New user profile learning for extremely sparse data sets

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "New user profile learning for extremely sparse data sets"

Transcription

1 New user profile learning for extremely sparse data sets Tomasz Hoffmann, Tadeusz Janasiewicz, and Andrzej Szwabe Institute of Control and Information Engineering, Poznan University of Technology, pl. Marii Curie-Skladowskiej 5, Poznan, Poland Abstract. We propose a new method of online user profile learning for recommender systems, that deals effectively with extreme sparsity of behavioral data. The proposed method enhances the singular values rescaling method and uses a pair of vectors to represent both positive and neutral user preferences. A list of discarded elements is used in a simple implementation of negative relevance feedback. We experimentally show the negative impact of dimensionality reduction on the accuracy of recommendations based on extremely sparse data. We introduce a new method for recommendation quality evaluation that involves on the measurement of F1 performed iteratively during a simulated session. The combined use of the singular value rescaling and the user profile representation based on two complementary vectors has been compared with the use of well-known recommendation methods showing the superiority of our method in the online user profile updating scenario. Keywords: Recommender systems, user profile learning, collaborative data sparsity, vector space model, cold-start problem, relevance feedback 1 Introduction The main purpose of many recommender systems is to recommend items to users in the interactive web environment [6], [7]. Behavioral data sparsity makes the effective online interaction between users and a recommender system an especially challenging task [3]. To our knowledge, there are only few algorithms for new user profile learning that are oriented towards dealing with extremely sparse data sets. As shown in [2], data sparsity is a severe limitation for the effectiveness of methods based on dimensionality reduction [6]. In the classical vector space model auser profileisrepresentedbyavectorthat aggregatesvectorsofall items selected by the user [1], [6]. In that case no additional information about unselected items is used, i.e., only positive preferences are stored. Such an approach to user profile modeling has a significant impact on recommendation accuracy. We assume that the purpose of personalized recommendation is to identify topn products that are the most relevant to the user [8]. Following this assumption, in this paper we investigate a double vector representation of a user profile,

2 2 T. Hoffmann, T. Janasiewicz, A. Szwabe that takes into account the sparsity of data set [3]. We compare the proposed method to a few widely-used methods, such as collaborative filtering, ratings prediction and popularity-based item recommendation. We propose to estimate item relevance as a dot product between a user vector and item vector weighted by means of a probability model. Finally, we evaluate the presented method by using the F1 measure [6]. 2 Evaluation of iterative user profile updating methods We propose binary representation of the ratings[6]. Taking the perspective of the find-good-items task [3], we assume that what is important is not how much the user likes a given product, but the fact that she or he was interested in it. To our knowledge, there has been no research in to the direct impact of the dimensionality reduction process on recovered matrix. We propose applying concentration curves [9] to visualize ratings distribution before and after dimensionality reduction. We evaluate the quality of recommendations by performing an F1 measurement [6] after each user action. The parameter denoted as x determines the number of ratings in the training set [6]. The interaction with a new user is simulated by iterative shifting of user s ratings from the training set to the test set. Initially, the most popular items are recommended for all compared methods. Next, the user selects the first item and the system generates a recommendation list by performing the following steps: 1) items that were discarded by the user are added to DL (Discarded List a list of discarded items), 2) the user profile is updated according to the evaluated method, 3) and a recommendation list is generated using method. 3 Evaluated recommendation methods We compare our approach to a few well-known recommendation methods. Firstly, we evaluate the most popular item method (MP), which, as shown in [2], can effectively cope with data-set sparsity. Secondly, we use collaborative filtering (SVD-CF) that is based on the vector space model [3], [6]. The method uses SVD (Singular Value Decomposition) to obtain users and items vectors. When applying this method, we use the first 2 dimensions (k = 2) to find latent correlations between users, and to identify the 3 nearest neighbors (knn = 3). Moreover, we compare our approach to the rating prediction method (SVD- RP)[6] as well as to a variant with averagevalues removed from the input matrix (SVD-RPav)[6]. The solution proposed in this paper is referred to as the complementary spaces method (CSM). The first step of the algorithm is to decompose binary input matrix A m n. As a results of this decomposition, three matrices U, S and V are obtained, where U is a matrix containing users vector u i, V is a matrix containing items vectors v i and S is a diagonal matrix of the singular values of A, denoted as σ i. Our approach is based on representing a user profile

