1.5 Equations of Lines and Planes in 3-D

Size: px
Start display at page:

Download "1.5 Equations of Lines and Planes in 3-D"

Transcription

1 1.5. EQUATIONS OF LINES AND PLANES IN 3-D 55 Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from the origin to P. Such a vector is called the position vector of the point P and its coordinates are a, b, c, the same as P. Position vectors are usually denoted r. In this section, we derive the equations of lines and planes in 3-D. We do so by finding the conditions a point P = (x, y, z) or its corresponding position vector r = x, y, z must satisfy in order to belong to the object being studied (line or plane) Lines And Line Segments In 3-D, like in 2-D, a line is uniquely determined when one point on the line and the direction of the line are given. In this section, we assume we are given a point P 0 = (x 0, y 0, z 0 ) on the line and a direction vector v = a, b, c. Our goal is to determine the equation of the line L which goes through P 0 and is parallel to v. Definition 68 a, b, and c are called the direction numbers of the line L. Let P (x, y, z) be an arbitrary point on L. We wish to find the conditions P must satisfy to be on the line L.

2 56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Vector Equation Consider figure We see that a necessary and suffi cient condition for the point P to be on the line L is that P 0 P be parallel to v. This means that there exists a scalar t such that P 0 P = t v Let r 0 be the position vector of P 0 and r be the position vector of P. Then, P 0 P = r r 0 Thus, we obtain That is r r0 = t v r = r0 + t v (1.9) Definition 69 Equation 1.9 is known as the vector equation of the line L. The scalar t used in the equation is called a parameter. The parameter t can be any real number. As it varies, the point P moves along the line. When t = 0, P is the same as P 0. When t > 0, P is away from P 0 in the direction of v and when t < 0, P is away from P 0 in the direction opposite v. The larger t is (in absolute value), the further away P is from P 0. Parametric Equations If we switch to coordinates, equation 1.9 becomes x, y, z = x 0, y 0, z 0 + t a, b, c = x 0 + at, y 0 + bt, z 0 + ct Two vectors are equal when their corresponding coordinates are equal. Thus, we obtain x = x 0 + at y = y 0 + bt (1.10) z = z 0 + ct Definition 70 Equation 1.10 is known as the parametric equation of the line L. Symmetric Equations If we solve for t in equation 1.10, assuming that a 0, b 0, and c 0 we obtain x x 0 = y y 0 = z z 0 (1.11) a b c Definition 71 Equation 1.11 is known as the symmetric equations of the line L.

3 1.5. EQUATIONS OF LINES AND PLANES IN 3-D 57 Remark 72 Equation 1.11 is really three equations x x 0 a y y 0 b x x 0 a = y y 0 b = z z 0 c = z z 0 c (1.12) In the case one of the direction numbers is 0, the symmetric equation simply becomes the equation from 1.12 which does not involve the direction number being 0. The variable corresponding to the direction number being 0 is simply set to the corresponding coordinate of the given point. For example, if a = 0 then the symmetric equations are Examples y y 0 b x = x 0 = z z 0 c Example 73 Find the parametric and symmetric equations of the line through P ( 1, 4, 2) in the direction of v = 1, 2, 3 The parametric equations are The symmetric equations are x = 1 + t y = 4 + 2t z = 2 + 3t x + 1 = y 4 2 = z 2 3 Example 74 Find the parametric and symmetric equations of the line through P 1 (1, 2, 3) and P 2 (2, 4, 1). First, we need to find the direction vector. Since the line goes through P 1 and P 2, the vector P 1 P 2 will be parallel to the line. P 1 P 2 = 1, 2, 2 Using equation 1.10, we get If we solve for t, we get x = 1 + t y = 2 + 2t z = 3 2t x 1 = y 2 2 = z 3 2

4 58 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Equation of a Line Segment As the last two examples illustrate, we can also find the equation of a line if we are given two points instead of a point and a direction vector. Let s derive a formula in the general case. Suppose that we are given two points on the line P 0 = (x 0, y o, z 0 ) and P 1 = (x 1, y 1, z 1 ). Then P 0 P 1 = x 1 x 0, y 1 y 0, z 1 z 0 is a direction vector for the line. Using P 0 for the point and P 0 P 1 for the direction vector, we see that the parametric equations of the line are x = x 0 + t (x 1 x 0 ) y = y 0 + t (y 1 y 0 ) z = z 0 + t (z 1 z 0 ) This is usually written differently. If we distribute t and factor differently, we get x = (1 t) x 0 + tx 1 y = (1 t) y 0 + ty 1 (1.13) z = (1 t) z 0 + tz 1 When t = 0, we are at the point P 0 and when t = 1, we are at the point P 1. So, if t is allowed to take on any real value, then this equation will describe the whole line. On the other hand, if we restrict t to [0, 1], then this equation describes the portion of the line between P 0 and P 1 which is called the line segment from P 0 to P 1. Example 75 Find the equation of the line segment from P 0 P 1 (2, 4, 1). Using equation 1.13 we get x = (1 t) 1 + 2t y = (1 t) 2 + 4t with t [0, 1] z = (1 t) 3 + t = (1, 2, 3) to Intersecting Lines, Parallel Lines, Perpendicular lines Recall that in 2-D two lines were either parallel or intersected. In 3-D it is also possible for two lines to not be parallel and to not intersect. Such lines are called skew lines. Two lines are parallel if their direction vectors are parallel. If two lines are not parallel, we can find if they intersect if there exists values of the parameters in their equations which produce the same point. More specifically, if the first line has equation r 0 + t v and the second line has equation R 0 + s u then they will intersect if there exists a value for t and s such that r 0 + t v = R 0 + s u. Also, when two lines intersect, we can find the angle between them by finding the smallest angle between their direction vectors (using the dot product). In particular, two lines are perpendicular if they intersect and if their direction vectors are perpendicular.

