a non-linear data structure which is a collection of data (Node) organized in hierarchical structure. In tree data structure, every individual element is called as Node. Node stores the actual data of that particular element and link to next element in hierarchical structure. Tree with 11 nodes and 10 edges Shebuti Rayana (CS, Stony Brook University) 2

3 Root In a tree data structure, the first node is called as Root Node. Every tree must have root node. In any tree, there must be only one root node. Root node does not have any parent. (same as head in a LinkedList). Here, A is the Root node Shebuti Rayana (CS, Stony Brook University) 3

4 Edge The connecting link between any two nodes is called an Edge. In a tree with 'N' number of nodes there will be a maximum of 'N-1' number of edges. Edge is the connecting link between the two nodes Shebuti Rayana (CS, Stony Brook University) 4

5 Parent The node which is predecessor of any node is called as Parent Node. The node which has branch from it to any other node is called as parent node. Parent node can also be defined as "The node which has child / children". Here, A is Parent of B and C B is Parent of D, E and F C is the Parent of G and H Shebuti Rayana (CS, Stony Brook University) 5

6 Child The node which is descendant of any node is called as CHILD Node. In a tree, any parent node can have any number of child nodes. In a tree, all the nodes except root are child nodes. Here, B and C are Children of A G and H are Children of C K is a Child of G Shebuti Rayana (CS, Stony Brook University) 6

7 Siblings In a tree data structure, nodes which belong to same Parent are called as Siblings. In simple words, the nodes with same parent are called as Sibling nodes. Here, B and C are siblings D, E and F are siblings G and H are siblings Shebuti Rayana (CS, Stony Brook University) 7

8 Leaf The node which does not have a child is called as Leaf Node. leaf node is also called as 'Terminal' node. Here, D, I, J, F. K and H are leaf nodes Shebuti Rayana (CS, Stony Brook University) 8

9 Internal Nodes In a tree data structure, the node which has at least one child is called as Internal Node. Here, A, B, E, C, G are Internal Nodes Shebuti Rayana (CS, Stony Brook University) 9

10 Degree the total number of children of a node is called as Degree of that Node. The highest degree of a node among all the nodes in a tree is called as 'Degree of Tree' Here, Degree of A is 2 Degree of B is 3 Degree of F is 0 Shebuti Rayana (CS, Stony Brook University) 10

11 Level In a tree data structure, the root node is said to be at Level 0 and the children of root node are at Level 1 and the children of the nodes which are at Level 1 will be at Level 2 and so on. In simple words, in a tree each step from top to bottom is called as a Level and the Level count starts with '0' and incremented by one at each level (Step). Shebuti Rayana (CS, Stony Brook University) 11

12 Height the total number of edges from leaf node to a particular node in the longest path is called the Height of that Node. In a tree, height of the root node is said to be height of the tree. In a tree, height of all leaf nodes is '0'. Here, Height of the tree is 3 Shebuti Rayana (CS, Stony Brook University) 12

13 Depth The total number of edges from root node to a particular node is called as Depth of that Node. In a tree, the total number of edges from root node to a leaf node in the longest path is said to be Depth of the tree. Here, Depth of the tree is 3 Shebuti Rayana (CS, Stony Brook University) 13

14 Path The sequence of Nodes and Edges from one node to another node is called a Path between that two Nodes. Length of a Path is total number of nodes in that path. In below example the path A - B - E - J has length 4. Here, Path between A and J: A-B-E-J Path between C and K: C-G-K Shebuti Rayana (CS, Stony Brook University) 14

15 Sub-tree Each child from a node forms a subtree recursively. Every child node will form a subtree on its parent node. Shebuti Rayana (CS, Stony Brook University) 15

16 Tree Definition With the basic vocabulary now defined, we can move on to a formal definition of a tree. Two definitions of a tree. One definition involves nodes and edges. The second definition, which will prove to be very useful, is a recursive definition. Shebuti Rayana (CS, Stony Brook University) 16

17 Tree Definition Definition One: A tree consists of a set of nodes and a set of edges that connect pairs of nodes. A tree has the following properties: One node of the tree is designated as the root node. Every node n, except the root node, is connected by an edge from exactly one other node p, where p is the parent of n. A unique path traverses from the root to each node. If each node in the tree has a maximum of two children, we say that the tree is a binary tree. Shebuti Rayana (CS, Stony Brook University) 17

18 Tree Definition Definition Two: A tree is either empty or consists of a root and zero or more subtrees, each of which is also a tree. The root of each subtree is connected to the root of the parent tree by an edge. Shebuti Rayana (CS, Stony Brook University) 18

19 Advantages of Trees Trees are so useful and frequently used, because they have some advantages: Trees reflect structural relationships in the data Trees are used to represent hierarchies Trees provide an efficient insertion and searching Trees are very flexible data structure, allowing to move subtrees around with minimum effort Shebuti Rayana (CS, Stony Brook University) 19