3 New user profile learning for extremely sparse data sets 3 by means of two vectors containing user s positive and neutral preferences. As shown in [1], an extension of user profile representation may improve the recommendation quality. In the case of our method, the vectors representing a user profile are built as a sum of vectors of the rated items set and the unrated items set, respectively u p+ = i I R v i, u p = i I NR v i, where v i denotes the i-th item vector, I R is a set of items rated by user and I NR is a set of items unrated by user. We propose using a simple probabilistic model based on the one proposed in [8] in order to weight the importance of each part of a user profile. Each dimension of the vector space corresponds to the probability value, proportionally to the square of the respective singular value σ i. For all vectors in the space, we compute the value of the probability based on the following assumptions: 1) probability distribution is defined as d = [d i ], where d i = (σ 2 i )/( j I σ2 j ), I = {1,2,,min (m,n)}, i I and i I d i = 1 2) probability value related to an item vector is equal to P( v j ) = i I v2 j,i d i, where j=1...m v2 i,j = 1 This model is based on the quantum probability framework proposed in [4]. It permits us to weight parts of the user profile by using appropriate probability values, determined by means of the singular values distribution. We implemented negative relevance feedback [5] that is based on the assumption that elements recommended by a system and discarded by the user are no more useful during the session. All the discarded items are stored on a list denoted as DL. Our singular values rescaling method is based on the probabilistic interpretation of vectors coordinates. Firstly, distribution d is prepared. Secondly, we compute a superposition of squared vectors representing items selected or rated by the user, called user square profile u sqp = i I R v 2 i. Next, the user square profile is used to scale d and to obtain a new distribution d new = mul( u sqp, d), where mul denotes an element multiplication operation. The relationbetween d new and d is representedbyavectorofcoefficients (each corresponding to a particular dimension), denoted as w scale = div( d new, d ), where div denotes an coordinate-by-coordinate division, and is used to scale the coordinates of items vectors from matrix V. Respectively, we compute w scale = div( d new, d ) where d new = sub( d, d new ), and sub is a subtraction of vector coordinates. Next, these coefficients are used to scale the user profile vectors u new+ = mul( w scale, u p+ ), u new = mul( w scale, u p ) and items vectors V new = V diag( w scale ), V new = V diag( w scale), where diag denotes the diagonal matrix in which a given vector forms the diagonal. According to the user profile representation, we obtain two lists denoted as r 1 = sqr( u new+ V new ), r 2 = sqr( u new V new). Next, we obtain two probabilities p 1 = mul( u sqp, d) and p 2 = 1 p 1 for both profile vectors. These probabilities are used as weights for similarity vectors r 1 and r 2. Thus, the final form of the similarity vector is as follows: r = p 1 r 1 +p 2 r 2. As a result of our algorithm, the system is able to recommend items from both the positive and the neutral list, applying an appropriate proportional weighting.

4 4 T. Hoffmann, T. Janasiewicz, A. Szwabe 4 Experiments We used a well-known MovieLens ML1k data set, which has accompanied by widely-referenced experimental results, e.g., [6], [7]. To analyze the characteristics of the data set we used concentration curves[9] and applied SVD at different k-cut values. As shown in Fig. 1, in the case of extremely sparse data sets, dimensionality reduction has a negative impact on the number of ratings appearing in recovered data sets. In such a case, each dimension corresponds to one of disjoint subsets, which reduce the number of item/user subsets that may appear in recommendation lists. cumulative % of ratings k = 1 k = 2 k = 1 k = 2 k = cumulative % of users cumulative % of ratings k = 1 k = 2 k = 1 k = 2 k = cumulative % of users Fig.1. Rating concentration curves for ML1k, x =.4 (on the left), x =.8 (on the right) the number of iterations Fig. 2. Recommendation accuracy for x =.4. 5 Conclusions CSM SVD-RPav MP SVD-RP SVD-CF The results of the experiments show that as far as the online user profile updating scenario is concerned the proposed method performed better than several widely used methods. In the analyzed online sessions (in both cases of x =.4 and x =.8), the CSM method allowed us to achieve even 1 percent gain in the recommendation accuracy over the second best method - this result is shown in Fig. 2 and Fig. 3. The method based on item popularity (MP) allowed us to provide comparatively good recommendations when there was a higher amount of behavioral data in the train-set: for x =.4 MP

5 New user profile learning for extremely sparse data sets the number of iterations Fig. 3. Recommendation accuracy for x =.8. CSM MP SVD-RPav SVD-RP SVD-CF performed similarly to SVD-RPav, while for x =.8 the difference between the quality ofmp and the quality ofsvd-rpav wasmuch more visible. SVD-CF method was the worst one in both analyzed cases. An important contribution of this paper is the demonstration of a strong negative impact that dimensionality reduction has on the recommendation quality when it is applied to extremely sparse data sets, as shown in Fig Acknowledgments This work is supported by the Polish Ministry of Science and Higher Education, grant N N References 1. Berry, M., Dumais, S. and O Brien, G.: Using linear algebra for intelligent information retrieval, SIAM Rev. 37, , (1995) 2. Gedikli, F. and Jannach, D.: Recommending based on rating frequencies, 4th ACM conference on Recommender systems, RecSys 1, Spain, (21) 3. Herlocker, J.L., Konstan, J.A., Terveen, L.G. and Riedl, J.T.: Evaluating Collaborative Filtering Recommender Systems, ACM Trans. Inf. Syst., 22, 1, 5-53, (24) 4. Rijsbergen, C. J. van: The Geometry of Information Retrieval. Cambridge University Press, New York, NY, USA, (24) 5. Sandler, M. and Muthukrishnan, S.: Monitoring algorithms for negative feedback systems, WWW 1, Raleigh, North Carolina, USA, (21) 6. Sarwar B. M., Karypis G., Konstan J. A. and Riedl J.: Application of dimensionality reduction in recommender system - a case study, WebKDD, (2) 7. Shani, G. and Gunawardana, A.: Evaluating Recommender Systems, November, Microsoft Research, Redmond, USA, (29) 8. Varshavsky R., Gottlieb A., Linial M. and Hornl D.: Information extraction novel unsupervised feature filtering of biological data, Bioinformatics, (26) 9. Zhang M. and Hurley N.: Niche Product Retrieval in Top-N Recommendation, WI-IAT 1, Washington, DC, USA, (21) 1. Zhang, M. and Hurley, N.: Novel Item Recommendation by User Profile Partitioning, WI-IAT 9, Washington, DC, USA, (29)

Collaborative Filtering based on User Trends

Collaborative Filtering based on User Trends Collaborative Filtering based on User Trends Panagiotis Symeonidis, Alexandros Nanopoulos, Apostolos Papadopoulos, and Yannis Manolopoulos Aristotle University, Department of Informatics, Thessalonii 54124,

More information

Comparison of Recommender System Algorithms focusing on the New-Item and User-Bias Problem

Comparison of Recommender System Algorithms focusing on the New-Item and User-Bias Problem Comparison of Recommender System Algorithms focusing on the New-Item and User-Bias Problem Stefan Hauger 1, Karen H. L. Tso 2, and Lars Schmidt-Thieme 2 1 Department of Computer Science, University of