5 1.5. EQUATIONS OF LINES AND PLANES IN 3-D 59 Remark 76 You will note that we used a different letter for the parameter in each equation because it may be a different value of the parameter which will produce the same point in each equation. We illustrate this with some examples. Example 77 Let L 1 be the line through (1, 6, 2) with direction vector 1, 2, 1 and L 2 be the line through (0, 4, 1) with direction vector 2, 1, 2. Determine if the lines are parallel, if they intersect or if they are skew. If they intersect, find the point at which they intersect. For the lines to be parallel, their direction vectors would have to be parallel, that is there would have to exist a constant c such that Which would imply 1, 2, 1 = c 2, 1, 2 1 = 2c 2 = c 1 = 2c Which has no solution. So, the lines are no parallel. We now derive the equation of each line. For L1 For L 2 x = 1 + t y = 6 + 2t z = 2 + t x = 2s y = 4 + s z = 1 + 2s The line will intersect if we can solve 1 + t = 2s 6 + 2t = 4 + s 2 + t = 1 + 2s Equation 1 gives t = 2s 1 If we substitute in equation 2, we get 6 + 2t = 4 + s (2s 1) = 4 + s 6 + 4s 2 = 4 + s 3s = 12 s = 4

6 60 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Since we had t = 2s 1 this implies that t = 7. We need to verify that these values also work in equation 3. Replacing s and t by their values gives us = (4) 9 = 9 So, the two lines intersect. To find the point of intersection, we can use the equation of either line with the value of the corresponding parameter. If we use L 1, the parameter is t and the value of t which gives the point of intersection is t = 7. Thus, the point of intersection is That is x = y = (7) z = x = 8 y = 8 z = 9 Example 78 Find the angle between the two previous lines. Their direction vectors are u = 1, 2, 1 and v = 2, 1, 2. The smallest angle between these vectors is θ = u v cos 1 u v = cos = cos Example 79 Find the points at which L 1 in the example above intersects with the coordinate planes. The parametric equations of L 1 are x = 1 + t y = 6 + 2t z = 2 + t Intersection with the xy-plane. On the xy-plane, z = 0. If we replace in the equation of L 1, we get t = 2. This allows us to find x and y. x = 1 2 = 1 and y = 6+2 ( 2) = 10. Thus, L 1 intersect the xy-plane at ( 1, 10, 0). Intersection with the xz-plane. On the xz-plane, y = 0. Using the same technique as above, we get 0 = 6 + 2t or t = 3. Thus, x = = 4 and z = = 5. Thus L 1 intersects the xz-plane at (4, 0, 5).

7 1.5. EQUATIONS OF LINES AND PLANES IN 3-D 61 Figure 1.17: Plane determined by a point and its normal Intersection with the yz-plane. On the yz-plane, x = 0. Thus, 0 = 1 + t or t = 1. This gives us y = ( 1) = 8 and z = 2 1 = 1. It follows that L 1 intersects the yz-plane at (0, 8, 1). Summary for Lines 1. Be able to find the equation of a line given a point and a direction or given two points. 2. Be able to tell if two lines are parallel, intersect or are skewed. 3. Be able to find the angle between two lines which intersect. 4. Be able to find the points at which a line intersect with the coordinate planes Planes Plane determined by a point and its normal A plane is uniquely determined given a point on the plane and a vector perpendicular to the plane. Such a vector is said to be normal to the plane. To help visualize this, consider figure Given a point P 0 = (x 0, y 0, z 0 ) and a normal n = a, b, c to a plane, a point P = (x, y, z) will be on the plane if P 0 P is perpendicular to n that is n P0 P = 0 (1.14)

8 62 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE This is known as the vector equation of a plane. Switching to coordinates, we get a, b, c x x 0, y y 0, z z 0 = 0 a (x x 0 ) + b (y y 0 ) + c (z z 0 ) = 0 We usually write this as ax + by + cz + d = 0 (1.15) where d = ax 0 by 0 cz 0. This is known as the scalar equation of a plane. It is also the equation of a plane in implicit form. Remark 80 Note that when we know the scalar equation of a plane, we automatically know its normal; it is given by the coeffi cients of x, y, and z. Remark 81 A plane in 3D is the analogous of a line in 2D. Recall that a normal to the line ax + by + c = 0 in 2D is a, b. Similarly, a normal to the plane ax + by + cz + d = 0 is a, b, c. Example 82 The normal to the plane 3x + 2y z = 10 is 3, 2, 1. Example 83 The scalar equation of a plane through (1, 2, 3) with normal 2, 1, 4 is 2 (x 1) + 1 (y 2) + 4 (z 3) = 0 2x + y + 4z 16 = 0 Plane determined by three points If instead of being given a point and the normal, we are given three non-colinear points P 1, P 2, and P 3, we form the vectors P 1 P 2 and P 1 P 3. The cross product P 1 P 2 P 1 P 3 is a vector perpendicular to both P 1 P 2 and P 1 P 3 and therefore perpendicular to the plane. We can then use one of the point, the vector obtained from the cross product to derive the equation of the plane. Example 84 Find the equation of the plane through the points P 1 (0, 1, 1), P 2 (1, 0, 1) and P 3 (1, 3, 1). A normal to the plane is P 1 P 2 P 1 P 3 = i j k = 2 i + 2 j 3 k = 2, 2, 3

9 1.5. EQUATIONS OF LINES AND PLANES IN 3-D 63 A point P (x, y, z) is on the plane if P 1 P ( P 1 P 2 ) P 1 P 3 = 0 x, y 1, z 1 2, 2, 3 = 0 2x + 2 (y 1) 3 (z 1) = 0 Parallel Planes, Intersecting Planes 2x + 2y 3z + 1 = 0 Two planes are parallel if and only if their normals are parallel. If two planes p 1 with normal n 1 and p 2 with normal n 2 are not parallel, then the angle θ between them is defined to be the smallest angle between their normals that is the angle with the non-negative cosine. In other words, θ = cos 1 n 1 n 2 n 1 n 2 (1.16) Example 85 Find the angle between the planes p 1 : x + y + z 1 = 0 and p 2 : x 2y + 3z 1 = 0. Find their intersection. Angle: The normal to p 1 is n 1 = 1, 1, 1 and the normal to p 2 is n 2 = 1, 2, 3. Therefore, the angle θ between them is θ = cos 1 n 1 n 2 n 1 n 2 = cos = cos Intersection: When two planes are not parallel, they intersect in a line. To find the equation of a line, we need a point and a direction. The direction of the line will be perpendicular to both n 1 and n 2. Thus, it can be found with n 1 n 2. n 1 i j k n 2 = = 5 i 2 j 3 k = 5, 2, 3 We also need a point on the line. For this, we can use the equations of the planes. To be on the line, a point must belong to the two planes. However, that gives us only two equations and we have three unknowns. So, we can

10 64 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE also fix one of the variables. For example, if we set z = 0, we will be looking for the point on the line which intersects the two planes and also the xy-plane. This is what we will do. So, we must solve { x + y = 1 x 2y = 1 The solutions are x = 1 and y = 0. So, (1, 0, 0) is a point on the line. Thus, the parametric equations of the line are Summary for Planes x = 1 + 5t y = 2t z = 3t In addition, using the material studied so far, you should be able to do the following: 1. Be able to find the equation of a plane given a point on the plane and a normal to the plane. 2. Be able to find the equation of a plane given three points on the plane. 3. Be able to find the equation of a plane through a point and parallel to a given plane. 4. Be able to find the equation of a plane through a point and a line not containing the point. 5. Be able to tell if two planes are parallel, perpendicular. 6. Be able to find the angle between two planes. 7. Be able to find the traces of a plane. 8. Be able to find the intersection of two planes Things to Know Know how a line is determined (2 points or one point and a direction). Know the three forms of the equation of a line (vector, parametric, symmetric). Know what the direction numbers are. Given two lines, be able to tell if they are parallel, perpendicular, if they intersect or if they are skew. If two lines intersect, be able to find the point at which they intersect.