20 Examples of Tree An example of the biological classification of some animals. From this simple example, we can learn about several properties of trees. The first property this example demonstrates is that trees are hierarchical. By hierarchical, we mean that trees are structured in layers with the more general things near the top and the more specific things near the bottom. The top of the hierarchy is the Kingdom, the next layer of the tree (the children of the layer above) is the Phylum, then the Class, and so on. However, no matter how deep we go in the classification tree, all the organisms are still animals. Shebuti Rayana (CS, Stony Brook University) 20

21 Examples of Tree Another example of a tree structure that you probably use every day is a file system. In a file system, directories, or folders, are structured as a tree. Following figure illustrates a small part of a Unix file system hierarchy. Shebuti Rayana (CS, Stony Brook University) 21

22 Examples of Tree The HTML source code and the tree accompanying the source illustrate another hierarchy. Notice that each level of the tree corresponds to a level of nesting inside the HTML tags. The first tag in the source is<html> and the last is </html> All the rest of the tags in the page are inside the pair. If you check, you will see that this nesting property is true at all levels of the tree. Shebuti Rayana (CS, Stony Brook University) 22

23 Some More Examples genealogical trees organizational trees biological hierarchy trees evolutionary trees population trees book classification trees decision trees graph spanning trees search trees compression trees program dependency trees expression/syntax trees Shebuti Rayana (CS, Stony Brook University) 23

24 Binary Tree Binary tree is a special type of tree data structure in which every node can have a maximum of 2 children. One is known as left child and the other is known as right child. In a binary tree, every node can have either 0 children or 1 child or 2 children but not more than 2 children. Shebuti Rayana (CS, Stony Brook University) 24

25 Types of Binary Tree A full binary tree is a binary tree in which each node has exactly zero or two children. A complete binary tree is a binary tree, which is completely filled, with the possible exception of the bottom level, which is filled from left to right. Full Tree Complete Tree Shebuti Rayana (CS, Stony Brook University) 25

CSE 230 Intermediate Programming in C and C++ Binary Tree

CSE 230 Intermediate Programming in C and C++ Binary Tree CSE 230 Intermediate Programming in C and C++ Binary Tree Fall 2017 Stony Brook University Instructor: Shebuti Rayana shebuti.rayana@stonybrook.edu Introduction to Tree Tree is a non-linear data structure

More information

Trees : Part 1. Section 4.1. Theory and Terminology. A Tree? A Tree? Theory and Terminology. Theory and Terminology

Trees : Part 1. Section 4.1. Theory and Terminology. A Tree? A Tree? Theory and Terminology. Theory and Terminology Trees : Part Section. () (2) Preorder, Postorder and Levelorder Traversals Definition: A tree is a connected graph with no cycles Consequences: Between any two vertices, there is exactly one unique path

More information

Binary Trees

Binary Trees Binary Trees 4-7-2005 Opening Discussion What did we talk about last class? Do you have any code to show? Do you have any questions about the assignment? What is a Tree? You are all familiar with what

More information

CSE 214 Computer Science II Heaps and Priority Queues

CSE 214 Computer Science II Heaps and Priority Queues CSE 214 Computer Science II Heaps and Priority Queues Spring 2018 Stony Brook University Instructor: Shebuti Rayana shebuti.rayana@stonybrook.edu http://www3.cs.stonybrook.edu/~cse214/sec02/ Introduction

More information

Programming II (CS300)

Programming II (CS300) 1 Programming II (CS300) Chapter 11: Binary Search Trees MOUNA KACEM mouna@cs.wisc.edu Fall 2018 General Overview of Data Structures 2 Introduction to trees 3 Tree: Important non-linear data structure

More information

Trees. CSE 373 Data Structures

Trees. CSE 373 Data Structures Trees CSE 373 Data Structures Readings Reading Chapter 7 Trees 2 Why Do We Need Trees? Lists, Stacks, and Queues are linear relationships Information often contains hierarchical relationships File directories

More information

Trees (Part 1, Theoretical) CSE 2320 Algorithms and Data Structures University of Texas at Arlington

Trees (Part 1, Theoretical) CSE 2320 Algorithms and Data Structures University of Texas at Arlington Trees (Part 1, Theoretical) CSE 2320 Algorithms and Data Structures University of Texas at Arlington 1 Trees Trees are a natural data structure for representing specific data. Family trees. Organizational

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms Trees Sidra Malik sidra.malik@ciitlahore.edu.pk Tree? In computer science, a tree is an abstract model of a hierarchical structure A tree is a finite set of one or more nodes

More information

TREES. Trees - Introduction

TREES. Trees - Introduction TREES Chapter 6 Trees - Introduction All previous data organizations we've studied are linear each element can have only one predecessor and successor Accessing all elements in a linear sequence is O(n)

More information

Lecture 32. No computer use today. Reminders: Homework 11 is due today. Project 6 is due next Friday. Questions?