More information

TOAST Results for OAEI 2012

TOAST Results for OAEI 2012 TOAST Results for OAEI 2012 Arkadiusz Jachnik, Andrzej Szwabe, Pawel Misiorek, and Przemyslaw Walkowiak Institute of Control and Information Engineering, Poznan University of Technology, M. Sklodowskiej-Curie

More information

Performance Comparison of Algorithms for Movie Rating Estimation

Performance Comparison of Algorithms for Movie Rating Estimation Performance Comparison of Algorithms for Movie Rating Estimation Alper Köse, Can Kanbak, Noyan Evirgen Research Laboratory of Electronics, Massachusetts Institute of Technology Department of Electrical

More information

Semantically Enhanced Collaborative Filtering on the Web

Semantically Enhanced Collaborative Filtering on the Web Semantically Enhanced Collaborative Filtering on the Web Bamshad Mobasher, Xin Jin, and Yanzan Zhou {mobasher,xjin,yzhou}@cs.depaul.edu Center for Web Intelligence School of Computer Science, Telecommunication,

More information

Michele Gorgoglione Politecnico di Bari Viale Japigia, Bari (Italy)

Michele Gorgoglione Politecnico di Bari Viale Japigia, Bari (Italy) Does the recommendation task affect a CARS performance? Umberto Panniello Politecnico di Bari Viale Japigia, 82 726 Bari (Italy) +3985962765 m.gorgoglione@poliba.it Michele Gorgoglione Politecnico di Bari

More information

Extension Study on Item-Based P-Tree Collaborative Filtering Algorithm for Netflix Prize

Extension Study on Item-Based P-Tree Collaborative Filtering Algorithm for Netflix Prize Extension Study on Item-Based P-Tree Collaborative Filtering Algorithm for Netflix Prize Tingda Lu, Yan Wang, William Perrizo, Amal Perera, Gregory Wettstein Computer Science Department North Dakota State

More information

BordaRank: A Ranking Aggregation Based Approach to Collaborative Filtering

BordaRank: A Ranking Aggregation Based Approach to Collaborative Filtering BordaRank: A Ranking Aggregation Based Approach to Collaborative Filtering Yeming TANG Department of Computer Science and Technology Tsinghua University Beijing, China tym13@mails.tsinghua.edu.cn Qiuli

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Recommender Systems II Instructor: Yizhou Sun yzsun@cs.ucla.edu May 31, 2017 Recommender Systems Recommendation via Information Network Analysis Hybrid Collaborative Filtering

More information

Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011

Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011 Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011 1. Introduction Reddit is one of the most popular online social news websites with millions

More information

Facial Expression Recognition using Principal Component Analysis with Singular Value Decomposition

Facial Expression Recognition using Principal Component Analysis with Singular Value Decomposition ISSN: 2321-7782 (Online) Volume 1, Issue 6, November 2013 International Journal of Advance Research in Computer Science and Management Studies Research Paper Available online at: www.ijarcsms.com Facial

More information

Performance of Recommender Algorithms on Top-N Recommendation Tasks

Performance of Recommender Algorithms on Top-N Recommendation Tasks Performance of Recommender Algorithms on Top- Recommendation Tasks Paolo Cremonesi Politecnico di Milano Milan, Italy paolo.cremonesi@polimi.it Yehuda Koren Yahoo! Research Haifa, Israel yehuda@yahoo-inc.com

More information

Property1 Property2. by Elvir Sabic. Recommender Systems Seminar Prof. Dr. Ulf Brefeld TU Darmstadt, WS 2013/14

Property1 Property2. by Elvir Sabic. Recommender Systems Seminar Prof. Dr. Ulf Brefeld TU Darmstadt, WS 2013/14 Property1 Property2 by Recommender Systems Seminar Prof. Dr. Ulf Brefeld TU Darmstadt, WS 2013/14 Content-Based Introduction Pros and cons Introduction Concept 1/30 Property1 Property2 2/30 Based on item

More information

Mining Web Data. Lijun Zhang

Mining Web Data. Lijun Zhang Mining Web Data Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Web Crawling and Resource Discovery Search Engine Indexing and Query Processing Ranking Algorithms Recommender Systems

More information

Part 12: Advanced Topics in Collaborative Filtering. Francesco Ricci

Part 12: Advanced Topics in Collaborative Filtering. Francesco Ricci Part 12: Advanced Topics in Collaborative Filtering Francesco Ricci Content Generating recommendations in CF using frequency of ratings Role of neighborhood size Comparison of CF with association rules

More information

Data Obfuscation for Privacy-Enhanced Collaborative Filtering

Data Obfuscation for Privacy-Enhanced Collaborative Filtering Data Obfuscation for Privacy-Enhanced Collaborative Filtering Shlomo Berkovsky 1, Yaniv Eytani 2, Tsvi Kuflik 1, Francesco Ricci 3 1 University of Haifa, Israel, {slavax@cs,tsvikak@is}.haifa.ac.il 2 University

More information

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Cluster Analysis Mu-Chun Su Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Introduction Cluster analysis is the formal study of algorithms and methods

More information

Justified Recommendations based on Content and Rating Data

Justified Recommendations based on Content and Rating Data Justified Recommendations based on Content and Rating Data Panagiotis Symeonidis, Alexandros Nanopoulos, and Yannis Manolopoulos Aristotle University, Department of Informatics, Thessaloniki 54124, Greece