11 1.5. EQUATIONS OF LINES AND PLANES IN 3-D 65 Be able to find the equation of a line under the following conditions: given two points on the line. given a point and the direction of the line. given a point and a line parallel or perpendicular to it. the line is the intersection of two given planes. Know how a plane is determined (a point and a normal) Know the three forms of the equation of a plane (vector, scalar, linear). Be able to tell if two planes are parallel, or intersect. Be able to find the angle between two planes. Be able to find the intersection between a plane and a line. Be able to find the equation of a plane under the following conditions: given a point and a normal. given a point and another plane parallel to it. given 3 points. given a point and a line not containing the point Problems Do the following problems. 1. Find the parametric equations for the line through the point P = (3, 4, 1) parallel to i + j + k. 2. Find the parametric equations for the line through the point P = ( 2, 0, 3) and Q = (3, 5, 2). 3. Find the parametric equations for the line through the origin parallel to 2 j + k. 4. Find the parametric equations for the line through the point (1, 1, 1) parallel to the z-axis. 5. Find the parametric equations for the line through the point (0, 7, 0) perpendicular to the plane x + 2y + 2z = Find the parametric equations for the x-axis. 7. Find the equation of the line segment from (0, 0, 0) to ( 1, 1, 3 2). 8. Find the equation of the line segment from (1, 0, 0) to (1, 1, 0).

12 66 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 9. Find the equation of the plane through P = (0, 2, 1) normal to 3 i 2 j k. 10. Find the equation of the plane through P = (1, 1, 1), Q = (2, 0, 2) and R = (0, 2, 1). 11. Find the equation of the plane through P = (2, 4, 5) perpendicular to the x = 5 + t line y = 1 + 3t z = 4t x = 1 + 2t x = 2 + s 12. Find the point of intersection of the lines y = 2 + 3t and y = 4 + 2s z = 3 + 4t z = 1 4s Then, find the plane determined by these two lines. x = 1 + t 13. Find the plane determined by intersecting the lines y = 2 + t and z = 1 t x = 1 4s y = 1 + 2s z = 2 2s. 14. Find the plane through P 0 = (2, 1, 1) perpendicular to the line of intersection of the planes 2x + y z = 3 and x + 2y + z = 2. x = 4t 15. Find the distance from the point P = (0, 0, 12) to the line y = 2t z = 2t x = 2 + 2t 16. Find the distance from the point P = (2, 1, 3) to the line y = 1 + 6t z = Find the distance from the point P = (2, 3, 4) to the plane x + 2y + 2z = Find the distance from the point P = (0, 1, 1) to the plane 4y + 3z = Find the distance between the two planes x+2y+6z = 1 and x+2y+6z = Find the angle between the two planes 2x+2y+2z = 3 and 2x 2y z = 5. x = 1 t 21. Find the point of intersection between the line y = 3t and the plane z = 1 + t 2x y + 3z = 6.

13 1.5. EQUATIONS OF LINES AND PLANES IN 3-D Determine whether the lines taken two at a time are parallel, intersect or skew. If they intersect, find their point of intersection. x = 3 + 2t L 1 : y = 1 + 4t z = 2 t L 2 : L 3 : 23. Find the points in which the line planes. x = 1 + 4s y = 1 + 2s z = 3 + 4s x = 3 + 2r y = 2 + r z = 2 + 2r x = 1 + 2t y = 1 t z = 3t meet the coordinate 24. In the plane, the slope-intercept form of the equation of a line is y = mx+b where m is the slope and b the y-intercept. Show that the vector (1, m) is a direction vector of the line y = mx + b. (hint: Pick 2 points P 1 and P 2 on the line the vector P 1 P 2 is a direction vector for the line). 25. Another form of the equation of a line in the plane is ax + by + c = 0. Using a similar approach as the one in the previous problem, show that (b, a) is a direction vector for such a line. What is a vector perpendicular to the line? change in y 26. For a line in space, the notion of slope ( ) does not carry over change in x because there are three variables changing, it is replaced by the direction vector. However, if a line is on one of the coordinate planes, then there are only two variables involved. If the line is in the xy-plane, then only x and y are changing. If a line is in the xz-plane, then only x and z are changing. If a line is in the yz-plane, then only y and z are changing. Find the direction vector of a line having its slope equal to m in each of the coordinate planes. (hint: use problem 24). 27. Let L be the line that passes through the points Q and R and let P be a point not on L. Show that the distance between P and L is QR QP. QR Show that this agrees with the formula in the book for the distance between a point S and a line through P parallel to v which is P S v v. 28. Let P be a point not on the plane determined by the points Q, R and S. Show that the distance between P and the plane is QR ( ) QS QP. QR QS

14 68 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 29. Show that the distance from the point P 1 = (x 1, y 1 ) to the line ax+by+c = 0 is ax1+by1+c a. 2 +b Show that the distance from the point P 1 = (x 1, y 1, z 1 ) and the plane ax + by + cz + d = 0 is ax1+by1+cz1+d a. 2 +b 2 +c Assuming d 1 d 2, explain why the two planes given by ax+by+cz+d 1 = 0 and ax + by + cz + d 2 = 0 are parallel, then compute the distance between them Answers 1. Find the parametric equations for the line through the point P = (3, 4, 1) parallel to i + j + k. The direction vector is (1, 1, 1) hence the equation of the line is x = 3 + t y = 4 + t z = 1 + t 2. Find the parametric equations for the line through the point P = ( 2, 0, 3) and Q = (3, 5, 2). The direction vector is P Q = (5, 5, 5) hence the equation is x = 2 + 5t y = 5t z = 3 5t 3. Find the parametric equations for the line through the origin parallel to 2 j + k. The direction vector is (0, 2, 1) hence the equation is x = 0 y = 2t z = t 4. Find the parametric equations for the line through the point (1, 1, 1) parallel to the z-axis. The direction vector is (0, 0, 1) hence the equation is x = 1 y = 1 z = 1 + t 5. Find the parametric equations for the line through the point (0, 7, 0) perpendicular to the plane x + 2y + 2z = 13.