Lecture 32. No computer use today. Reminders: Homework 11 is due today. Project 6 is due next Friday. Questions? Lecture 32 No computer use today. Reminders: Homework 11 is due today. Project 6 is due next Friday. Questions? Friday, April 1 CS 215 Fundamentals of Programming II - Lecture 32 1 Outline Introduction

More information

Trees. Q: Why study trees? A: Many advance ADTs are implemented using tree-based data structures.

Trees. Q: Why study trees? A: Many advance ADTs are implemented using tree-based data structures. Trees Q: Why study trees? : Many advance DTs are implemented using tree-based data structures. Recursive Definition of (Rooted) Tree: Let T be a set with n 0 elements. (i) If n = 0, T is an empty tree,

More information

1. Why Study Trees? Trees and Graphs. 2. Binary Trees. CITS2200 Data Structures and Algorithms. Wood... Topic 10. Trees are ubiquitous. Examples...

1. Why Study Trees? Trees and Graphs. 2. Binary Trees. CITS2200 Data Structures and Algorithms. Wood... Topic 10. Trees are ubiquitous. Examples... . Why Study Trees? CITS00 Data Structures and Algorithms Topic 0 Trees and Graphs Trees and Graphs Binary trees definitions: size, height, levels, skinny, complete Trees, forests and orchards Wood... Examples...

More information

Trees. Truong Tuan Anh CSE-HCMUT

Trees. Truong Tuan Anh CSE-HCMUT Trees Truong Tuan Anh CSE-HCMUT Outline Basic concepts Trees Trees A tree consists of a finite set of elements, called nodes, and a finite set of directed lines, called branches, that connect the nodes

More information

(2,4) Trees. 2/22/2006 (2,4) Trees 1

(2,4) Trees. 2/22/2006 (2,4) Trees 1 (2,4) Trees 9 2 5 7 10 14 2/22/2006 (2,4) Trees 1 Outline and Reading Multi-way search tree ( 10.4.1) Definition Search (2,4) tree ( 10.4.2) Definition Search Insertion Deletion Comparison of dictionary

More information

Uses for Trees About Trees Binary Trees. Trees. Seth Long. January 31, 2010

Uses for Trees About Trees Binary Trees. Trees. Seth Long. January 31, 2010 Uses for About Binary January 31, 2010 Uses for About Binary Uses for Uses for About Basic Idea Implementing Binary Example: Expression Binary Search Uses for Uses for About Binary Uses for Storage Binary

More information

Why Do We Need Trees?

Why Do We Need Trees? CSE 373 Lecture 6: Trees Today s agenda: Trees: Definition and terminology Traversing trees Binary search trees Inserting into and deleting from trees Covered in Chapter 4 of the text Why Do We Need Trees?

More information

11 TREES DATA STRUCTURES AND ALGORITHMS IMPLEMENTATION & APPLICATIONS IMRAN IHSAN ASSISTANT PROFESSOR, AIR UNIVERSITY, ISLAMABAD

11 TREES DATA STRUCTURES AND ALGORITHMS IMPLEMENTATION & APPLICATIONS IMRAN IHSAN ASSISTANT PROFESSOR, AIR UNIVERSITY, ISLAMABAD DATA STRUCTURES AND ALGORITHMS 11 TREES IMPLEMENTATION & APPLICATIONS IMRAN IHSAN ASSISTANT PROFESSOR, AIR UNIVERSITY, ISLAMABAD WWW.IMRANIHSAN.COM LECTURES ADAPTED FROM: DANIEL KANE, NEIL RHODES DEPARTMENT

More information

An undirected graph is a tree if and only of there is a unique simple path between any 2 of its vertices.

An undirected graph is a tree if and only of there is a unique simple path between any 2 of its vertices. Trees Trees form the most widely used subclasses of graphs. In CS, we make extensive use of trees. Trees are useful in organizing and relating data in databases, file systems and other applications. Formal

More information

Tree Structures. A hierarchical data structure whose point of entry is the root node

Tree Structures. A hierarchical data structure whose point of entry is the root node Binary Trees 1 Tree Structures A tree is A hierarchical data structure whose point of entry is the root node This structure can be partitioned into disjoint subsets These subsets are themselves trees and

More information

Multi-way Search Trees. (Multi-way Search Trees) Data Structures and Programming Spring / 25

Multi-way Search Trees. (Multi-way Search Trees) Data Structures and Programming Spring / 25 Multi-way Search Trees (Multi-way Search Trees) Data Structures and Programming Spring 2017 1 / 25 Multi-way Search Trees Each internal node of a multi-way search tree T: has at least two children contains

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms CS245-2008S-19 B-Trees David Galles Department of Computer Science University of San Francisco 19-0: Indexing Operations: Add an element Remove an element Find an element,

More information

Trees. (Trees) Data Structures and Programming Spring / 28

Trees. (Trees) Data Structures and Programming Spring / 28 Trees (Trees) Data Structures and Programming Spring 2018 1 / 28 Trees A tree is a collection of nodes, which can be empty (recursive definition) If not empty, a tree consists of a distinguished node r