More information

Rocchio Algorithm to Enhance Semantically Collaborative Filtering

Rocchio Algorithm to Enhance Semantically Collaborative Filtering Rocchio Algorithm to Enhance Semantically Collaborative Filtering Sonia Ben Ticha, Azim Roussanaly, Anne Boyer, Khaled Bsaies To cite this version: Sonia Ben Ticha, Azim Roussanaly, Anne Boyer, Khaled

More information

NLMF: NonLinear Matrix Factorization Methods for Top-N Recommender Systems

NLMF: NonLinear Matrix Factorization Methods for Top-N Recommender Systems 1 NLMF: NonLinear Matrix Factorization Methods for Top-N Recommender Systems Santosh Kabbur and George Karypis Department of Computer Science, University of Minnesota Twin Cities, USA {skabbur,karypis}@cs.umn.edu

More information

LRLW-LSI: An Improved Latent Semantic Indexing (LSI) Text Classifier

LRLW-LSI: An Improved Latent Semantic Indexing (LSI) Text Classifier LRLW-LSI: An Improved Latent Semantic Indexing (LSI) Text Classifier Wang Ding, Songnian Yu, Shanqing Yu, Wei Wei, and Qianfeng Wang School of Computer Engineering and Science, Shanghai University, 200072

More information

Mining Web Data. Lijun Zhang

Mining Web Data. Lijun Zhang Mining Web Data Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Web Crawling and Resource Discovery Search Engine Indexing and Query Processing Ranking Algorithms Recommender Systems

More information

Jeff Howbert Introduction to Machine Learning Winter

Jeff Howbert Introduction to Machine Learning Winter Collaborative Filtering Nearest es Neighbor Approach Jeff Howbert Introduction to Machine Learning Winter 2012 1 Bad news Netflix Prize data no longer available to public. Just after contest t ended d

More information

SOM+EOF for Finding Missing Values

SOM+EOF for Finding Missing Values SOM+EOF for Finding Missing Values Antti Sorjamaa 1, Paul Merlin 2, Bertrand Maillet 2 and Amaury Lendasse 1 1- Helsinki University of Technology - CIS P.O. Box 5400, 02015 HUT - Finland 2- Variances and

More information

Towards QoS Prediction for Web Services based on Adjusted Euclidean Distances

Towards QoS Prediction for Web Services based on Adjusted Euclidean Distances Appl. Math. Inf. Sci. 7, No. 2, 463-471 (2013) 463 Applied Mathematics & Information Sciences An International Journal Towards QoS Prediction for Web Services based on Adjusted Euclidean Distances Yuyu

More information

A Scalable, Accurate Hybrid Recommender System

A Scalable, Accurate Hybrid Recommender System A Scalable, Accurate Hybrid Recommender System Mustansar Ali Ghazanfar and Adam Prugel-Bennett School of Electronics and Computer Science University of Southampton Highfield Campus, SO17 1BJ, United Kingdom

More information

A Time-based Recommender System using Implicit Feedback

A Time-based Recommender System using Implicit Feedback A Time-based Recommender System using Implicit Feedback T. Q. Lee Department of Mobile Internet Dongyang Technical College Seoul, Korea Abstract - Recommender systems provide personalized recommendations

More information

Clustered SVD strategies in latent semantic indexing q

Clustered SVD strategies in latent semantic indexing q Information Processing and Management 41 (5) 151 163 www.elsevier.com/locate/infoproman Clustered SVD strategies in latent semantic indexing q Jing Gao, Jun Zhang * Laboratory for High Performance Scientific

More information

Compression, Clustering and Pattern Discovery in Very High Dimensional Discrete-Attribute Datasets

Compression, Clustering and Pattern Discovery in Very High Dimensional Discrete-Attribute Datasets IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1 Compression, Clustering and Pattern Discovery in Very High Dimensional Discrete-Attribute Datasets Mehmet Koyutürk, Ananth Grama, and Naren Ramakrishnan

More information

Multiresponse Sparse Regression with Application to Multidimensional Scaling

Multiresponse Sparse Regression with Application to Multidimensional Scaling Multiresponse Sparse Regression with Application to Multidimensional Scaling Timo Similä and Jarkko Tikka Helsinki University of Technology, Laboratory of Computer and Information Science P.O. Box 54,

More information

Sequential and Parallel Algorithms for Cholesky Factorization of Sparse Matrices

Sequential and Parallel Algorithms for Cholesky Factorization of Sparse Matrices Sequential and Parallel Algorithms for Cholesky Factorization of Sparse Matrices Nerma Baščelija Sarajevo School of Science and Technology Department of Computer Science Hrasnicka Cesta 3a, 71000 Sarajevo

More information

Feature Selection Using Modified-MCA Based Scoring Metric for Classification

Feature Selection Using Modified-MCA Based Scoring Metric for Classification 2011 International Conference on Information Communication and Management IPCSIT vol.16 (2011) (2011) IACSIT Press, Singapore Feature Selection Using Modified-MCA Based Scoring Metric for Classification

More information

amount of available information and the number of visitors to Web sites in recent years

amount of available information and the number of visitors to Web sites in recent years Collaboration Filtering using K-Mean Algorithm Smrity Gupta Smrity_0501@yahoo.co.in Department of computer Science and Engineering University of RAJIV GANDHI PROUDYOGIKI SHWAVIDYALAYA, BHOPAL Abstract:

More information

Reviewer Profiling Using Sparse Matrix Regression

Reviewer Profiling Using Sparse Matrix Regression Reviewer Profiling Using Sparse Matrix Regression Evangelos E. Papalexakis, Nicholas D. Sidiropoulos, Minos N. Garofalakis Technical University of Crete, ECE department 14 December 2010, OEDM 2010, Sydney,

More information

Supervised vs unsupervised clustering

Supervised vs unsupervised clustering Classification Supervised vs unsupervised clustering Cluster analysis: Classes are not known a- priori. Classification: Classes are defined a-priori Sometimes called supervised clustering Extract useful