15 1.5. EQUATIONS OF LINES AND PLANES IN 3-D 69 The direction vector is the normal to the plane that is (1, 2, 2) hence the equation is x = t y = 7 + 2t z = 2t 6. Find the parametric equations for the x-axis. The direction vector is (1, 0, 0) and a point is the origin, hence the equation is x = t y = 0 z = 0 7. Find the equation of the line segment from (0, 0, 0) to ( 1, 1, 3 2). The equation is x = t y = t z = 3 2 t with 0 t 1 8. Find the equation of the line segment from (1, 0, 0) to (1, 1, 0). The equation is x = 1 y = t z = 0 with 0 t 1 9. Find the equation of the plane through P = (0, 2, 1) normal to 3 i 2 j k. The equation is 3x 2y z + 3 = Find the equation of the plane through P = (1, 1, 1), Q = (2, 0, 2) and R = (0, 2, 1). The equation of the plane is 7x 5y 4z 6 = Find the equation of the plane through P = (2, 4, 5) perpendicular to the x = 5 + t line y = 1 + 3t z = 4t The equation of the plane is x + 3y + 4z 34 = 0

16 70 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 12. Find the point of intersection of the lines x = 1 + 2t y = 2 + 3t z = 3 + 4t Then, find the plane determined by these two lines. The equation of the plane is and x = 2 + s y = 4 + 2s z = 1 4s. 20x + 12y + z 7 = Find the plane determined by intersecting the lines x = 1 4s y = 1 + 2s z = 2 2s The equation of the plane is x = 1 + t y = 2 + t z = 1 t and y + z 3 = Find the plane through P 0 = (2, 1, 1) perpendicular to the line of intersection of the planes 2x + y z = 3 and x + 2y + z = 2. The equation of the plane is x y + z = 0 x = 4t 15. Find the distance from the point P = (0, 0, 12) to the line y = 2t z = 2t d = 2 30 x = 2 + 2t 16. Find the distance from the point P = (2, 1, 3) to the line y = 1 + 6t z = 3 The given point is already on the line, so the distance is Find the distance from the point P = (2, 3, 4) to the plane x + 2y + 2z = 13. d = Find the distance from the point P = (0, 1, 1) to the plane 4y + 3z = 12. d = Find the distance between the two planes x+2y+6z = 1 and x+2y+6z = 10. d = 9 41

17 1.5. EQUATIONS OF LINES AND PLANES IN 3-D Find the angle between the two planes 2x+2y+2z = 3 and 2x 2y z = 5. The angle is θ = cos = rad = Find the point of intersection between the line 2x y + 3z = 6. The point is x = = 3 2 y = 3 ( ) 1 2 = 3 2 z = = 1 2 x = 1 t y = 3t z = 1 + t and the plane 22. Determine whether the lines taken two at a time are parallel, intersect or skew. If they intersect, find their point of intersection. x = 3 + 2t L 1 : y = 1 + 4t z = 2 t L 2 : L 3 : L 1 and L 2. They are not parallel. L 1 and L 3. They are not parallel. x = 1 + 4s y = 1 + 2s z = 3 + 4s x = 3 + 2r y = 2 + r z = 2 + 2r L 2 and L 3. These two lines are parallel since their position vectors are. x = 1 + 2t 23. Find the points in which the line y = 1 t meet the coordinate z = 3t planes. xy-plane. The point is (1, 1, 0). xz-plane.the point is ( 1, 0, 3). yz-plane.the point is ( 0, 1 2, ) 3 2.

1.5 Equations of Lines and Planes in 3-D

1.5 Equations of Lines and Planes in 3-D 56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from

More information

Lines and Planes in 3D

Lines and Planes in 3D Lines and Planes in 3D Philippe B. Laval KSU January 28, 2013 Philippe B. Laval (KSU) Lines and Planes in 3D January 28, 2013 1 / 20 Introduction Recall that given a point P = (a, b, c), one can draw a

More information

1 EquationsofLinesandPlanesin 3-D

1 EquationsofLinesandPlanesin 3-D 1 EquationsofLinesandPlanesin 3-D Recall that given a point P (a, b, c), one can draw a vector from the origin to P. Such a vector is called the position vector of the point P and its coordinates are a,

More information

Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes

Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes Section 13.5: Equations of Lines and Planes 1 Objectives 1. Find vector, symmetric, or parametric equations for a line in space given two points on the line, given a point on the line and a vector parallel

More information

The Three Dimensional Coordinate System

The Three Dimensional Coordinate System The Three-Dimensional Coordinate System The Three Dimensional Coordinate System You can construct a three-dimensional coordinate system by passing a z-axis perpendicular to both the x- and y-axes at the

More information

JUST THE MATHS SLIDES NUMBER 5.2. GEOMETRY 2 (The straight line) A.J.Hobson

JUST THE MATHS SLIDES NUMBER 5.2. GEOMETRY 2 (The straight line) A.J.Hobson JUST THE MATHS SLIDES NUMBER 5.2 GEOMETRY 2 (The straight line) by A.J.Hobson 5.2.1 Preamble 5.2.2 Standard equations of a straight line 5.2.3 Perpendicular straight lines 5.2.4 Change of origin UNIT 5.2

More information

Review Exercise. 1. Determine vector and parametric equations of the plane that contains the

Review Exercise. 1. Determine vector and parametric equations of the plane that contains the Review Exercise 1. Determine vector and parametric equations of the plane that contains the points A11, 2, 12, B12, 1, 12, and C13, 1, 42. 2. In question 1, there are a variety of different answers possible,

More information

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter 1 Linear Equations and Straight Lines 2 of 71 Outline 1.1 Coordinate Systems and Graphs 1.4 The Slope of a Straight Line 1.3 The Intersection Point of a Pair of Lines 1.2 Linear Inequalities 1.5

More information

graphing_9.1.notebook March 15, 2019

graphing_9.1.notebook March 15, 2019 1 2 3 Writing the equation of a line in slope intercept form. In order to write an equation in y = mx + b form you will need the slope "m" and the y intercept "b". We will subsitute the values for m and

More information

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY True/False 10 points: points each) For the problems below, circle T if the answer is true and circle F is the answer is false. After you ve chosen

More information

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines Math 18.02 (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines February 12 Reading Material: From Simmons: 17.1 and 17.2. Last time: Square Systems. Word problem. How many solutions?