More information

CS 231 Data Structures and Algorithms Fall Recursion and Binary Trees Lecture 21 October 24, Prof. Zadia Codabux

CS 231 Data Structures and Algorithms Fall Recursion and Binary Trees Lecture 21 October 24, Prof. Zadia Codabux CS 231 Data Structures and Algorithms Fall 2018 Recursion and Binary Trees Lecture 21 October 24, 2018 Prof. Zadia Codabux 1 Agenda ArrayQueue.java Recursion Binary Tree Terminologies Traversal 2 Administrative

More information

Trees. Eric McCreath

Trees. Eric McCreath Trees Eric McCreath 2 Overview In this lecture we will explore: general trees, binary trees, binary search trees, and AVL and B-Trees. 3 Trees Trees are recursive data structures. They are useful for:

More information

(2,4) Trees Goodrich, Tamassia (2,4) Trees 1

(2,4) Trees Goodrich, Tamassia (2,4) Trees 1 (2,4) Trees 9 2 5 7 10 14 2004 Goodrich, Tamassia (2,4) Trees 1 Multi-Way Search Tree A multi-way search tree is an ordered tree such that Each internal node has at least two children and stores d -1 key-element

More information

12/5/17. trees. CS 220: Discrete Structures and their Applications. Trees Chapter 11 in zybooks. rooted trees. rooted trees

12/5/17. trees. CS 220: Discrete Structures and their Applications. Trees Chapter 11 in zybooks. rooted trees. rooted trees trees CS 220: Discrete Structures and their Applications A tree is an undirected graph that is connected and has no cycles. Trees Chapter 11 in zybooks rooted trees Rooted trees. Given a tree T, choose

More information

Binary Trees, Binary Search Trees

Binary Trees, Binary Search Trees Binary Trees, Binary Search Trees Trees Linear access time of linked lists is prohibitive Does there exist any simple data structure for which the running time of most operations (search, insert, delete)

More information

Trees! Ellen Walker! CPSC 201 Data Structures! Hiram College!

Trees! Ellen Walker! CPSC 201 Data Structures! Hiram College! Trees! Ellen Walker! CPSC 201 Data Structures! Hiram College! ADTʼs Weʼve Studied! Position-oriented ADT! List! Stack! Queue! Value-oriented ADT! Sorted list! All of these are linear! One previous item;

More information

ITI Introduction to Computing II

ITI Introduction to Computing II ITI 1121. Introduction to Computing II Marcel Turcotte School of Electrical Engineering and Computer Science Binary search tree (part I) Version of March 24, 2013 Abstract These lecture notes are meant

More information

Trees. Trees. CSE 2011 Winter 2007

Trees. Trees. CSE 2011 Winter 2007 Trees CSE 2011 Winter 2007 2/5/2007 10:00 PM 1 Trees Linear access time of linked lists is prohibitive Does there exist any simple data structure for which the running time of most operations (search,

More information

CSC148 Week 6. Larry Zhang

CSC148 Week 6. Larry Zhang CSC148 Week 6 Larry Zhang 1 Announcements Test 1 coverage: trees (topic of today and Wednesday) are not covered Assignment 1 slides posted on the course website. 2 Data Structures 3 Data Structures A data

More information

ITI Introduction to Computing II

ITI Introduction to Computing II ITI 1121. Introduction to Computing II Marcel Turcotte School of Electrical Engineering and Computer Science Binary search tree (part I) Version of March 24, 2013 Abstract These lecture notes are meant

More information

CE 221 Data Structures and Algorithms

CE 221 Data Structures and Algorithms CE 221 Data Structures and Algorithms Chapter 4: Trees (Binary) Text: Read Weiss, 4.1 4.2 Izmir University of Economics 1 Preliminaries - I (Recursive) Definition: A tree is a collection of nodes. The

More information

CS 151. Binary Trees. Friday, October 5, 12

CS 151. Binary Trees. Friday, October 5, 12 CS 151 Binary Trees 1 Binary Tree Examples Without telling you what a binary tree is, here are some examples (that I will draw on the board): The dots/circles are called nodes, or vertices (singular: one

More information

CS F-11 B-Trees 1

CS F-11 B-Trees 1 CS673-2016F-11 B-Trees 1 11-0: Binary Search Trees Binary Tree data structure All values in left subtree< value stored in root All values in the right subtree>value stored in root 11-1: Generalizing BSTs

More information

Module 4: Index Structures Lecture 13: Index structure. The Lecture Contains: Index structure. Binary search tree (BST) B-tree. B+-tree.