More information

A Collaborative Method to Reduce the Running Time and Accelerate the k-nearest Neighbors Search

A Collaborative Method to Reduce the Running Time and Accelerate the k-nearest Neighbors Search A Collaborative Method to Reduce the Running Time and Accelerate the k-nearest Neighbors Search Alexandre Costa antonioalexandre@copin.ufcg.edu.br Reudismam Rolim reudismam@copin.ufcg.edu.br Felipe Barbosa

More information

General Instructions. Questions

General Instructions. Questions CS246: Mining Massive Data Sets Winter 2018 Problem Set 2 Due 11:59pm February 8, 2018 Only one late period is allowed for this homework (11:59pm 2/13). General Instructions Submission instructions: These

More information

Collaborative Filtering for Netflix

Collaborative Filtering for Netflix Collaborative Filtering for Netflix Michael Percy Dec 10, 2009 Abstract The Netflix movie-recommendation problem was investigated and the incremental Singular Value Decomposition (SVD) algorithm was implemented

More information

Facial Expression Recognition Using Non-negative Matrix Factorization

Facial Expression Recognition Using Non-negative Matrix Factorization Facial Expression Recognition Using Non-negative Matrix Factorization Symeon Nikitidis, Anastasios Tefas and Ioannis Pitas Artificial Intelligence & Information Analysis Lab Department of Informatics Aristotle,

More information

Available online at ScienceDirect. Procedia Technology 17 (2014 )

Available online at  ScienceDirect. Procedia Technology 17 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Technology 17 (2014 ) 528 533 Conference on Electronics, Telecommunications and Computers CETC 2013 Social Network and Device Aware Personalized

More information

PARAMETERIZATION AND SAMPLING DESIGN FOR WATER NETWORKS DEMAND CALIBRATION USING THE SINGULAR VALUE DECOMPOSITION: APPLICATION TO A REAL NETWORK

PARAMETERIZATION AND SAMPLING DESIGN FOR WATER NETWORKS DEMAND CALIBRATION USING THE SINGULAR VALUE DECOMPOSITION: APPLICATION TO A REAL NETWORK 11 th International Conference on Hydroinformatics HIC 2014, New York City, USA PARAMETERIZATION AND SAMPLING DESIGN FOR WATER NETWORKS DEMAND CALIBRATION USING THE SINGULAR VALUE DECOMPOSITION: APPLICATION

More information

Multimodal Information Spaces for Content-based Image Retrieval

Multimodal Information Spaces for Content-based Image Retrieval Research Proposal Multimodal Information Spaces for Content-based Image Retrieval Abstract Currently, image retrieval by content is a research problem of great interest in academia and the industry, due

More information

Experiences from Implementing Collaborative Filtering in a Web 2.0 Application

Experiences from Implementing Collaborative Filtering in a Web 2.0 Application Experiences from Implementing Collaborative Filtering in a Web 2.0 Application Wolfgang Woerndl, Johannes Helminger, Vivian Prinz TU Muenchen, Chair for Applied Informatics Cooperative Systems Boltzmannstr.

More information

Feature-weighted User Model for Recommender Systems

Feature-weighted User Model for Recommender Systems Feature-weighted User Model for Recommender Systems Panagiotis Symeonidis, Alexandros Nanopoulos, and Yannis Manolopoulos Aristotle University, Department of Informatics, Thessaloniki 54124, Greece {symeon,

More information

ARecommender system is a program that utilizes algorithms

ARecommender system is a program that utilizes algorithms , July 4-6, 2012, London, U.K. SVD-based Privacy Preserving Data Updating in Collaborative Filtering Xiwei Wang, Jun Zhang Abstract Collaborative Filtering technique is widely adopted by online service

More information

The Encoding Complexity of Network Coding

The Encoding Complexity of Network Coding The Encoding Complexity of Network Coding Michael Langberg Alexander Sprintson Jehoshua Bruck California Institute of Technology Email: mikel,spalex,bruck @caltech.edu Abstract In the multicast network

More information

Rating Prediction Using Preference Relations Based Matrix Factorization

Rating Prediction Using Preference Relations Based Matrix Factorization Rating Prediction Using Preference Relations Based Matrix Factorization Maunendra Sankar Desarkar and Sudeshna Sarkar Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur,

More information

Visual Representations for Machine Learning

Visual Representations for Machine Learning Visual Representations for Machine Learning Spectral Clustering and Channel Representations Lecture 1 Spectral Clustering: introduction and confusion Michael Felsberg Klas Nordberg The Spectral Clustering

More information

Recommendation Systems

Recommendation Systems Recommendation Systems CS 534: Machine Learning Slides adapted from Alex Smola, Jure Leskovec, Anand Rajaraman, Jeff Ullman, Lester Mackey, Dietmar Jannach, and Gerhard Friedrich Recommender Systems (RecSys)

More information

3 No-Wait Job Shops with Variable Processing Times

3 No-Wait Job Shops with Variable Processing Times 3 No-Wait Job Shops with Variable Processing Times In this chapter we assume that, on top of the classical no-wait job shop setting, we are given a set of processing times for each operation. We may select

More information

A Novel Collaborative Filtering Algorithm by Bit Mining Frequent Itemsets

A Novel Collaborative Filtering Algorithm by Bit Mining Frequent Itemsets A Novel Collaborative Filtering Algorithm by Bit Mining Frequent Itemsets Loc Nguyen 1, Minh-Phung T. Do 2 1 Sunflower Soft Company, Ho Chi Minh, Vietnam 1 ngphloc@sunflowersoft.net 2 University of Information