More information

Mathematics (www.tiwariacademy.com)

Mathematics (www.tiwariacademy.com) () Miscellaneous Exercise on Chapter 10 Question 1: Find the values of k for which the line is (a) Parallel to the x-axis, (b) Parallel to the y-axis, (c) Passing through the origin. Answer 1: The given

More information

Midterm Review II Math , Fall 2018

Midterm Review II Math , Fall 2018 Midterm Review II Math 2433-3, Fall 218 The test will cover section 12.5 of chapter 12 and section 13.1-13.3 of chapter 13. Examples in class, quizzes and homework problems are the best practice for the

More information

12.5 Lines and Planes in 3D Lines: We use parametric equations for 3D lines. Here s a 2D warm-up:

12.5 Lines and Planes in 3D Lines: We use parametric equations for 3D lines. Here s a 2D warm-up: Closing Thu: 12.4(1)(2), 12.5(1) Closing next Tue: 12.5(2)(3), 12.6 Closing next Thu: 13.1, 13.2 12.5 Lines and Planes in 3D Lines: We use parametric equations for 3D lines. Here s a 2D warm-up: Consider

More information

CS770/870 Spring 2017 Ray Tracing Implementation

CS770/870 Spring 2017 Ray Tracing Implementation Useful ector Information S770/870 Spring 07 Ray Tracing Implementation Related material:angel 6e: h.3 Ray-Object intersections Spheres Plane/Polygon Box/Slab/Polyhedron Quadric surfaces Other implicit/explicit

More information

Math-2. Lesson 3-1. Equations of Lines

Math-2. Lesson 3-1. Equations of Lines Math-2 Lesson 3-1 Equations of Lines How can an equation make a line? y = x + 1 x -4-3 -2-1 0 1 2 3 Fill in the rest of the table rule x + 1 f(x) -4 + 1-3 -3 + 1-2 -2 + 1-1 -1 + 1 0 0 + 1 1 1 + 1 2 2 +

More information

GEOMETRY IN THREE DIMENSIONS

GEOMETRY IN THREE DIMENSIONS 1 CHAPTER 5. GEOMETRY IN THREE DIMENSIONS 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW GEOMETRY IN THREE DIMENSIONS Contents 1 Geometry in R 3 2 1.1 Lines...............................................

More information

Lecture 4. If P1(x1,y1) and P2(x2,y2) are points on a non-vertical line, then the slope m of the line is defined by

Lecture 4. If P1(x1,y1) and P2(x2,y2) are points on a non-vertical line, then the slope m of the line is defined by Lines Lecture 4 In this section we shall discuss ways to measure the "steepness" or "slope" of a line in the plane. The ideas we develop here will be important when we discuss equations and graphs of straight

More information

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b.

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. Practice problems 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. 1, 1 = c 1 3, 2 + c 2 2, 1. Solve c 1, c 2. 2. Suppose a is a vector in the plane. If the component of the a in

More information

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives Recall that if z = f(x, y), then the partial derivatives f x and f y are defined as and represent the rates of change of z in the x- and y-directions, that is, in the directions of the unit vectors i and

More information

Geometric Primitives. Chapter 5

Geometric Primitives. Chapter 5 Chapter 5 Geometric Primitives In this chapter, we discuss the basic geometric primitives we will use to represent the world in which our graphic objects live. As discussed at the beginning of this class,

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space In Figure 11.43, consider the line L through the point P(x 1, y 1, z 1 ) and parallel to the vector. The vector v is a direction vector for the line L, and a, b, and c

More information

3.5 Day 1 Warm Up. Graph each line. 3.4 Proofs with Perpendicular Lines

3.5 Day 1 Warm Up. Graph each line. 3.4 Proofs with Perpendicular Lines 3.5 Day 1 Warm Up Graph each line. 1. y = 4x 2. y = 3x + 2 3. y = x 3 4. y = 4 x + 3 3 November 2, 2015 3.4 Proofs with Perpendicular Lines Geometry 3.5 Equations of Parallel and Perpendicular Lines Day

More information

Four Types of Slope Positive Slope Negative Slope Zero Slope Undefined Slope Slope Dude will help us understand the 4 types of slope

Four Types of Slope Positive Slope Negative Slope Zero Slope Undefined Slope Slope Dude will help us understand the 4 types of slope Four Types of Slope Positive Slope Negative Slope Zero Slope Undefined Slope Slope Dude will help us understand the 4 types of slope https://www.youtube.com/watch?v=avs6c6_kvxm Direct Variation

More information

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane.

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane. Math 21a Tangent Lines and Planes Fall, 2016 What do we know about the gradient f? Tangent Lines to Curves in the Plane. 1. For each of the following curves, find the tangent line to the curve at the point

More information

Notes on Spherical Geometry

Notes on Spherical Geometry Notes on Spherical Geometry Abhijit Champanerkar College of Staten Island & The Graduate Center, CUNY Spring 2018 1. Vectors and planes in R 3 To review vector, dot and cross products, lines and planes

More information

Section Graphs and Lines

Section Graphs and Lines Section 1.1 - Graphs and Lines The first chapter of this text is a review of College Algebra skills that you will need as you move through the course. This is a review, so you should have some familiarity

More information

Coordinate Geometry. Coordinate geometry is the study of the relationships between points on the Cartesian plane

Coordinate Geometry. Coordinate geometry is the study of the relationships between points on the Cartesian plane Coordinate Geometry Coordinate geometry is the study of the relationships between points on the Cartesian plane What we will explore in this tutorial (a) Explore gradient I. Identify the gradient of a

More information

Section 8.3 Vector, Parametric, and Symmetric Equations of a Line in

Section 8.3 Vector, Parametric, and Symmetric Equations of a Line in Section 8.3 Vector, Parametric, and Symmetric Equations of a Line in R 3 In Section 8.1, we discussed vector and parametric equations of a line in. In this section, we will continue our discussion, but,

More information

LINEAR PROGRAMMING: A GEOMETRIC APPROACH. Copyright Cengage Learning. All rights reserved.

LINEAR PROGRAMMING: A GEOMETRIC APPROACH. Copyright Cengage Learning. All rights reserved. 3 LINEAR PROGRAMMING: A GEOMETRIC APPROACH Copyright Cengage Learning. All rights reserved. 3.1 Graphing Systems of Linear Inequalities in Two Variables Copyright Cengage Learning. All rights reserved.

More information

14.6 Directional Derivatives and the Gradient Vector

14.6 Directional Derivatives and the Gradient Vector 14 Partial Derivatives 14.6 and the Gradient Vector Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and the Gradient Vector In this section we introduce

More information

Vertical Line Test a relationship is a function, if NO vertical line intersects the graph more than once

Vertical Line Test a relationship is a function, if NO vertical line intersects the graph more than once Algebra 2 Chapter 2 Domain input values, X (x, y) Range output values, Y (x, y) Function For each input, there is exactly one output Example: Vertical Line Test a relationship is a function, if NO vertical

More information

Basics of Computational Geometry

Basics of Computational Geometry Basics of Computational Geometry Nadeem Mohsin October 12, 2013 1 Contents This handout covers the basic concepts of computational geometry. Rather than exhaustively covering all the algorithms, it deals

More information

Updated: January 11, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University

Updated: January 11, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University Math 232 Calculus III Brian Veitch Fall 2015 Northern Illinois University 12.5 Equations of Lines and Planes Definition 1: Vector Equation of a Line L Let L be a line in three-dimensional space. P (x,

More information

Topic 1.6: Lines and Planes

Topic 1.6: Lines and Planes Math 275 Notes (Ultman) Topic 1.6: Lines and Planes Textbook Section: 12.5 From the Toolbox (what you need from previous classes): Plotting points, sketching vectors. Be able to find the component form

More information

Intro. To Graphing Linear Equations

Intro. To Graphing Linear Equations Intro. To Graphing Linear Equations The Coordinate Plane A. The coordinate plane has 4 quadrants. B. Each point in the coordinate plain has an x-coordinate (the abscissa) and a y-coordinate (the ordinate).