Module 4: Index Structures Lecture 13: Index structure. The Lecture Contains: Index structure. Binary search tree (BST) B-tree. B+-tree. The Lecture Contains: Index structure Binary search tree (BST) B-tree B+-tree Order file:///c /Documents%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/ist_data/lecture13/13_1.htm[6/14/2012

More information

Trees. Carlos Moreno uwaterloo.ca EIT https://ece.uwaterloo.ca/~cmoreno/ece250

Trees. Carlos Moreno uwaterloo.ca EIT https://ece.uwaterloo.ca/~cmoreno/ece250 Carlos Moreno cmoreno @ uwaterloo.ca EIT-4103 https://ece.uwaterloo.ca/~cmoreno/ece250 Standard reminder to set phones to silent/vibrate mode, please! Announcements Part of assignment 3 posted additional

More information

Trees and Tree Traversal

Trees and Tree Traversal Trees and Tree Traversal Material adapted courtesy of Prof. Dave Matuszek at UPENN Definition of a tree A tree is a node with a value and zero or more children Depending on the needs of the program, the

More information

CS24 Week 8 Lecture 1

CS24 Week 8 Lecture 1 CS24 Week 8 Lecture 1 Kyle Dewey Overview Tree terminology Tree traversals Implementation (if time) Terminology Node The most basic component of a tree - the squares Edge The connections between nodes

More information

Programming II (CS300)

Programming II (CS300) 1 Programming II (CS300) Chapter 10: Search and Heaps MOUNA KACEM mouna@cs.wisc.edu Spring 2018 Search and Heaps 2 Linear Search Binary Search Introduction to trees Priority Queues Heaps Linear Search

More information

CSCI-401 Examlet #5. Name: Class: Date: True/False Indicate whether the sentence or statement is true or false.

CSCI-401 Examlet #5. Name: Class: Date: True/False Indicate whether the sentence or statement is true or false. Name: Class: Date: CSCI-401 Examlet #5 True/False Indicate whether the sentence or statement is true or false. 1. The root node of the standard binary tree can be drawn anywhere in the tree diagram. 2.

More information

Chapter 10: Trees. A tree is a connected simple undirected graph with no simple circuits.

Chapter 10: Trees. A tree is a connected simple undirected graph with no simple circuits. Chapter 10: Trees A tree is a connected simple undirected graph with no simple circuits. Properties: o There is a unique simple path between any 2 of its vertices. o No loops. o No multiple edges. Example

More information

Trees. Introduction & Terminology. February 05, 2018 Cinda Heeren / Geoffrey Tien 1

Trees. Introduction & Terminology. February 05, 2018 Cinda Heeren / Geoffrey Tien 1 Trees Introduction & Terminology Cinda Heeren / Geoffrey Tien 1 Review: linked lists Linked lists are constructed out of nodes, consisting of a data element a pointer to another node Lists are constructed

More information

CS301 - Data Structures Glossary By

CS301 - Data Structures Glossary By CS301 - Data Structures Glossary By Abstract Data Type : A set of data values and associated operations that are precisely specified independent of any particular implementation. Also known as ADT Algorithm

More information

Bioinformatics Programming. EE, NCKU Tien-Hao Chang (Darby Chang)

Bioinformatics Programming. EE, NCKU Tien-Hao Chang (Darby Chang) Bioinformatics Programming EE, NCKU Tien-Hao Chang (Darby Chang) 1 Tree 2 A Tree Structure A tree structure means that the data are organized so that items of information are related by branches 3 Definition

More information

Algorithms. Deleting from Red-Black Trees B-Trees

Algorithms. Deleting from Red-Black Trees B-Trees Algorithms Deleting from Red-Black Trees B-Trees Recall the rules for BST deletion 1. If vertex to be deleted is a leaf, just delete it. 2. If vertex to be deleted has just one child, replace it with that

More information

Topic 18 Binary Trees "A tree may grow a thousand feet tall, but its leaves will return to its roots." -Chinese Proverb

Topic 18 Binary Trees A tree may grow a thousand feet tall, but its leaves will return to its roots. -Chinese Proverb Topic 18 "A tree may grow a thousand feet tall, but its leaves will return to its roots." -Chinese Proverb Definitions A tree is an abstract data type one entry point, the root Each node is either a leaf

More information

UNIT IV -NON-LINEAR DATA STRUCTURES 4.1 Trees TREE: A tree is a finite set of one or more nodes such that there is a specially designated node called the Root, and zero or more non empty sub trees T1,

More information

CSE 230 Intermediate Programming in C and C++ Recursion

CSE 230 Intermediate Programming in C and C++ Recursion CSE 230 Intermediate Programming in C and C++ Recursion Fall 2017 Stony Brook University Instructor: Shebuti Rayana What is recursion? Sometimes, the best way to solve a problem is by solving a smaller

More information

CS 206 Introduction to Computer Science II

CS 206 Introduction to Computer Science II CS 206 Introduction to Computer Science II 10 / 10 / 2016 Instructor: Michael Eckmann Today s Topics Questions? Comments? A few comments about Doubly Linked Lists w/ dummy head/tail Trees Binary trees

More information

Self-Balancing Search Trees. Chapter 11

Self-Balancing Search Trees. Chapter 11 Self-Balancing Search Trees Chapter 11 Chapter Objectives To understand the impact that balance has on the performance of binary search trees To learn about the AVL tree for storing and maintaining a binary

