STATISTICAL PARAMETRIC MAPS IN IDENTIFICATION OF REGIONAL CEREBRAL ACTIVITY IN PET STUDY

Size: px
Start display at page:

Download "STATISTICAL PARAMETRIC MAPS IN IDENTIFICATION OF REGIONAL CEREBRAL ACTIVITY IN PET STUDY"

Transcription

1 Krynica Morska 23 rd 27 th September 2012 STATISTICAL PARAMETRIC MAPS IN IDENTIFICATION OF REGIONAL CEREBRAL ACTIVITY IN PET STUDY Marek Wróbel 1 Piotr Boguś 2 Anita Markowska 3 Bogdan Małkowski 1 Łukasz Bałszewski 1 Monika Kempińska 4 Artur Kachniarz 1 1 Department of Nuclear Medicine Oncology Centre Prof F. Łukaszczyk Memorial Hospital ul. dr I. Romanowskiej Bydgoszcz 2 Department of Physics and Biophysics Medical University of Gdańsk ul. Dębinki Gdańsk 3 Department of Psychiatric Nursing CM Nicolaus Copernicus Universityin Toruń ul. Jagiellońska Bydgoszcz 4 Department of Nuclear Medicine and Radiology Informatics Medical University of Gdańsk ul. Dębinki Gdańsk 1 wrobelm@co.bydgoszcz.pl 2 piotr.bogus@gumed.edu.pl ABSTRACT The paper presents the application of statistical parametric maps as a tool for the determination of changes in regional cerebral blood flow during Stroop colour word interference test in [15O]H2O PET study. It describes the general linear model used for preparing classical inferences on regional specific responses. The paper presents only some preliminary results of the SPM application. The results are obtained by using Statistical Parametric Mapping package (SPM Wellcome Department of Cognitive Neurology London UK) implemented in Matlab (Mathworks; Sherborn MA). INTRODUCTION In recent years the positron emission tomography (PET) has been widely used for functional brain studies. One of the foci identification processing methods in PET activation studies is the statistical parametric maps (SPMs). It includes two earlier ideas: the distribution analysis change [1] and the mapping probability significance [2]. The statistical parametric maps are an alternative estimation method for region of interest (ROI). Moreover it allows one to find the differences in PET images without a prior knowledge about the activation foci. There are spatially extended statistical processes that are used to hypotheses test of regionally specific effects in neuroimaging data [3]. PET activation studies consist of two modes: baseline (B) and activation (A). During the activation part the subject is under stimulus (e.g. reading words) whereas without stimulus subject is under the baseline part. The SPM compares voxels in the baseline and in the activation images to localize the differences in regional cerebral activity. In the voxel-based approach is calculated the statistical parameters e.g. t-value. It is done for every voxel by using the general linear model. Finally the sets of t-values constitute a statistical image. The contribution of the present paper is that it proposes to use a statistical method to identification activation foci in brain using a PET studies.

2 GENERAL LINEAR MODEL The General Linear Model (GLM) [4] provides a unified procedure for fitting the models to the likelihood based data. The GLM approach generalizes models such as: variance analysis covariance analysis linear regression multiple regression t-test etc. The common goal is to predict and explain the dependent random variables from independent variables. The first is quantitative the second is categorical or quantitative. The GLM approach is described by the equation: where the dependent variable is treated as a linear combination of independent variable. Vector expresses additive noises whereas vector represents regression parameter (Fig. 2). Let us assume that the dependent variables represent the regional cerebral distribution of radioactivity in individual pixels. Then the quantity is a vector containing observed data. The can be understood as a voxel with the values of the pixels at specific coordinates in the brain among the sequential regional cerebral blood flow (rcbf) PET measurements (Fig. 1). So that is the total number of sequential rcbf PET measurements. voxel y PET studies Figure 1. The voxel in a PET activation study for a single subject. The matrix is composed of explanatory variables (covariates indicator variable) such as each column corresponds to one effect of the built-in experiment. The variables values are known and contain all effects that can affect the pixel values [9]. The explanatory variable reflects the conditions under which the PET scans were performed. The parameter is an vector of independent and identically (normally) distributed (iid) additive noises. The parameter is a vector containing the regression parameters that are estimated using the least square method. The regression parameters are determined by the best fit of to linear combination in the least square sense. The solution is described by [9]: where is: denotes the pseudo inverse. It can be shown that the variance-covariance matrix of in assumption that the observations are independent the mean is zero and variance is constant. The predicted data can be written as and describes what is predicted by the model. The estimated variances are given by: where.

3 A) PET data / B) Design matrix (for ) C) Regression parameters and errors E) Contrast vector D) General Linear Model F) The map of T-values G) Statistic image H) Inference/significance of voxels α and p-value Figure 2. The general scheme of the idea SPMs. A) The voxel y is an element of Y matrix. The matrix Y containing N scans (rows) and M voxels; the total number of voxels M is equal to the dimension of the matrix in PET protocol study). B) The X is a matrix of known constants: continuous discrete or indicating the levels of an experimental factor [9]. C) Estimated regression parameters and independent errors. D) The equation of GLM for one voxel. The GLM is applied for each voxel. E) Contrast the result of the linear combinations of parameters allows to select the effect to the statistical test. The column shape vector c is called contrast vector and function is called contrasts parameter estimates. F and G) Statistical t-test is performed on random variables. H) The null hypothesis is specified with a contrast against the one-sided alternative. In tests the null hypothesis is rejected at significance level α i.e. it verifies is estimated whether contrast values differ from zero. This means that the certain areas of the brain are activated by the task.