More information

SUGGEST. Top-N Recommendation Engine. Version 1.0. George Karypis

SUGGEST. Top-N Recommendation Engine. Version 1.0. George Karypis SUGGEST Top-N Recommendation Engine Version 1.0 George Karypis University of Minnesota, Department of Computer Science / Army HPC Research Center Minneapolis, MN 55455 karypis@cs.umn.edu Last updated on

More information

A Connection between Network Coding and. Convolutional Codes

A Connection between Network Coding and. Convolutional Codes A Connection between Network Coding and 1 Convolutional Codes Christina Fragouli, Emina Soljanin christina.fragouli@epfl.ch, emina@lucent.com Abstract The min-cut, max-flow theorem states that a source

More information

BPR: Bayesian Personalized Ranking from Implicit Feedback

BPR: Bayesian Personalized Ranking from Implicit Feedback 452 RENDLE ET AL. UAI 2009 BPR: Bayesian Personalized Ranking from Implicit Feedback Steffen Rendle, Christoph Freudenthaler, Zeno Gantner and Lars Schmidt-Thieme {srendle, freudenthaler, gantner, schmidt-thieme}@ismll.de

More information

Improving the Accuracy of Top-N Recommendation using a Preference Model

Improving the Accuracy of Top-N Recommendation using a Preference Model Improving the Accuracy of Top-N Recommendation using a Preference Model Jongwuk Lee a, Dongwon Lee b,, Yeon-Chang Lee c, Won-Seok Hwang c, Sang-Wook Kim c a Hankuk University of Foreign Studies, Republic

More information

Data Preprocessing. Javier Béjar AMLT /2017 CS - MAI. (CS - MAI) Data Preprocessing AMLT / / 71 BY: $\

Data Preprocessing. Javier Béjar AMLT /2017 CS - MAI. (CS - MAI) Data Preprocessing AMLT / / 71 BY: $\ Data Preprocessing S - MAI AMLT - 2016/2017 (S - MAI) Data Preprocessing AMLT - 2016/2017 1 / 71 Outline 1 Introduction Data Representation 2 Data Preprocessing Outliers Missing Values Normalization Discretization

More information

A Recursive Prediction Algorithm for Collaborative Filtering Recommender Systems

A Recursive Prediction Algorithm for Collaborative Filtering Recommender Systems A Recursive rediction Algorithm for Collaborative Filtering Recommender Systems ABSTRACT Jiyong Zhang Human Computer Interaction Group, Swiss Federal Institute of Technology (EFL), CH-1015, Lausanne, Switzerland

More information

What if annotations were reusable: a preliminary discussion

What if annotations were reusable: a preliminary discussion What if annotations were reusable: a preliminary discussion Nikos Manouselis 1, Riina Vuorikari 2 1 Greek Research & Technology Network 56 Messogion Str. Athens, Greece {nikosm}@ieee.org 2 European Schoolnet,

More information

An SVD-based Fragile Watermarking Scheme With Grouped Blocks

An SVD-based Fragile Watermarking Scheme With Grouped Blocks An SVD-based Fragile Watermarking Scheme With Grouped Qingbo Kang Chengdu Yufei Information Engineering Co.,Ltd. 610000 Chengdu, China Email: qdsclove@gmail.com Ke Li, Hu Chen National Key Laboratory of

More information

Web Personalization & Recommender Systems

Web Personalization & Recommender Systems Web Personalization & Recommender Systems COSC 488 Slides are based on: - Bamshad Mobasher, Depaul University - Recent publications: see the last page (Reference section) Web Personalization & Recommender

More information

Probabilistic Group Recommendation via Information Matching

Probabilistic Group Recommendation via Information Matching Probabilistic Group Recommendation via Information Matching Jagadeesh Gorla 1, Neal Lathia 2, Stephen Robertson 3, Jun Wang 1 1 Department of Computer Science, University College London, UK 2 Computer

More information

CHAPTER 5 AUDIO WATERMARKING SCHEME INHERENTLY ROBUST TO MP3 COMPRESSION

CHAPTER 5 AUDIO WATERMARKING SCHEME INHERENTLY ROBUST TO MP3 COMPRESSION CHAPTER 5 AUDIO WATERMARKING SCHEME INHERENTLY ROBUST TO MP3 COMPRESSION In chapter 4, SVD based watermarking schemes are proposed which met the requirement of imperceptibility, having high payload and

More information

Recommender System for Online Dating Service. KSI MFF UK Malostranské nám. 25, Prague 1, Czech Republic

Recommender System for Online Dating Service. KSI MFF UK Malostranské nám. 25, Prague 1, Czech Republic Recommender System for Online Dating Service Lukáš Brožovský 1 and Václav Petříček 1 KSI MFF UK Malostranské nám. 25, Prague 1, Czech Republic lbrozovsky@centrum.cz, petricek@acm.org arxiv:cs/0703042v1

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 1: Course Overview; Matrix Multiplication Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 21 Outline 1 Course

More information

Using Singular Value Decomposition to Improve a Genetic Algorithm s Performance

Using Singular Value Decomposition to Improve a Genetic Algorithm s Performance Using Singular Value Decomposition to Improve a Genetic Algorithm s Performance Jacob G. Martin Computer Science University of Georgia Athens, GA 30602 martin@cs.uga.edu Khaled Rasheed Computer Science

More information

International Journal of Advancements in Research & Technology, Volume 2, Issue 8, August ISSN

International Journal of Advancements in Research & Technology, Volume 2, Issue 8, August ISSN International Journal of Advancements in Research & Technology, Volume 2, Issue 8, August-2013 244 Image Compression using Singular Value Decomposition Miss Samruddhi Kahu Ms. Reena Rahate Associate Engineer