More information

Key Idea. It is not helpful to plot points to sketch a surface. Mainly we use traces and intercepts to sketch

Key Idea. It is not helpful to plot points to sketch a surface. Mainly we use traces and intercepts to sketch Section 12.7 Quadric surfaces 12.7 1 Learning outcomes After completing this section, you will inshaallah be able to 1. know what are quadric surfaces 2. how to sketch quadric surfaces 3. how to identify

More information

UNIT NUMBER 5.2. GEOMETRY 2 (The straight line) A.J.Hobson

UNIT NUMBER 5.2. GEOMETRY 2 (The straight line) A.J.Hobson JUST THE MATHS UNIT NUMBER 5.2 GEOMETRY 2 (The straight line) b A.J.Hobson 5.2.1 Preamble 5.2.2 Standard equations of a straight line 5.2. Perpendicular straight lines 5.2.4 Change of origin 5.2.5 Exercises

More information

Rectangular Coordinates in Space

Rectangular Coordinates in Space Rectangular Coordinates in Space Philippe B. Laval KSU Today Philippe B. Laval (KSU) Rectangular Coordinates in Space Today 1 / 11 Introduction We quickly review one and two-dimensional spaces and then

More information

Section 1.1 The Distance and Midpoint Formulas

Section 1.1 The Distance and Midpoint Formulas Section 1.1 The Distance and Midpoint Formulas 1 y axis origin x axis 2 Plot the points: ( 3, 5), (0,7), ( 6,0), (6,4) 3 Distance Formula y x 4 Finding the Distance Between Two Points Find the distance

More information

12.7 Tangent Planes and Normal Lines

12.7 Tangent Planes and Normal Lines .7 Tangent Planes and Normal Lines Tangent Plane and Normal Line to a Surface Suppose we have a surface S generated by z f(x,y). We can represent it as f(x,y)-z 0 or F(x,y,z) 0 if we wish. Hence we can

More information

Problems of Plane analytic geometry

Problems of Plane analytic geometry 1) Consider the vectors u(16, 1) and v( 1, 1). Find out a vector w perpendicular (orthogonal) to v and verifies u w = 0. 2) Consider the vectors u( 6, p) and v(10, 2). Find out the value(s) of parameter

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Functions of Several Variables

Functions of Several Variables Chapter 3 Functions of Several Variables 3.1 Definitions and Examples of Functions of two or More Variables In this section, we extend the definition of a function of one variable to functions of two or

More information

7.3 3-D Notes Honors Precalculus Date: Adapted from 11.1 & 11.4

7.3 3-D Notes Honors Precalculus Date: Adapted from 11.1 & 11.4 73 3-D Notes Honors Precalculus Date: Adapted from 111 & 114 The Three-Variable Coordinate System I Cartesian Plane The familiar xy-coordinate system is used to represent pairs of numbers (ordered pairs

More information

Let s write this out as an explicit equation. Suppose that the point P 0 = (x 0, y 0, z 0 ), P = (x, y, z) and n = (A, B, C).

Let s write this out as an explicit equation. Suppose that the point P 0 = (x 0, y 0, z 0 ), P = (x, y, z) and n = (A, B, C). 4. Planes and distances How do we represent a plane Π in R 3? In fact the best way to specify a plane is to give a normal vector n to the plane and a point P 0 on the plane. Then if we are given any point

More information

MAT175 Overview and Sample Problems

MAT175 Overview and Sample Problems MAT175 Overview and Sample Problems The course begins with a quick review/overview of one-variable integration including the Fundamental Theorem of Calculus, u-substitutions, integration by parts, and

More information

Section 3.1 Objective 1: Plot Points in the Rectangular Coordinate System Video Length 12:35

Section 3.1 Objective 1: Plot Points in the Rectangular Coordinate System Video Length 12:35 Section 3.1 Video Guide The Rectangular Coordinate System and Equations in Two Variables Objectives: 1. Plot Points in the Rectangular Coordinate System 2. Determine If an Ordered Pair Satisfies an Equation

More information

ax + by = 0. x = c. y = d.

ax + by = 0. x = c. y = d. Review of Lines: Section.: Linear Inequalities in Two Variables The equation of a line is given by: ax + by = c. for some given numbers a, b and c. For example x + y = 6 gives the equation of a line. A

More information

Three-Dimensional Coordinate Systems

Three-Dimensional Coordinate Systems Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 17 Notes These notes correspond to Section 10.1 in the text. Three-Dimensional Coordinate Systems Over the course of the next several lectures, we will

More information

MATRIX REVIEW PROBLEMS: Our matrix test will be on Friday May 23rd. Here are some problems to help you review.

MATRIX REVIEW PROBLEMS: Our matrix test will be on Friday May 23rd. Here are some problems to help you review. MATRIX REVIEW PROBLEMS: Our matrix test will be on Friday May 23rd. Here are some problems to help you review. 1. The intersection of two non-parallel planes is a line. Find the equation of the line. Give

More information

If the center of the sphere is the origin the the equation is. x y z 2ux 2vy 2wz d 0 -(2)

If the center of the sphere is the origin the the equation is. x y z 2ux 2vy 2wz d 0 -(2) Sphere Definition: A sphere is the locus of a point which remains at a constant distance from a fixed point. The fixed point is called the centre and the constant distance is the radius of the sphere.

More information

Introduction to Functions of Several Variables

Introduction to Functions of Several Variables Introduction to Functions of Several Variables Philippe B. Laval KSU Today Philippe B. Laval (KSU) Functions of Several Variables Today 1 / 20 Introduction In this section, we extend the definition of

More information

Mathematics for Business and Economics - I. Chapter7 Linear Inequality Systems and Linear Programming (Lecture11)

Mathematics for Business and Economics - I. Chapter7 Linear Inequality Systems and Linear Programming (Lecture11) Mathematics for Business and Economics - I Chapter7 Linear Inequality Systems and Linear Programming (Lecture11) A linear inequality in two variables is an inequality that can be written in the form Ax

More information

Section A1: Gradients of straight lines

Section A1: Gradients of straight lines Time To study this unit will take you about 10 hours. Trying out and evaluating the activities with your pupils in the class will be spread over the weeks you have planned to cover the topic. 31 Section

More information

SNAP Centre Workshop. Graphing Lines

SNAP Centre Workshop. Graphing Lines SNAP Centre Workshop Graphing Lines 45 Graphing a Line Using Test Values A simple way to linear equation involves finding test values, plotting the points on a coordinate plane, and connecting the points.