4 INFERENCE The next step is to assess whether a voxel is active or not. Using a GLM in the statistical analysis the inference is carried out on the parameters. This is achieved using the t-statistic and a linear combination of parameter estimates and contrast vector. The contrast allows to test the research hypothesis where the differences in the reaction is caused by various factors (e.g. activation - baseline) are compared. The specific hypothesis for the linear compounds of the model parameters can be assessed by T-value: where is estimated. The degree of freedom (df) is equal [9]. The decision about rejection of the null hypothesis is made using a significance level for one-tiled t-test and p- value. If the T-value is greater than the t-value at the level of significance the null hypothesis is rejected and it can be written as:. The is the quantile of the t-distribution with degrees of freedom. In the SPM the null hypothesis is always is true determines the p-value.. The probability of the null hypothesis rejection when it PET SCANNING PROTOCOL AND DATA ACQUISITION [15O]H2O PET studies are performed using a high-resolution time-of-flight 3-rings Biograph128 mct scanner (Siemens Medical Solutions USA Inc) equipped with lutetium oxyorthosilicate crystals and a 2x64-slice spiral CT scanner. The axial field of view (FOV) of the PET detector is 16.2 cm. Six sequential rcbf PET measurements with 15O-labelled water are obtained for one subject during the two conditions (A1 - reading color names in black and A2 - naming color of word different) [8] repeated two times in alternative order. Between each of two conditions the baseline emission scan (B) is performed. The sequence of scans is as following: BA1A2BA1A2. A bolus of 400 MBq of [15O]H 2 O in 3 ml of normal saline was injected for each emission scan. It is done via the intravenous cannula over 15s and then the solution is flushed in with the automatic pump at a rate 60 ml/min for 10s. The emission data is acquired after 15s of the end phase of the injection. The acquisition is performed in a list mode in 120s epochs began 5s before the raising phase of the radioactivity head curve. The subject initiates the task 15s before the onset of the injection phase in order to ensure that the performance of the task is coincided with the maximum activity level of isotope in the brain. The time gap (10 min.) between each scan allows for the radioactive decay to the level of background. Patients are positioned within a head holder to minimize artefacts arising from head motions. The images are reconstructed with iterative techniques for the transmission scan and 3D OSEM (the ordered subset expectation maximization consist of 2 iterations with 21 subsets 2i21s) for the emission scan. A modulation of the point spread function (PSF) is used in order to increase the reconstructed spatial resolution. Corrections for attenuation scatter and random with an 5-mm FWHM Gaussian smoothing filter are applied. The final reconstructed volume set has a matrix size of pixels resulting in a voxel size of mm. The image pixels count is calibrated for the activity concentrations (Bq/mL) and decay is corrected using the time of traces injection as a reference. Data is analyzed with Statistical Parametric Mapping software. Before the statistical analysis the images are spatially pre-processed. The voxel-based approach requires the data to be in the same anatomical place in a image space. That is the reason why before statistical analysis using SPM the pairs of rest-activation images are realigned using a least-squares approach and a 6 parameter rigid body spatial transformations [5]. This allows one to remove the movement artefacts in PET time-series. Next stereotactic normalization is performed [6] where each

5 image is transformed into the standard space. The space is defined by some ideal model or template images (reference). This transformation matches each scan to the template image in a least squares sense. The matching involves a 12-parameter linear affine transformation and a nonlinear quadratic transformation in three dimensions followed by a 2-dimensional piece-wise nonlinear matching in the transverse planes. The normalization facilitates inter-subject averaging and precise characterization of functional anatomy [7]. The transformed 3D data were smoothed with a Gaussian filter (7 7 7 mm FWHM). RESULTS AND CONCLUSIONS Fig. 3 is showing some results of the analysis for a single patient during the activation A1 and A2. Maps of areas of increased rcbf associated with the activations A1 and A2 are shown in three projections: sagittal (side view) coronal (front view) and transverse (top view). The threshold level is p < but it is uncorrected for multiple independent comparisons. That means in this case the random fields theory [11] has been not applied. The g ray scale is arbitrary and the space is consistent with the described in Talairach and Tournoux atlas [10]. Figure 3. The SPM results for activation A1 and A2. The main goal of the paper was to present mathematical basis of SPM methods applied to analysis of PET images. The presented results are only introductory because the study considered the data only form one patient. But although only one patient was taken into account in PET study the SPM analysis can distinguish in the brain activation foci coming from A1 and A2. Number of subjects in PET activation studies affects the sensitivity of the finding of an increased rcbf. Therefore further PET study changes in rcbf during Stroop test should be performed on a larger group of subjects than in presented case. ACKNOWLEDGMENTS We are grateful for helpful comments from Ph.D. Mateusz Wędrowski from the Department of Nuclear Medicine Oncology Centre in Bydgoszcz.. REFERENCES [1] P.T. Fox M.A. Mintun: Noninvasive functional brain mapping by change-distribution analysis of averaged PET images of H215O tissue activity Journal of nuclear medicine 30 (1989)

6 [2] F.H. Duffy P.H. Bartels J.L. Burchfiel: Significance probability mapping: an aid in the topographic analysis of brain electrical activity Electroencephalography and Clinical Neurophysiology 51 (1981) [3] K.J. Friston C.D. Frith P.F. Liddle R. S. J. Frackowiak: Comparing functional (PET) images: The Assessment of significant chance Journal of cerebral blood flow and metabolism 11 (1991) [4] J. A. Nelder R.W.M Wedderburn: Generalized Linear Models Journal of the Royal Statistical Society A 135 (1972) [5] K.J. Friston C. Frith R.S.J. Frackowiak and R. Turner: Characterizing dynamic brain responses with fmri: A multivariate approach NeuroImage 2 (1995) [6] P.T. Fox J.S. Perlmutter M.E. Raichie: A stereotactic method of anatomical localization for positron emission tomography Journal of computer assisted tomography 9 (1985) [7] J. Ashburner K.J. Friston: The role of registration and spatial normalization in detecting activations in functional imaging. Clinical MRI/Developments in MR 7 (1997) [8] M. Talarowska A. Florkowski A. Orzechowska et al. Stroop Test among patients suffering from depressive disorders and schizophrenia Current Problems of Psychiatry 12 (2011) [9] K.J. Fristion et.al. Statistical parametric mapping: the analysis of functional brain images Academic Press London [10] J. Talairach P. Tournoux Co-Planar Stereotaxic Atlas of the Human Brain. 3-Dimensional Proportional System: An Approach to Cerebral Imaging Thieme New York [11] R. J. Adler J.F. Taylor Random fields and their geometry Springer New York 2007.