More information

Garbage Collection: recycling unused memory

Garbage Collection: recycling unused memory Outline backtracking garbage collection trees binary search trees tree traversal binary search tree algorithms: add, remove, traverse binary node class 1 Backtracking finding a path through a maze is an

More information

BST Implementation. Data Structures. Lecture 4 Binary search trees (BST) Dr. Mahmoud Attia Sakr University of Ain Shams

BST Implementation. Data Structures. Lecture 4 Binary search trees (BST) Dr. Mahmoud Attia Sakr University of Ain Shams Lecture 4 Binary search trees (BST) Dr. Mahmoud Attia Sakr mahmoud.sakr@cis.asu.edu.eg Cairo, Egypt, October 2012 Binary Search Trees (BST) 1. Hierarchical data structure with a single reference to root

More information

Design and Analysis of Algorithms Lecture- 9: B- Trees

Design and Analysis of Algorithms Lecture- 9: B- Trees Design and Analysis of Algorithms Lecture- 9: B- Trees Dr. Chung- Wen Albert Tsao atsao@svuca.edu www.408codingschool.com/cs502_algorithm 1/12/16 Slide Source: http://www.slideshare.net/anujmodi555/b-trees-in-data-structure

More information

Algorithms and Data Structures (INF1) Lecture 8/15 Hua Lu

Algorithms and Data Structures (INF1) Lecture 8/15 Hua Lu Algorithms and Data Structures (INF1) Lecture 8/15 Hua Lu Department of Computer Science Aalborg University Fall 2007 This Lecture Trees Basics Rooted trees Binary trees Binary tree ADT Tree traversal

More information

2-3 and Trees. COL 106 Shweta Agrawal, Amit Kumar, Dr. Ilyas Cicekli

2-3 and Trees. COL 106 Shweta Agrawal, Amit Kumar, Dr. Ilyas Cicekli 2-3 and 2-3-4 Trees COL 106 Shweta Agrawal, Amit Kumar, Dr. Ilyas Cicekli Multi-Way Trees A binary search tree: One value in each node At most 2 children An M-way search tree: Between 1 to (M-1) values

More information

TREES cs2420 Introduction to Algorithms and Data Structures Spring 2015

TREES cs2420 Introduction to Algorithms and Data Structures Spring 2015 TREES cs2420 Introduction to Algorithms and Data Structures Spring 2015 1 administrivia 2 -assignment 7 due Thursday at midnight -asking for regrades through assignment 5 and midterm must be complete by

More information

CS 171: Introduction to Computer Science II. Binary Search Trees

CS 171: Introduction to Computer Science II. Binary Search Trees CS 171: Introduction to Computer Science II Binary Search Trees Binary Search Trees Symbol table applications BST definitions and terminologies Search and insert Traversal Ordered operations Delete Symbol

More information

CSE 530A. B+ Trees. Washington University Fall 2013

CSE 530A. B+ Trees. Washington University Fall 2013 CSE 530A B+ Trees Washington University Fall 2013 B Trees A B tree is an ordered (non-binary) tree where the internal nodes can have a varying number of child nodes (within some range) B Trees When a key

More information

BBM 201 Data structures

BBM 201 Data structures BBM 201 Data structures Lecture 11: Trees 2018-2019 Fall Content Terminology The Binary Tree The Binary Search Tree Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, 2013

More information

Topic 14. The BinaryTree ADT

Topic 14. The BinaryTree ADT Topic 14 The BinaryTree ADT Objectives Define trees as data structures Define the terms associated with trees Discuss tree traversal algorithms Discuss a binary tree implementation Examine a binary tree

More information

Organizing Spatial Data

Organizing Spatial Data Organizing Spatial Data Spatial data records include a sense of location as an attribute. Typically location is represented by coordinate data (in 2D or 3D). 1 If we are to search spatial data using the

More information

EE 368. Weeks 5 (Notes)

EE 368. Weeks 5 (Notes) EE 368 Weeks 5 (Notes) 1 Chapter 5: Trees Skip pages 273-281, Section 5.6 - If A is the root of a tree and B is the root of a subtree of that tree, then A is B s parent (or father or mother) and B is A

More information

Algorithms and Data Structures

Algorithms and Data Structures Lesson 3: trees and visits Luciano Bononi http://www.cs.unibo.it/~bononi/ (slide credits: these slides are a revised version of slides created by Dr. Gabriele D Angelo) International

More information

The tree data structure. Trees COL 106. Amit Kumar Shweta Agrawal. Acknowledgement :Many slides are courtesy Douglas Harder, UWaterloo

The tree data structure. Trees COL 106. Amit Kumar Shweta Agrawal. Acknowledgement :Many slides are courtesy Douglas Harder, UWaterloo The tree data structure 1 Trees COL 106 Amit Kumar Shweta Agrawal Acknowledgement :Many slides are courtesy Douglas Harder, UWaterloo 1 Trees The tree data structure 3 A rooted tree data structure stores