More information

DEGENERACY AND THE FUNDAMENTAL THEOREM

DEGENERACY AND THE FUNDAMENTAL THEOREM DEGENERACY AND THE FUNDAMENTAL THEOREM The Standard Simplex Method in Matrix Notation: we start with the standard form of the linear program in matrix notation: (SLP) m n we assume (SLP) is feasible, and

More information

Enhancing Cluster Quality by Using User Browsing Time

Enhancing Cluster Quality by Using User Browsing Time Enhancing Cluster Quality by Using User Browsing Time Rehab M. Duwairi* and Khaleifah Al.jada'** * Department of Computer Information Systems, Jordan University of Science and Technology, Irbid 22110,

More information

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss Robot Mapping Least Squares Approach to SLAM Cyrill Stachniss 1 Three Main SLAM Paradigms Kalman filter Particle filter Graphbased least squares approach to SLAM 2 Least Squares in General Approach for

More information

Slope One Predictors for Online Rating-Based Collaborative Filtering

Slope One Predictors for Online Rating-Based Collaborative Filtering Slope One Predictors for Online Rating-Based Collaborative Filtering Daniel Lemire Anna Maclachlan February 7, 2005 Abstract Rating-based collaborative filtering is the process of predicting how a user

More information

Full Text Search Engine as Scalable k-nearest Neighbor Recommendation System

Full Text Search Engine as Scalable k-nearest Neighbor Recommendation System Full Text Search Engine as Scalable k-nearest Neighbor Recommendation System Ján Suchal, Pavol Návrat To cite this version: Ján Suchal, Pavol Návrat. Full Text Search Engine as Scalable k-nearest Neighbor

More information

A Class of Instantaneously Trained Neural Networks

A Class of Instantaneously Trained Neural Networks A Class of Instantaneously Trained Neural Networks Subhash Kak Department of Electrical & Computer Engineering, Louisiana State University, Baton Rouge, LA 70803-5901 May 7, 2002 Abstract This paper presents

More information

Matrix Co-factorization for Recommendation with Rich Side Information HetRec 2011 and Implicit 1 / Feedb 23

Matrix Co-factorization for Recommendation with Rich Side Information HetRec 2011 and Implicit 1 / Feedb 23 Matrix Co-factorization for Recommendation with Rich Side Information and Implicit Feedback Yi Fang and Luo Si Department of Computer Science Purdue University West Lafayette, IN 47906, USA fangy@cs.purdue.edu

More information

SOMSN: An Effective Self Organizing Map for Clustering of Social Networks

SOMSN: An Effective Self Organizing Map for Clustering of Social Networks SOMSN: An Effective Self Organizing Map for Clustering of Social Networks Fatemeh Ghaemmaghami Research Scholar, CSE and IT Dept. Shiraz University, Shiraz, Iran Reza Manouchehri Sarhadi Research Scholar,

More information

Enhancing K-means Clustering Algorithm with Improved Initial Center

Enhancing K-means Clustering Algorithm with Improved Initial Center Enhancing K-means Clustering Algorithm with Improved Initial Center Madhu Yedla #1, Srinivasa Rao Pathakota #2, T M Srinivasa #3 # Department of Computer Science and Engineering, National Institute of

More information

Enhancing Cluster Quality by Using User Browsing Time

Enhancing Cluster Quality by Using User Browsing Time Enhancing Cluster Quality by Using User Browsing Time Rehab Duwairi Dept. of Computer Information Systems Jordan Univ. of Sc. and Technology Irbid, Jordan rehab@just.edu.jo Khaleifah Al.jada' Dept. of

More information

An Optimized Pixel-Wise Weighting Approach For Patch-Based Image Denoising

An Optimized Pixel-Wise Weighting Approach For Patch-Based Image Denoising An Optimized Pixel-Wise Weighting Approach For Patch-Based Image Denoising Dr. B. R.VIKRAM M.E.,Ph.D.,MIEEE.,LMISTE, Principal of Vijay Rural Engineering College, NIZAMABAD ( Dt.) G. Chaitanya M.Tech,

More information

A New Heuristic Layout Algorithm for Directed Acyclic Graphs *

A New Heuristic Layout Algorithm for Directed Acyclic Graphs * A New Heuristic Layout Algorithm for Directed Acyclic Graphs * by Stefan Dresbach Lehrstuhl für Wirtschaftsinformatik und Operations Research Universität zu Köln Pohligstr. 1, 50969 Köln revised August

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 22, 2016 Course Information Website: http://www.stat.ucdavis.edu/~chohsieh/teaching/ ECS289G_Fall2016/main.html My office: Mathematical Sciences

More information

Radial Basis Function Networks: Algorithms

Radial Basis Function Networks: Algorithms Radial Basis Function Networks: Algorithms Neural Computation : Lecture 14 John A. Bullinaria, 2015 1. The RBF Mapping 2. The RBF Network Architecture 3. Computational Power of RBF Networks 4. Training

More information

Direct Matrix Factorization and Alignment Refinement: Application to Defect Detection

Direct Matrix Factorization and Alignment Refinement: Application to Defect Detection Direct Matrix Factorization and Alignment Refinement: Application to Defect Detection Zhen Qin (University of California, Riverside) Peter van Beek & Xu Chen (SHARP Labs of America, Camas, WA) 2015/8/30

More information

The Bounded Edge Coloring Problem and Offline Crossbar Scheduling

The Bounded Edge Coloring Problem and Offline Crossbar Scheduling The Bounded Edge Coloring Problem and Offline Crossbar Scheduling Jonathan Turner WUCSE-05-07 Abstract This paper introduces a variant of the classical edge coloring problem in graphs that can be applied