Introduction to Neuroimaging Janaina Mourao-Miranda

Introduction to Neuroimaging Janaina Mourao-Miranda Introduction to Neuroimaging Janaina Mourao-Miranda Neuroimaging techniques have changed the way neuroscientists address questions about functional anatomy, especially in relation to behavior and clinical

More information

Implementation and evaluation of a fully 3D OS-MLEM reconstruction algorithm accounting for the PSF of the PET imaging system

Implementation and evaluation of a fully 3D OS-MLEM reconstruction algorithm accounting for the PSF of the PET imaging system Implementation and evaluation of a fully 3D OS-MLEM reconstruction algorithm accounting for the PSF of the PET imaging system 3 rd October 2008 11 th Topical Seminar on Innovative Particle and Radiation

More information

Improvement of contrast using reconstruction of 3D Image by PET /CT combination system

Improvement of contrast using reconstruction of 3D Image by PET /CT combination system Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2013, 4(1):285-290 ISSN: 0976-8610 CODEN (USA): AASRFC Improvement of contrast using reconstruction of 3D Image

More information

Basic fmri Design and Analysis. Preprocessing

Basic fmri Design and Analysis. Preprocessing Basic fmri Design and Analysis Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial filtering

More information

Methods for data preprocessing

Methods for data preprocessing Methods for data preprocessing John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. Overview Voxel-Based Morphometry Morphometry in general Volumetrics VBM preprocessing

More information

QIBA PET Amyloid BC March 11, Agenda

QIBA PET Amyloid BC March 11, Agenda QIBA PET Amyloid BC March 11, 2016 - Agenda 1. QIBA Round 6 Funding a. Deadlines b. What projects can be funded, what cannot c. Discussion of projects Mechanical phantom and DRO Paul & John? Any Profile

More information

Functional MRI in Clinical Research and Practice Preprocessing

Functional MRI in Clinical Research and Practice Preprocessing Functional MRI in Clinical Research and Practice Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization

More information

Computational Neuroanatomy

Computational Neuroanatomy Computational Neuroanatomy John Ashburner john@fil.ion.ucl.ac.uk Smoothing Motion Correction Between Modality Co-registration Spatial Normalisation Segmentation Morphometry Overview fmri time-series kernel

More information

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

REGISTRATION AND NORMALIZATION OF MRI/PET IMAGES 1. INTRODUCTION

REGISTRATION AND NORMALIZATION OF MRI/PET IMAGES 1. INTRODUCTION JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 9/2005, ISSN 1642-6037 Jacek RUMIŃSKI *, Marek SUCHOWIRSKI * image registration, image normalization, PET, MRI, parametric imaging REGISTRATION AND NORMALIZATION

More information

Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry

Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry Nivedita Agarwal, MD Nivedita.agarwal@apss.tn.it Nivedita.agarwal@unitn.it Volume and surface morphometry Brain volume White matter

More information

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing Functional Connectivity Preprocessing Geometric distortion Head motion Geometric distortion Head motion EPI Data Are Acquired Serially EPI Data Are Acquired Serially descending 1 EPI Data Are Acquired

More information

Corso di laurea in Fisica A.A Fisica Medica 5 SPECT, PET

Corso di laurea in Fisica A.A Fisica Medica 5 SPECT, PET Corso di laurea in Fisica A.A. 2007-2008 Fisica Medica 5 SPECT, PET Step 1: Inject Patient with Radioactive Drug Drug is labeled with positron (β + ) emitting radionuclide. Drug localizes

More information

3/27/2012 WHY SPECT / CT? SPECT / CT Basic Principles. Advantages of SPECT. Advantages of CT. Dr John C. Dickson, Principal Physicist UCLH

3/27/2012 WHY SPECT / CT? SPECT / CT Basic Principles. Advantages of SPECT. Advantages of CT. Dr John C. Dickson, Principal Physicist UCLH 3/27/212 Advantages of SPECT SPECT / CT Basic Principles Dr John C. Dickson, Principal Physicist UCLH Institute of Nuclear Medicine, University College London Hospitals and University College London john.dickson@uclh.nhs.uk

More information

Introduction to fmri. Pre-processing

Introduction to fmri. Pre-processing Introduction to fmri Pre-processing Tibor Auer Department of Psychology Research Fellow in MRI Data Types Anatomical data: T 1 -weighted, 3D, 1/subject or session - (ME)MPRAGE/FLASH sequence, undistorted

More information

Introductory Concepts for Voxel-Based Statistical Analysis

Introductory Concepts for Voxel-Based Statistical Analysis Introductory Concepts for Voxel-Based Statistical Analysis John Kornak University of California, San Francisco Department of Radiology and Biomedical Imaging Department of Epidemiology and Biostatistics

More information

Workshop on Quantitative SPECT and PET Brain Studies January, 2013 PUCRS, Porto Alegre, Brasil Corrections in SPECT and PET

Workshop on Quantitative SPECT and PET Brain Studies January, 2013 PUCRS, Porto Alegre, Brasil Corrections in SPECT and PET Workshop on Quantitative SPECT and PET Brain Studies 14-16 January, 2013 PUCRS, Porto Alegre, Brasil Corrections in SPECT and PET Físico João Alfredo Borges, Me. Corrections in SPECT and PET SPECT and

More information

Detecting Changes In Non-Isotropic Images

Detecting Changes In Non-Isotropic Images Detecting Changes In Non-Isotropic Images K.J. Worsley 1, M. Andermann 1, T. Koulis 1, D. MacDonald, 2 and A.C. Evans 2 August 4, 1999 1 Department of Mathematics and Statistics, 2 Montreal Neurological

More information

Supplementary methods

Supplementary methods Supplementary methods This section provides additional technical details on the sample, the applied imaging and analysis steps and methods. Structural imaging Trained radiographers placed all participants