More information

10-2 Circles. Warm Up Lesson Presentation Lesson Quiz. Holt Algebra2 2

10-2 Circles. Warm Up Lesson Presentation Lesson Quiz. Holt Algebra2 2 10-2 Circles Warm Up Lesson Presentation Lesson Quiz Holt Algebra2 2 Warm Up Find the slope of the line that connects each pair of points. 1. (5, 7) and ( 1, 6) 1 6 2. (3, 4) and ( 4, 3) 1 Warm Up Find

More information

- Introduction P. Danziger. Linear Algebra. Algebra Manipulation, Solution or Transformation

- Introduction P. Danziger. Linear Algebra. Algebra Manipulation, Solution or Transformation Linear Algera Linear of line or line like Algera Manipulation, Solution or Transformation Thus Linear Algera is aout the Manipulation, Solution and Transformation of line like ojects. We will also investigate

More information

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle.

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle. Algebra I Chapter 4 Notes Name Sec 4.1 Coordinates and Scatter Plots Coordinate Plane: Formed by two real number lines that intersect at a right angle. X-axis: The horizontal axis Y-axis: The vertical

More information

The mathematics behind projections

The mathematics behind projections The mathematics behind projections This is an article from my home page: www.olewitthansen.dk Ole Witt-Hansen 2005 (2015) Contents 1. The mathematics behind projections and 3-dim graphics...1 1.1 Central

More information

Vectors. Section 1: Lines and planes

Vectors. Section 1: Lines and planes Vectors Section 1: Lines and planes Notes and Examples These notes contain subsections on Reminder: notation and definitions Equation of a line The intersection of two lines Finding the equation of a plane

More information

slope rise run Definition of Slope

slope rise run Definition of Slope The Slope of a Line Mathematicians have developed a useful measure of the steepness of a line, called the slope of the line. Slope compares the vertical change (the rise) to the horizontal change (the

More information

Analytic Spherical Geometry:

Analytic Spherical Geometry: Analytic Spherical Geometry: Begin with a sphere of radius R, with center at the origin O. Measuring the length of a segment (arc) on a sphere. Let A and B be any two points on the sphere. We know that

More information

Graphing Linear Equations

Graphing Linear Equations Graphing Linear Equations Question 1: What is a rectangular coordinate system? Answer 1: The rectangular coordinate system is used to graph points and equations. To create the rectangular coordinate system,

More information

The Rectangular Coordinate System and Equations of Lines. College Algebra

The Rectangular Coordinate System and Equations of Lines. College Algebra The Rectangular Coordinate System and Equations of Lines College Algebra Cartesian Coordinate System A grid system based on a two-dimensional plane with perpendicular axes: horizontal axis is the x-axis

More information

What you will learn today

What you will learn today What you will learn today Tangent Planes and Linear Approximation and the Gradient Vector Vector Functions 1/21 Recall in one-variable calculus, as we zoom in toward a point on a curve, the graph becomes

More information

Did You Find a Parking Space?

Did You Find a Parking Space? Lesson.4 Skills Practice Name Date Did You Find a Parking Space? Parallel and Perpendicular Lines on the Coordinate Plane Vocabulary Complete the sentence. 1. The point-slope form of the equation of the

More information

3-1 Study Guide Parallel Lines and Transversals

3-1 Study Guide Parallel Lines and Transversals 3-1 Study Guide Parallel Lines and Transversals Relationships Between Lines and Planes When two lines lie in the same plane and do not intersect, they are parallel. Lines that do not intersect and are

More information

Section 7D Systems of Linear Equations

Section 7D Systems of Linear Equations Section 7D Systems of Linear Equations Companies often look at more than one equation of a line when analyzing how their business is doing. For example a company might look at a cost equation and a profit

More information

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f Gradients and the Directional Derivative In 14.3, we discussed the partial derivatives f f and, which tell us the rate of change of the x y height of the surface defined by f in the x direction and the

More information

About Graphing Lines

About Graphing Lines About Graphing Lines TABLE OF CONTENTS About Graphing Lines... 1 What is a LINE SEGMENT?... 1 Ordered Pairs... 1 Cartesian Co-ordinate System... 1 Ordered Pairs... 2 Line Segments... 2 Slope of a Line

More information

Graded Assignment 2 Maple plots

Graded Assignment 2 Maple plots Graded Assignment 2 Maple plots The Maple part of the assignment is to plot the graphs corresponding to the following problems. I ll note some syntax here to get you started see tutorials for more. Problem

More information

3.5 Equations of Lines and Planes

3.5 Equations of Lines and Planes 3.5 Equations of Lines and Planes Objectives Iknowhowtodefinealineinthree-dimensionalspace. I can write a line as a parametric equation, a symmetric equation, and a vector equation. I can define a plane

More information

Section 1.5. Finding Linear Equations

Section 1.5. Finding Linear Equations Section 1.5 Finding Linear Equations Using Slope and a Point to Find an Equation of a Line Example Find an equation of a line that has slope m = 3 and contains the point (2, 5). Solution Substitute m =

More information

We have already studied equations of the line. There are several forms:

We have already studied equations of the line. There are several forms: Chapter 13-Coordinate Geometry extended. 13.1 Graphing equations We have already studied equations of the line. There are several forms: slope-intercept y = mx + b point-slope y - y1=m(x - x1) standard

More information

notes13.1inclass May 01, 2015

notes13.1inclass May 01, 2015 Chapter 13-Coordinate Geometry extended. 13.1 Graphing equations We have already studied equations of the line. There are several forms: slope-intercept y = mx + b point-slope y - y1=m(x - x1) standard

More information

UNIT 4 NOTES. 4-1 and 4-2 Coordinate Plane

UNIT 4 NOTES. 4-1 and 4-2 Coordinate Plane UNIT 4 NOTES 4-1 and 4-2 Coordinate Plane y Ordered pairs on a graph have several names. (X coordinate, Y coordinate) (Domain, Range) (Input,Output) Plot these points and label them: a. (3,-4) b. (-5,2)

More information

Slide 1 / 220. Linear Relations and Functions

Slide 1 / 220. Linear Relations and Functions Slide 1 / 220 Linear Relations and Functions Slide 2 / 220 Table of Contents Domain and Range Discrete v Continuous Relations and Functions Function Notation Linear Equations Graphing a Linear Equation

More information

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ Math 0 Prelim I Solutions Spring 010 1. Let f(x, y) = x3 y for (x, y) (0, 0). x 6 + y (4 pts) (a) Show that the cubic curves y = x 3 are level curves of the function f. Solution. Substituting y = x 3 in

More information

12.4 Rotations. Learning Objectives. Review Queue. Defining Rotations Rotations

12.4 Rotations. Learning Objectives. Review Queue. Defining Rotations Rotations 12.4. Rotations www.ck12.org 12.4 Rotations Learning Objectives Find the image of a figure in a rotation in a coordinate plane. Recognize that a rotation is an isometry. Review Queue 1. Reflect XY Z with

More information

Rational Numbers: Graphing: The Coordinate Plane

Rational Numbers: Graphing: The Coordinate Plane Rational Numbers: Graphing: The Coordinate Plane A special kind of plane used in mathematics is the coordinate plane, sometimes called the Cartesian plane after its inventor, René Descartes. It is one

More information

3, 10,( 2, 4) Name. CP Algebra II Midterm Review Packet Unit 1: Linear Equations and Inequalities. Solve each equation. 3.