More information

V Advanced Data Structures

V Advanced Data Structures V Advanced Data Structures B-Trees Fibonacci Heaps 18 B-Trees B-trees are similar to RBTs, but they are better at minimizing disk I/O operations Many database systems use B-trees, or variants of them,

More information

CSC148H Week 8. Sadia Sharmin. July 12, /29

CSC148H Week 8. Sadia Sharmin. July 12, /29 CSC148H Week 8 Sadia Sharmin July 12, 2017 1/29 Motivating Trees I A data structure is a way of organizing data I Stacks, queues, and lists are all linear structures I They are linear in the sense that

More information

CSE 230 Computer Science II (Data Structure) Introduction

CSE 230 Computer Science II (Data Structure) Introduction CSE 230 Computer Science II (Data Structure) Introduction Fall 2017 Stony Brook University Instructor: Shebuti Rayana Basic Terminologies Data types Data structure Phases of S/W development Specification

More information

LECTURE 11 TREE TRAVERSALS

LECTURE 11 TREE TRAVERSALS DATA STRUCTURES AND ALGORITHMS LECTURE 11 TREE TRAVERSALS IMRAN IHSAN ASSISTANT PROFESSOR AIR UNIVERSITY, ISLAMABAD BACKGROUND All the objects stored in an array or linked list can be accessed sequentially

More information

CMPT 225. Binary Search Trees

CMPT 225. Binary Search Trees CMPT 225 Binary Search Trees Trees A set of nodes with a single starting point called the root Each node is connected by an edge to some other node A tree is a connected graph There is a path to every

More information

TREES Lecture 10 CS2110 Spring2014

TREES Lecture 10 CS2110 Spring2014 TREES Lecture 10 CS2110 Spring2014 Readings and Homework 2 Textbook, Chapter 23, 24 Homework: A thought problem (draw pictures!) Suppose you use trees to represent student schedules. For each student there

More information

CSE 143 Lecture 19. Binary Trees. read slides created by Marty Stepp

CSE 143 Lecture 19. Binary Trees. read slides created by Marty Stepp CSE 143 Lecture 19 Binary Trees read 17.1-17.2 slides created by Marty Stepp http://www.cs.washington.edu/143/ Trees tree: A directed, acyclic structure of linked nodes. directed : Has one-way links between

More information

Trees. Tree Structure Binary Tree Tree Traversals

Trees. Tree Structure Binary Tree Tree Traversals Trees Tree Structure Binary Tree Tree Traversals The Tree Structure Consists of nodes and edges that organize data in a hierarchical fashion. nodes store the data elements. edges connect the nodes. The

More information

Computer Science 210 Data Structures Siena College Fall Topic Notes: Trees

Computer Science 210 Data Structures Siena College Fall Topic Notes: Trees Computer Science 0 Data Structures Siena College Fall 08 Topic Notes: Trees We ve spent a lot of time looking at a variety of structures where there is a natural linear ordering of the elements in arrays,

More information

We will show that the height of a RB tree on n vertices is approximately 2*log n. In class I presented a simple structural proof of this claim:

We will show that the height of a RB tree on n vertices is approximately 2*log n. In class I presented a simple structural proof of this claim: We have seen that the insert operation on a RB takes an amount of time proportional to the number of the levels of the tree (since the additional operations required to do any rebalancing require constant

More information

Principles of Computer Science

Principles of Computer Science Principles of Computer Science Binary Trees 08/11/2013 CSCI 2010 - Binary Trees - F.Z. Qureshi 1 Today s Topics Extending LinkedList with Fast Search Sorted Binary Trees Tree Concepts Traversals of a Binary

More information

V Advanced Data Structures

V Advanced Data Structures V Advanced Data Structures B-Trees Fibonacci Heaps 18 B-Trees B-trees are similar to RBTs, but they are better at minimizing disk I/O operations Many database systems use B-trees, or variants of them,

More information

CS61BL. Lecture 3: Asymptotic Analysis Trees & Tree Traversals Stacks and Queues Binary Search Trees (and other trees)

CS61BL. Lecture 3: Asymptotic Analysis Trees & Tree Traversals Stacks and Queues Binary Search Trees (and other trees) CS61BL Lecture 3: Asymptotic Analysis Trees & Tree Traversals Stacks and Queues Binary Search Trees (and other trees) Program Efficiency How much memory a program uses Memory is cheap How much time a

More information

CSI33 Data Structures

CSI33 Data Structures Outline Department of Mathematics and Computer Science Bronx Community College November 13, 2017 Outline Outline 1 C++ Supplement.1: Trees Outline C++ Supplement.1: Trees 1 C++ Supplement.1: Trees Uses

More information

Analysis of Algorithms

Analysis of Algorithms Algorithm An algorithm is a procedure or formula for solving a problem, based on conducting a sequence of specified actions. A computer program can be viewed as an elaborate algorithm. In mathematics and

More information

B-Trees and External Memory

B-Trees and External Memory Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 and External Memory 1 1 (2, 4) Trees: Generalization of BSTs Each internal node