More information

SPM8 for Basic and Clinical Investigators. Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

GPU implementation for rapid iterative image reconstruction algorithm

GPU implementation for rapid iterative image reconstruction algorithm GPU implementation for rapid iterative image reconstruction algorithm and its applications in nuclear medicine Jakub Pietrzak Krzysztof Kacperski Department of Medical Physics, Maria Skłodowska-Curie Memorial

More information

Correction of Partial Volume Effects in Arterial Spin Labeling MRI

Correction of Partial Volume Effects in Arterial Spin Labeling MRI Correction of Partial Volume Effects in Arterial Spin Labeling MRI By: Tracy Ssali Supervisors: Dr. Keith St. Lawrence and Udunna Anazodo Medical Biophysics 3970Z Six Week Project April 13 th 2012 Introduction

More information

Issues Regarding fmri Imaging Workflow and DICOM

Issues Regarding fmri Imaging Workflow and DICOM Issues Regarding fmri Imaging Workflow and DICOM Lawrence Tarbox, Ph.D. Fred Prior, Ph.D Mallinckrodt Institute of Radiology Washington University in St. Louis What is fmri fmri is used to localize functions

More information

Linear Models in Medical Imaging. John Kornak MI square February 22, 2011

Linear Models in Medical Imaging. John Kornak MI square February 22, 2011 Linear Models in Medical Imaging John Kornak MI square February 22, 2011 Acknowledgement / Disclaimer Many of the slides in this lecture have been adapted from slides available in talks available on the

More information

Original articles. Validation of anatomical standardization of FDG PET images of normal brain: comparison of SPM and NEUROSTAT

Original articles. Validation of anatomical standardization of FDG PET images of normal brain: comparison of SPM and NEUROSTAT Original articles Validation of anatomical standardization of FDG PET images of normal brain: comparison of SPM and NEUROSTAT Kayo Hosaka 1, Kazunari Ishii 1, 2, Setsu Sakamoto 3, Norihiro Sadato 4, Hiroshi

More information

Linear Models in Medical Imaging. John Kornak MI square February 19, 2013

Linear Models in Medical Imaging. John Kornak MI square February 19, 2013 Linear Models in Medical Imaging John Kornak MI square February 19, 2013 Acknowledgement / Disclaimer Many of the slides in this lecture have been adapted from slides available in talks available on the

More information

Basic Introduction to Data Analysis. Block Design Demonstration. Robert Savoy

Basic Introduction to Data Analysis. Block Design Demonstration. Robert Savoy Basic Introduction to Data Analysis Block Design Demonstration Robert Savoy Sample Block Design Experiment Demonstration Use of Visual and Motor Task Separability of Responses Combined Visual and Motor

More information

Validation of GEANT4 for Accurate Modeling of 111 In SPECT Acquisition

Validation of GEANT4 for Accurate Modeling of 111 In SPECT Acquisition Validation of GEANT4 for Accurate Modeling of 111 In SPECT Acquisition Bernd Schweizer, Andreas Goedicke Philips Technology Research Laboratories, Aachen, Germany bernd.schweizer@philips.com Abstract.

More information

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis Basic principles of MR image analysis Basic principles of MR image analysis Julien Milles Leiden University Medical Center Terminology of fmri Brain extraction Registration Linear registration Non-linear

More information

REMOVAL OF THE EFFECT OF COMPTON SCATTERING IN 3-D WHOLE BODY POSITRON EMISSION TOMOGRAPHY BY MONTE CARLO

REMOVAL OF THE EFFECT OF COMPTON SCATTERING IN 3-D WHOLE BODY POSITRON EMISSION TOMOGRAPHY BY MONTE CARLO REMOVAL OF THE EFFECT OF COMPTON SCATTERING IN 3-D WHOLE BODY POSITRON EMISSION TOMOGRAPHY BY MONTE CARLO Abstract C.S. Levin, Y-C Tai, E.J. Hoffman, M. Dahlbom, T.H. Farquhar UCLA School of Medicine Division

More information

Functional MRI data preprocessing. Cyril Pernet, PhD

Functional MRI data preprocessing. Cyril Pernet, PhD Functional MRI data preprocessing Cyril Pernet, PhD Data have been acquired, what s s next? time No matter the design, multiple volumes (made from multiple slices) have been acquired in time. Before getting

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging 1 Lucas Parra, CCNY BME I5000: Biomedical Imaging Lecture 4 Computed Tomography Lucas C. Parra, parra@ccny.cuny.edu some slides inspired by lecture notes of Andreas H. Hilscher at Columbia University.

More information

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy Sokratis K. Makrogiannis, PhD From post-doctoral research at SBIA lab, Department of Radiology,

More information

Constructing System Matrices for SPECT Simulations and Reconstructions

Constructing System Matrices for SPECT Simulations and Reconstructions Constructing System Matrices for SPECT Simulations and Reconstructions Nirantha Balagopal April 28th, 2017 M.S. Report The University of Arizona College of Optical Sciences 1 Acknowledgement I would like

More information

Journal of Articles in Support of The Null Hypothesis

Journal of Articles in Support of The Null Hypothesis Data Preprocessing Martin M. Monti, PhD UCLA Psychology NITP 2016 Typical (task-based) fmri analysis sequence Image Pre-processing Single Subject Analysis Group Analysis Journal of Articles in Support

More information

fmri PROCESSING TOOL FOR THE ANALYSIS, PARAMETRISATION AND COMPARISON OF PREPROCESSED SPM IMAGES

fmri PROCESSING TOOL FOR THE ANALYSIS, PARAMETRISATION AND COMPARISON OF PREPROCESSED SPM IMAGES 18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010 fmri PROCESSING TOOL FOR THE ANALYSIS, PARAMETRISATION AND COMPARISON OF PREPROCESSED SPM IMAGES Álvaro Muro,