3, 10,( 2, 4) Name. CP Algebra II Midterm Review Packet Unit 1: Linear Equations and Inequalities. Solve each equation. 3. Name CP Algebra II Midterm Review Packet 018-019 Unit 1: Linear Equations and Inequalities Solve each equation. 1. x. x 4( x 5) 6x. 8x 5(x 1) 5 4. ( k ) k 4 5. x 4 x 6 6. V lhw for h 7. x y b for x z Find

More information

Linear Topics Notes and Homework DUE ON EXAM DAY. Name: Class period:

Linear Topics Notes and Homework DUE ON EXAM DAY. Name: Class period: Linear Topics Notes and Homework DUE ON EXAM DAY Name: Class period: Absolute Value Axis b Coordinate points Continuous graph Constant Correlation Dependent Variable Direct Variation Discrete graph Domain

More information

.(3, 2) Co-ordinate Geometry Co-ordinates. Every point has two co-ordinates. Plot the following points on the plane. A (4, 1) D (2, 5) G (6, 3)

.(3, 2) Co-ordinate Geometry Co-ordinates. Every point has two co-ordinates. Plot the following points on the plane. A (4, 1) D (2, 5) G (6, 3) Co-ordinate Geometry Co-ordinates Every point has two co-ordinates. (3, 2) x co-ordinate y co-ordinate Plot the following points on the plane..(3, 2) A (4, 1) D (2, 5) G (6, 3) B (3, 3) E ( 4, 4) H (6,

More information

Algebra 1 Semester 2 Final Review

Algebra 1 Semester 2 Final Review Team Awesome 011 Name: Date: Period: Algebra 1 Semester Final Review 1. Given y mx b what does m represent? What does b represent?. What axis is generally used for x?. What axis is generally used for y?

More information

The shortest distance from point K to line is the length of a segment perpendicular to from point K. Draw a perpendicular segment from K to.

The shortest distance from point K to line is the length of a segment perpendicular to from point K. Draw a perpendicular segment from K to. 8. Find the distance between each pair of parallel lines with the given equations. Copy each figure. Construct the segment that represents the distance indicated. 12. K to The shortest distance from point

More information

We have already studied equations of the line. There are several forms:

We have already studied equations of the line. There are several forms: Chapter 13-Coordinate Geometry extended. 13.1 Graphing equations We have already studied equations of the line. There are several forms: slope-intercept y = mx + b point-slope y - y1=m(x - x1) standard

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information

Parametric Curves, Lines in Space

Parametric Curves, Lines in Space Parametric Curves, Lines in Space Calculus III Josh Engwer TTU 02 September 2014 Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September 2014 1 / 37 PART I PART I: 2D PARAMETRIC CURVES Josh Engwer

More information

with slopes m 1 and m 2 ), if and only if its coordinates satisfy the equation y y 0 = 0 and Ax + By + C 2

with slopes m 1 and m 2 ), if and only if its coordinates satisfy the equation y y 0 = 0 and Ax + By + C 2 CHAPTER 10 Straight lines Learning Objectives (i) Slope (m) of a non-vertical line passing through the points (x 1 ) is given by (ii) If a line makes an angle α with the positive direction of x-axis, then

More information

f for Directional Derivatives and Gradient The gradient vector is calculated using partial derivatives of the function f(x,y).

f for Directional Derivatives and Gradient The gradient vector is calculated using partial derivatives of the function f(x,y). Directional Derivatives and Gradient The gradient vector is calculated using partial derivatives of the function f(x,y). For a function f(x,y), the gradient vector, denoted as f (pronounced grad f ) is

More information

Math 8 Honors Coordinate Geometry part 3 Unit Updated July 29, 2016

Math 8 Honors Coordinate Geometry part 3 Unit Updated July 29, 2016 Review how to find the distance between two points To find the distance between two points, use the Pythagorean theorem. The difference between is one leg and the difference between and is the other leg.

More information

Graphics and Interaction Transformation geometry and homogeneous coordinates

Graphics and Interaction Transformation geometry and homogeneous coordinates 433-324 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

18.02 Final Exam. y = 0

18.02 Final Exam. y = 0 No books, notes or calculators. 5 problems, 50 points. 8.0 Final Exam Useful formula: cos (θ) = ( + cos(θ)) Problem. (0 points) a) (5 pts.) Find the equation in the form Ax + By + z = D of the plane P

More information

INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

INTRODUCTION TO THREE DIMENSIONAL GEOMETRY Chapter 1 INTRODUCTION TO THREE DIMENSIONAL GEOMETRY Mathematics is both the queen and the hand-maiden of all sciences E.T. BELL 1.1 Introduction You may recall that to locate the position of a point in

More information

16. LECTURE 16. I understand how to find the rate of change in any direction. I understand in what direction the maximum rate of change happens.

16. LECTURE 16. I understand how to find the rate of change in any direction. I understand in what direction the maximum rate of change happens. 6. LETURE 6 Objectives I understand how to find the rate of change in any direction. I understand in what direction the maximum rate of change happens. So far, we ve learned the definition of the gradient

More information

Lesson 19: The Graph of a Linear Equation in Two Variables is a Line

Lesson 19: The Graph of a Linear Equation in Two Variables is a Line Lesson 19: The Graph of a Linear Equation in Two Variables is a Line Classwork Exercises Theorem: The graph of a linear equation y = mx + b is a non-vertical line with slope m and passing through (0, b),

More information

Important!!! First homework is due on Monday, September 26 at 8:00 am.

Important!!! First homework is due on Monday, September 26 at 8:00 am. Important!!! First homework is due on Monday, September 26 at 8:00 am. You can solve and submit the homework on line using webwork: http://webwork.dartmouth.edu/webwork2/m3cod/. If you do not have a user

More information

Three Dimensional Geometry. Linear Programming

Three Dimensional Geometry. Linear Programming Three Dimensional Geometry Linear Programming A plane is determined uniquely if any one of the following is known: The normal to the plane and its distance from the origin is given, i.e. equation of a

More information