More information

CS 106X Lecture 18: Trees

CS 106X Lecture 18: Trees CS 106X Lecture 18: Trees Wednesday, February 22, 2017 Programming Abstractions (Accelerated) Winter 2017 Stanford University Computer Science Department Lecturer: Chris Gregg reading: Programming Abstractions

More information

Trees. See Chapter 18 of Weiss

Trees. See Chapter 18 of Weiss Trees See Chapter 18 of Weiss By the way, I am Bob Geitz www.cs.oberlin.edu/~bob/cs151 Ben is at a conference in Kansas City (where, according to Rogers and Hammerstein, everything is up to date and they've

More information

Linked Structures Songs, Games, Movies Part III. Fall 2013 Carola Wenk

Linked Structures Songs, Games, Movies Part III. Fall 2013 Carola Wenk Linked Structures Songs, Games, Movies Part III Fall 2013 Carola Wenk Biological Structures Nature has evolved vascular and nervous systems in a hierarchical manner so that nutrients and signals can quickly

More information

CSE 230 Intermediate Programming in C and C++ Functions

CSE 230 Intermediate Programming in C and C++ Functions CSE 230 Intermediate Programming in C and C++ Functions Fall 2017 Stony Brook University Instructor: Shebuti Rayana shebuti.rayana@stonybrook.edu http://www3.cs.stonybrook.edu/~cse230/ Concept of Functions

More information

Tree: non-recursive definition. Trees, Binary Search Trees, and Heaps. Tree: recursive definition. Tree: example.

Tree: non-recursive definition. Trees, Binary Search Trees, and Heaps. Tree: recursive definition. Tree: example. Trees, Binary Search Trees, and Heaps CS 5301 Fall 2013 Jill Seaman Tree: non-recursive definition Tree: set of nodes and directed edges - root: one node is distinguished as the root - Every node (except

More information

B-Trees and External Memory

B-Trees and External Memory Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 B-Trees and External Memory 1 (2, 4) Trees: Generalization of BSTs Each internal

More information

Building Java Programs

Building Java Programs Building Java Programs Binary Trees reading: 17.1 17.3 2 Trees in computer science TreeMap and TreeSet implementations folders/files on a computer family genealogy; organizational charts AI: decision trees

More information

B-Trees. CS321 Spring 2014 Steve Cutchin

B-Trees. CS321 Spring 2014 Steve Cutchin B-Trees CS321 Spring 2014 Steve Cutchin Topics for Today HW #2 Once Over B Trees Questions PA #3 Expression Trees Balance Factor AVL Heights Data Structure Animations Graphs 2 B-Tree Motivation When data

More information

Algorithms. AVL Tree

Algorithms. AVL Tree Algorithms AVL Tree Balanced binary tree The disadvantage of a binary search tree is that its height can be as large as N-1 This means that the time needed to perform insertion and deletion and many other

More information

A set of nodes (or vertices) with a single starting point

A set of nodes (or vertices) with a single starting point Binary Search Trees Understand tree terminology Understand and implement tree traversals Define the binary search tree property Implement binary search trees Implement the TreeSort algorithm 2 A set of

More information

birds fly S NP N VP V Graphs and trees

birds fly S NP N VP V Graphs and trees birds fly S NP VP N birds V fly S NP NP N VP V VP S NP VP birds a fly b ab = string S A B a ab b S A B A a B b S NP VP birds a fly b ab = string Grammar 1: Grammar 2: A a A a A a B A B a B b A B A b Grammar

More information

CSCI2100B Data Structures Trees

CSCI2100B Data Structures Trees CSCI2100B Data Structures Trees Irwin King king@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~king Department of Computer Science & Engineering The Chinese University of Hong Kong Introduction General Tree

More information

Binary Trees Fall 2018 Margaret Reid-Miller

Binary Trees Fall 2018 Margaret Reid-Miller Binary Trees 15-121 Fall 2018 Margaret Reid-Miller Trees Fall 2018 15-121 (Reid-Miller) 2 Binary Trees A binary tree is either empty or it contains a root node and left- and right-subtrees that are also

More information

singly and doubly linked lists, one- and two-ended arrays, and circular arrays.

singly and doubly linked lists, one- and two-ended arrays, and circular arrays. 4.1 The Tree Data Structure We have already seen a number of data structures: singly and doubly linked lists, one- and two-ended arrays, and circular arrays. We will now look at a new data structure: the

More information

Algorithms and Data Structures CS-CO-412

Algorithms and Data Structures CS-CO-412 Algorithms and Data Structures CS-CO-412 David Vernon Professor of Informatics University of Skövde Sweden david@vernon.eu www.vernon.eu Algorithms and Data Structures 1 Copyright D. Vernon 2014 Trees

More information

Motivation for B-Trees

Motivation for B-Trees 1 Motivation for Assume that we use an AVL tree to store about 20 million records We end up with a very deep binary tree with lots of different disk accesses; log2 20,000,000 is about 24, so this takes

More information