More information

MEDICAL IMAGE ANALYSIS

MEDICAL IMAGE ANALYSIS SECOND EDITION MEDICAL IMAGE ANALYSIS ATAM P. DHAWAN g, A B IEEE Engineering in Medicine and Biology Society, Sponsor IEEE Press Series in Biomedical Engineering Metin Akay, Series Editor +IEEE IEEE PRESS

More information

Performance Evaluation of radionuclide imaging systems

Performance Evaluation of radionuclide imaging systems Performance Evaluation of radionuclide imaging systems Nicolas A. Karakatsanis STIR Users meeting IEEE Nuclear Science Symposium and Medical Imaging Conference 2009 Orlando, FL, USA Geant4 Application

More information

A Study of Medical Image Analysis System

A Study of Medical Image Analysis System Indian Journal of Science and Technology, Vol 8(25), DOI: 10.17485/ijst/2015/v8i25/80492, October 2015 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 A Study of Medical Image Analysis System Kim Tae-Eun

More information

Statistical Analysis of Neuroimaging Data. Phebe Kemmer BIOS 516 Sept 24, 2015

Statistical Analysis of Neuroimaging Data. Phebe Kemmer BIOS 516 Sept 24, 2015 Statistical Analysis of Neuroimaging Data Phebe Kemmer BIOS 516 Sept 24, 2015 Review from last time Structural Imaging modalities MRI, CAT, DTI (diffusion tensor imaging) Functional Imaging modalities

More information

Super-resolution Reconstruction of Fetal Brain MRI

Super-resolution Reconstruction of Fetal Brain MRI Super-resolution Reconstruction of Fetal Brain MRI Ali Gholipour and Simon K. Warfield Computational Radiology Laboratory Children s Hospital Boston, Harvard Medical School Worshop on Image Analysis for

More information

DUE to beam polychromacity in CT and the energy dependence

DUE to beam polychromacity in CT and the energy dependence 1 Empirical Water Precorrection for Cone-Beam Computed Tomography Katia Sourbelle, Marc Kachelrieß, Member, IEEE, and Willi A. Kalender Abstract We propose an algorithm to correct for the cupping artifact

More information

Positron Emission Tomography

Positron Emission Tomography Physics 656 Seminar on Physical Fundamentals of Medical Imaging Positron Emission Tomography Ahmed Qamesh Outline What is PET? PET mechanism Radionuclide and its synthesis Detection concept and Development

More information

Appendix E1. Supplementary Methods. MR Image Acquisition. MR Image Analysis

Appendix E1. Supplementary Methods. MR Image Acquisition. MR Image Analysis RSNA, 2015 10.1148/radiol.2015150532 Appendix E1 Supplementary Methods MR Image Acquisition By using a 1.5-T system (Avanto, Siemens Medical, Erlangen, Germany) under a program of regular maintenance (no

More information

Compression of Dynamic PET Based on Principal Component Analysis and JPEG 2000 in Sinogram Domain

Compression of Dynamic PET Based on Principal Component Analysis and JPEG 2000 in Sinogram Domain Compression of Dynamic PET Based on Principal Component Analysis and JPEG 2000 in Sinogram Domain Zhe Chen 1 and David Dagan Feng 1,2 1 Biomedical and Multimedia Information Technology (BMIT) Group School

More information

This Time. fmri Data analysis

This Time. fmri Data analysis This Time Reslice example Spatial Normalization Noise in fmri Methods for estimating and correcting for physiologic noise SPM Example Spatial Normalization: Remind ourselves what a typical functional image

More information

Medical Image Analysis

Medical Image Analysis Computer assisted Image Analysis VT04 29 april 2004 Medical Image Analysis Lecture 10 (part 1) Xavier Tizon Medical Image Processing Medical imaging modalities XRay,, CT Ultrasound MRI PET, SPECT Generic

More information

PET Quantification using STIR

PET Quantification using STIR PET Quantification using STIR STIR User s Meeting Charalampos Tsoumpas, PhD King s College London Hammersmith Imanet 1 PET Quantification Image elements should correspond to concentration of the injected

More information

Automatic segmentation of the cortical grey and white matter in MRI using a Region Growing approach based on anatomical knowledge

Automatic segmentation of the cortical grey and white matter in MRI using a Region Growing approach based on anatomical knowledge Automatic segmentation of the cortical grey and white matter in MRI using a Region Growing approach based on anatomical knowledge Christian Wasserthal 1, Karin Engel 1, Karsten Rink 1 und André Brechmann

More information

Spatial Regularization of Functional Connectivity Using High-Dimensional Markov Random Fields

Spatial Regularization of Functional Connectivity Using High-Dimensional Markov Random Fields Spatial Regularization of Functional Connectivity Using High-Dimensional Markov Random Fields Wei Liu 1, Peihong Zhu 1, Jeffrey S. Anderson 2, Deborah Yurgelun-Todd 3, and P. Thomas Fletcher 1 1 Scientific

More information

Ch. 4 Physical Principles of CT

Ch. 4 Physical Principles of CT Ch. 4 Physical Principles of CT CLRS 408: Intro to CT Department of Radiation Sciences Review: Why CT? Solution for radiography/tomography limitations Superimposition of structures Distinguishing between

More information

Chapter #1. Statistical Parametric Mapping 1. INTRODUCTION

Chapter #1. Statistical Parametric Mapping 1. INTRODUCTION Chapter #1 Statistical Parametric Mapping Karl J Friston Wellcome Dept. of Imaging Neuroscience Abstract: Key words: 1. INTRODUCTION This chapter is about making regionally specific inferences in neuroimaging.

More information

Review of PET Physics. Timothy Turkington, Ph.D. Radiology and Medical Physics Duke University Durham, North Carolina, USA

Review of PET Physics. Timothy Turkington, Ph.D. Radiology and Medical Physics Duke University Durham, North Carolina, USA Review of PET Physics Timothy Turkington, Ph.D. Radiology and Medical Physics Duke University Durham, North Carolina, USA Chart of Nuclides Z (protons) N (number of neutrons) Nuclear Data Evaluation Lab.