More information

Nearest-Biclusters Collaborative Filtering

Nearest-Biclusters Collaborative Filtering Nearest-Biclusters Collaborative Filtering Panagiotis Symeonidis Alexandros Nanopoulos Apostolos Papadopoulos Yannis Manolopoulos Aristotle University, Department of Informatics, Thessaloniki 54124, Greece

More information

Dynamic Wavelength Assignment for WDM All-Optical Tree Networks

Dynamic Wavelength Assignment for WDM All-Optical Tree Networks Dynamic Wavelength Assignment for WDM All-Optical Tree Networks Poompat Saengudomlert, Eytan H. Modiano, and Robert G. Gallager Laboratory for Information and Decision Systems Massachusetts Institute of

More information

Storage Formats for Sparse Matrices in Java

Storage Formats for Sparse Matrices in Java Storage Formats for Sparse Matrices in Java Mikel Luján, Anila Usman, Patrick Hardie, T.L. Freeman, and John R. Gurd Centre for Novel Computing, The University of Manchester, Oxford Road, Manchester M13

More information

Recommender Systems. Collaborative Filtering & Content-Based Recommending

Recommender Systems. Collaborative Filtering & Content-Based Recommending Recommender Systems Collaborative Filtering & Content-Based Recommending 1 Recommender Systems Systems for recommending items (e.g. books, movies, CD s, web pages, newsgroup messages) to users based on

More information

Compressed Sensing Algorithm for Real-Time Doppler Ultrasound Image Reconstruction

Compressed Sensing Algorithm for Real-Time Doppler Ultrasound Image Reconstruction Mathematical Modelling and Applications 2017; 2(6): 75-80 http://www.sciencepublishinggroup.com/j/mma doi: 10.11648/j.mma.20170206.14 ISSN: 2575-1786 (Print); ISSN: 2575-1794 (Online) Compressed Sensing

More information

Texture Mapping using Surface Flattening via Multi-Dimensional Scaling

Texture Mapping using Surface Flattening via Multi-Dimensional Scaling Texture Mapping using Surface Flattening via Multi-Dimensional Scaling Gil Zigelman Ron Kimmel Department of Computer Science, Technion, Haifa 32000, Israel and Nahum Kiryati Department of Electrical Engineering

More information

A Game Map Complexity Measure Based on Hamming Distance Yan Li, Pan Su, and Wenliang Li

A Game Map Complexity Measure Based on Hamming Distance Yan Li, Pan Su, and Wenliang Li Physics Procedia 22 (2011) 634 640 2011 International Conference on Physics Science and Technology (ICPST 2011) A Game Map Complexity Measure Based on Hamming Distance Yan Li, Pan Su, and Wenliang Li Collage

More information

Single Image Interpolation via Adaptive Non-Local Sparsity-Based Modeling

Single Image Interpolation via Adaptive Non-Local Sparsity-Based Modeling Single Image Interpolation via Adaptive Non-Local Sparsity-Based Modeling Yaniv Romano The Electrical Engineering Department Matan Protter The Computer Science Department Michael Elad The Computer Science

More information

Concept Based Search Using LSI and Automatic Keyphrase Extraction

Concept Based Search Using LSI and Automatic Keyphrase Extraction Concept Based Search Using LSI and Automatic Keyphrase Extraction Ravina Rodrigues, Kavita Asnani Department of Information Technology (M.E.) Padre Conceição College of Engineering Verna, India {ravinarodrigues

More information

Dimension Reduction CS534

Dimension Reduction CS534 Dimension Reduction CS534 Why dimension reduction? High dimensionality large number of features E.g., documents represented by thousands of words, millions of bigrams Images represented by thousands of

More information

Encoding Words into String Vectors for Word Categorization

Encoding Words into String Vectors for Word Categorization Int'l Conf. Artificial Intelligence ICAI'16 271 Encoding Words into String Vectors for Word Categorization Taeho Jo Department of Computer and Information Communication Engineering, Hongik University,

More information

CLASSIFICATION is one of the most important applications of neural systems. Approximation

CLASSIFICATION is one of the most important applications of neural systems. Approximation Neural minimal distance methods Włodzisław Duch Department of Computer Methods, Nicholas Copernicus University, Grudzia dzka 5, 87-100 Toruń, Poland. E-mail: duch@phys.uni.torun.pl Abstract Minimal distance

More information

Workload Characterization Techniques

Workload Characterization Techniques Workload Characterization Techniques Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse567-08/

More information

Dimension reduction : PCA and Clustering

Dimension reduction : PCA and Clustering Dimension reduction : PCA and Clustering By Hanne Jarmer Slides by Christopher Workman Center for Biological Sequence Analysis DTU The DNA Array Analysis Pipeline Array design Probe design Question Experimental

More information

Web Personalization & Recommender Systems

Web Personalization & Recommender Systems Web Personalization & Recommender Systems COSC 488 Slides are based on: - Bamshad Mobasher, Depaul University - Recent publications: see the last page (Reference section) Web Personalization & Recommender

More information

A Content Vector Model for Text Classification

A Content Vector Model for Text Classification A Content Vector Model for Text Classification Eric Jiang Abstract As a popular rank-reduced vector space approach, Latent Semantic Indexing (LSI) has been used in information retrieval and other applications.

More information

A Nuclear Norm Minimization Algorithm with Application to Five Dimensional (5D) Seismic Data Recovery

A Nuclear Norm Minimization Algorithm with Application to Five Dimensional (5D) Seismic Data Recovery A Nuclear Norm Minimization Algorithm with Application to Five Dimensional (5D) Seismic Data Recovery Summary N. Kreimer, A. Stanton and M. D. Sacchi, University of Alberta, Edmonton, Canada kreimer@ualberta.ca

More information