More information

Preprocessing II: Between Subjects John Ashburner

Preprocessing II: Between Subjects John Ashburner Preprocessing II: Between Subjects John Ashburner Pre-processing Overview Statistics or whatever fmri time-series Anatomical MRI Template Smoothed Estimate Spatial Norm Motion Correct Smooth Coregister

More information

Medical Imaging BMEN Spring 2016

Medical Imaging BMEN Spring 2016 Name Medical Imaging BMEN 420-501 Spring 2016 Homework #4 and Nuclear Medicine Notes All questions are from the introductory Powerpoint (based on Chapter 7) and text Medical Imaging Signals and Systems,

More information

NRM2018 PET Grand Challenge Dataset

NRM2018 PET Grand Challenge Dataset NRM2018 PET Grand Challenge Dataset An event part of London 2018 Neuroreceptor Mapping meeting (www.nrm2018.org) Contents Introduction... 2 Rationale... 2 Aims... 2 Description of the dataset content...

More information

GLM for fmri data analysis Lab Exercise 1

GLM for fmri data analysis Lab Exercise 1 GLM for fmri data analysis Lab Exercise 1 March 15, 2013 Medical Image Processing Lab Medical Image Processing Lab GLM for fmri data analysis Outline 1 Getting Started 2 AUDIO 1 st level Preprocessing

More information

A NEURAL NETWORK BASED IMAGING SYSTEM FOR fmri ANALYSIS IMPLEMENTING WAVELET METHOD

A NEURAL NETWORK BASED IMAGING SYSTEM FOR fmri ANALYSIS IMPLEMENTING WAVELET METHOD 6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007 454 A NEURAL NETWORK BASED IMAGING SYSTEM FOR fmri ANALYSIS IMPLEMENTING

More information

An independent component analysis based tool for exploring functional connections in the brain

An independent component analysis based tool for exploring functional connections in the brain An independent component analysis based tool for exploring functional connections in the brain S. M. Rolfe a, L. Finney b, R. F. Tungaraza b, J. Guan b, L.G. Shapiro b, J. F. Brinkely b, A. Poliakov c,

More information

SPECT QA and QC. Bruce McBride St. Vincent s Hospital Sydney.

SPECT QA and QC. Bruce McBride St. Vincent s Hospital Sydney. SPECT QA and QC Bruce McBride St. Vincent s Hospital Sydney. SPECT QA and QC What is needed? Why? How often? Who says? QA and QC in Nuclear Medicine QA - collective term for all the efforts made to produce

More information

Linear Models in Medical Imaging. John Kornak MI square February 23, 2010

Linear Models in Medical Imaging. John Kornak MI square February 23, 2010 Linear Models in Medical Imaging John Kornak MI square February 23, 2010 Acknowledgement / Disclaimer Many of the slides in this lecture have been adapted from slides available in talks available on the

More information

Correction for multiple comparisons. Cyril Pernet, PhD SBIRC/SINAPSE University of Edinburgh

Correction for multiple comparisons. Cyril Pernet, PhD SBIRC/SINAPSE University of Edinburgh Correction for multiple comparisons Cyril Pernet, PhD SBIRC/SINAPSE University of Edinburgh Overview Multiple comparisons correction procedures Levels of inferences (set, cluster, voxel) Circularity issues

More information

fmri pre-processing Juergen Dukart

fmri pre-processing Juergen Dukart fmri pre-processing Juergen Dukart Outline Why do we need pre-processing? fmri pre-processing Slice time correction Realignment Unwarping Coregistration Spatial normalisation Smoothing Overview fmri time-series

More information

+ + Assessing the Significance of Focal Activations Using Their Spatial Extent

+ + Assessing the Significance of Focal Activations Using Their Spatial Extent + Human Brain Mapping 1:210-220(1994) + Assessing the Significance of Focal Activations Using Their Spatial Extent K.J. Friston, K.J. Worsley, R.S.J. Frackowiak, J.C. Mazziotta, and A.C. Evans MRC Cyclotron

More information

NA-MIC National Alliance for Medical Image Computing fmri Data Analysis

NA-MIC National Alliance for Medical Image Computing   fmri Data Analysis NA-MIC fmri Data Analysis Sonia Pujol, Ph.D. Wendy Plesniak, Ph.D. Randy Gollub, M.D., Ph.D. Acknowledgments NIH U54EB005149 Neuroimage Analysis Center NIH P41RR013218 FIRST Biomedical Informatics Research

More information

Characterization and Correction of Interpolation Effects in the Realignment of fmri Time Series

Characterization and Correction of Interpolation Effects in the Realignment of fmri Time Series NeuroImage 11, 49 57 (2000) doi:10.1006/nimg.1999.0515, available online at http://www.idealibrary.com on Characterization and Correction of Interpolation Effects in the Realignment of fmri Time Series

More information

A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fmri Data

A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fmri Data A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fmri Data Seyoung Kim, Padhraic Smyth, and Hal Stern Bren School of Information and Computer Sciences University of California,

More information

Neuroimage Processing

Neuroimage Processing Neuroimage Processing Instructor: Moo K. Chung mkchung@wisc.edu Lecture 2-3. General Linear Models (GLM) Voxel-based Morphometry (VBM) September 11, 2009 What is GLM The general linear model (GLM) is a

More information

RADIOMICS: potential role in the clinics and challenges

RADIOMICS: potential role in the clinics and challenges 27 giugno 2018 Dipartimento di Fisica Università degli Studi di Milano RADIOMICS: potential role in the clinics and challenges Dr. Francesca Botta Medical Physicist Istituto Europeo di Oncologia (Milano)

More information

CS/NEUR125 Brains, Minds, and Machines. Due: Wednesday, April 5

CS/NEUR125 Brains, Minds, and Machines. Due: Wednesday, April 5 CS/NEUR125 Brains, Minds, and Machines Lab 8: Using fmri to Discover Language Areas in the Brain Due: Wednesday, April 5 In this lab, you will analyze fmri data from an experiment that was designed to

More information

Parametric Response Surface Models for Analysis of Multi-Site fmri Data

Parametric Response Surface Models for Analysis of Multi-Site fmri Data Parametric Response Surface Models for Analysis of Multi-Site fmri Data Seyoung Kim 1, Padhraic Smyth 1, Hal Stern 1, Jessica Turner 2, and FIRST BIRN 1 Bren School of Information and Computer Sciences,

More information

Investigation of Motion Induced Errors in Scatter Correction for the HRRT Brain Scanner

Investigation of Motion Induced Errors in Scatter Correction for the HRRT Brain Scanner Investigation of Motion Induced Errors in Scatter Correction for the HRRT Brain Scanner Jose M Anton-Rodriguez 1, Merence Sibomana 2, Matthew D. Walker 1,4, Marc C. Huisman 3, Julian C. Matthews 1, Maria

More information

Recognition and Measurement of Small Defects in ICT Testing

Recognition and Measurement of Small Defects in ICT Testing 19 th World Conference on Non-Destructive Testing 2016 Recognition and Measurement of Small Defects in ICT Testing Guo ZHIMIN, Ni PEIJUN, Zhang WEIGUO, Qi ZICHENG Inner Mongolia Metallic Materials Research

More information

Introduction to Emission Tomography

Introduction to Emission Tomography Introduction to Emission Tomography Gamma Camera Planar Imaging Robert Miyaoka, PhD University of Washington Department of Radiology rmiyaoka@u.washington.edu Gamma Camera: - collimator - detector (crystal

More information

Cherenkov Radiation. Doctoral Thesis. Rok Dolenec. Supervisor: Prof. Dr. Samo Korpar

Cherenkov Radiation. Doctoral Thesis. Rok Dolenec. Supervisor: Prof. Dr. Samo Korpar Doctoral Thesis Time-of-Flight Time-of-Flight Positron Positron Emission Emission Tomography Tomography Using Using Cherenkov Cherenkov Radiation Radiation Rok Dolenec Supervisor: Prof. Dr. Samo Korpar

More information

Diagnostic imaging techniques. Krasznai Zoltán. University of Debrecen Medical and Health Science Centre Department of Biophysics and Cell Biology

Diagnostic imaging techniques. Krasznai Zoltán. University of Debrecen Medical and Health Science Centre Department of Biophysics and Cell Biology Diagnostic imaging techniques Krasznai Zoltán University of Debrecen Medical and Health Science Centre Department of Biophysics and Cell Biology 1. Computer tomography (CT) 2. Gamma camera 3. Single Photon

More information

Shadow casting. What is the problem? Cone Beam Computed Tomography THE OBJECTIVES OF DIAGNOSTIC IMAGING IDEAL DIAGNOSTIC IMAGING STUDY LIMITATIONS

Shadow casting. What is the problem? Cone Beam Computed Tomography THE OBJECTIVES OF DIAGNOSTIC IMAGING IDEAL DIAGNOSTIC IMAGING STUDY LIMITATIONS Cone Beam Computed Tomography THE OBJECTIVES OF DIAGNOSTIC IMAGING Reveal pathology Reveal the anatomic truth Steven R. Singer, DDS srs2@columbia.edu IDEAL DIAGNOSTIC IMAGING STUDY Provides desired diagnostic

More information

Image Acquisition Systems

Image Acquisition Systems Image Acquisition Systems Goals and Terminology Conventional Radiography Axial Tomography Computer Axial Tomography (CAT) Magnetic Resonance Imaging (MRI) PET, SPECT Ultrasound Microscopy Imaging ITCS

More information

Introduction to Positron Emission Tomography

Introduction to Positron Emission Tomography Planar and SPECT Cameras Summary Introduction to Positron Emission Tomography, Ph.D. Nuclear Medicine Basic Science Lectures srbowen@uw.edu System components: Collimator Detector Electronics Collimator

More information

Automatic Lesion Detection for Measuring Response using Dynamic FDG-PET

Automatic Lesion Detection for Measuring Response using Dynamic FDG-PET Automatic Lesion Detection for Measuring Response using Dynamic FDG-PET Xiujuan Zheng a,b, Guangjian Tian a, Shaoli Song b, Gang Huang b, David Dagan Feng a,c a Department of Electronic and Information

More information

Computer-Tomography I: Principles, History, Technology

Computer-Tomography I: Principles, History, Technology Computer-Tomography I: Principles, History, Technology Prof. Dr. U. Oelfke DKFZ Heidelberg Department of Medical Physics (E040) Im Neuenheimer Feld 280 69120 Heidelberg, Germany u.oelfke@dkfz.de History

More information

Single Subject Demo Data Instructions 1) click "New" and answer "No" to the "spatially preprocess" question.

Single Subject Demo Data Instructions 1) click New and answer No to the spatially preprocess question. (1) conn - Functional connectivity toolbox v1.0 Single Subject Demo Data Instructions 1) click "New" and answer "No" to the "spatially preprocess" question. 2) in "Basic" enter "1" subject, "6" seconds

More information

An Acquisition Geometry-Independent Calibration Tool for Industrial Computed Tomography

An Acquisition Geometry-Independent Calibration Tool for Industrial Computed Tomography 4th International Symposium on NDT in Aerospace 2012 - Tu.3.A.3 An Acquisition Geometry-Independent Calibration Tool for Industrial Computed Tomography Jonathan HESS *, Patrick KUEHNLEIN *, Steven OECKL

More information

Bias in Resampling-Based Thresholding of Statistical Maps in fmri

Bias in Resampling-Based Thresholding of Statistical Maps in fmri Bias in Resampling-Based Thresholding of Statistical Maps in fmri Ola Friman and Carl-Fredrik Westin Laboratory of Mathematics in Imaging, Department of Radiology Brigham and Women s Hospital, Harvard

More information

Evaluation of multiple voxel-based morphometry approaches and applications in the analysis of white matter changes in temporal lobe epilepsy

Evaluation of multiple voxel-based morphometry approaches and applications in the analysis of white matter changes in temporal lobe epilepsy Evaluation of multiple voxel-based morphometry approaches and applications in the analysis of white matter changes in temporal lobe epilepsy Wenjing Li a, Huiguang He a, Jingjing Lu b, Bin Lv a, Meng Li

More information

EMPIRICALLY INVESTIGATING THE STATISTICAL VALIDITY OF SPM, FSL AND AFNI FOR SINGLE SUBJECT FMRI ANALYSIS

EMPIRICALLY INVESTIGATING THE STATISTICAL VALIDITY OF SPM, FSL AND AFNI FOR SINGLE SUBJECT FMRI ANALYSIS EMPIRICALLY INVESTIGATING THE STATISTICAL VALIDITY OF SPM, FSL AND AFNI FOR SINGLE SUBJECT FMRI ANALYSIS Anders Eklund a,b,c, Thomas Nichols d, Mats Andersson a,c, Hans Knutsson a,c a Department of Biomedical

More information

Last Time. This Time. Thru-plane dephasing: worse at long TE. Local susceptibility gradients: thru-plane dephasing

Last Time. This Time. Thru-plane dephasing: worse at long TE. Local susceptibility gradients: thru-plane dephasing Motion Correction Last Time Mutual Information Optimiation Decoupling Translation & Rotation Interpolation SPM Example (Least Squares & MI) A Simple Derivation This Time Reslice example SPM Example : Remind

More information

CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION

CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION Frank Dong, PhD, DABR Diagnostic Physicist, Imaging Institute Cleveland Clinic Foundation and Associate Professor of Radiology

More information

Accuracy and Sensitivity of Detection of Activation Foci in the Brain via Statistical Parametric Mapping: A Study Using a PET Simulator

Accuracy and Sensitivity of Detection of Activation Foci in the Brain via Statistical Parametric Mapping: A Study Using a PET Simulator NeuroImage 13, 176 184 (2001) doi:10.1006/nimg.2000.0655, available online at http://www.idealibrary.com on Accuracy and Sensitivity of Detection of Activation Foci in the Brain via Statistical Parametric

More information

8/2/2017. Disclosure. Philips Healthcare (Cleveland, OH) provided the precommercial

8/2/2017. Disclosure. Philips Healthcare (Cleveland, OH) provided the precommercial 8//0 AAPM0 Scientific Symposium: Emerging and New Generation PET: Instrumentation, Technology, Characteristics and Clinical Practice Aug Wednesday 0:4am :pm Solid State Digital Photon Counting PET/CT Instrumentation

More information

Locating Motion Artifacts in Parametric fmri Analysis

Locating Motion Artifacts in Parametric fmri Analysis Tina Memo No. 200-002 Presented at MICCAI 999 Locating Motion Artifacts in Parametric fmri Analysis A.J.Lacey, N.A.Thacker, E. Burton, and A.Jackson Last updated 2 / 02 / 2002 Imaging Science and Biomedical

More information

Whole Body MRI Intensity Standardization

Whole Body MRI Intensity Standardization Whole Body MRI Intensity Standardization Florian Jäger 1, László Nyúl 1, Bernd Frericks 2, Frank Wacker 2 and Joachim Hornegger 1 1 Institute of Pattern Recognition, University of Erlangen, {jaeger,nyul,hornegger}@informatik.uni-erlangen.de

More information

Fmri Spatial Processing

Fmri Spatial Processing Educational Course: Fmri Spatial Processing Ray Razlighi Jun. 8, 2014 Spatial Processing Spatial Re-alignment Geometric distortion correction Spatial Normalization Smoothing Why, When, How, Which Why is

More information

Magnetic Resonance Elastography (MRE) of Liver Disease

Magnetic Resonance Elastography (MRE) of Liver Disease Magnetic Resonance Elastography (MRE) of Liver Disease Authored by: Jennifer Dolan Fox, PhD VirtualScopics Inc. jennifer_fox@virtualscopics.com 1-585-249-6231 1. Overview of MRE Imaging MRE is a magnetic

More information

Machine Learning for Medical Image Analysis. A. Criminisi

Machine Learning for Medical Image Analysis. A. Criminisi Machine Learning for Medical Image Analysis A. Criminisi Overview Introduction to machine learning Decision forests Applications in medical image analysis Anatomy localization in CT Scans Spine Detection

More information

Improving Positron Emission Tomography Imaging with Machine Learning David Fan-Chung Hsu CS 229 Fall

Improving Positron Emission Tomography Imaging with Machine Learning David Fan-Chung Hsu CS 229 Fall Improving Positron Emission Tomography Imaging with Machine Learning David Fan-Chung Hsu (fcdh@stanford.edu), CS 229 Fall 2014-15 1. Introduction and Motivation High- resolution Positron Emission Tomography

More information

Cocozza S., et al. : ALTERATIONS OF FUNCTIONAL CONNECTIVITY OF THE MOTOR CORTEX IN FABRY'S DISEASE: AN RS-FMRI STUDY

Cocozza S., et al. : ALTERATIONS OF FUNCTIONAL CONNECTIVITY OF THE MOTOR CORTEX IN FABRY'S DISEASE: AN RS-FMRI STUDY ALTERATIONS OF FUNCTIONAL CONNECTIVITY OF THE MOTOR CORTEX IN FABRY'S DISEASE: AN RS-FMRI STUDY SUPPLEMENTARY MATERIALS Sirio Cocozza, MD 1*, Antonio Pisani, MD, PhD 2, Gaia Olivo, MD 1, Francesco Saccà,

More information

TomoTherapy Related Projects. An image guidance alternative on Tomo Low dose MVCT reconstruction Patient Quality Assurance using Sinogram

TomoTherapy Related Projects. An image guidance alternative on Tomo Low dose MVCT reconstruction Patient Quality Assurance using Sinogram TomoTherapy Related Projects An image guidance alternative on Tomo Low dose MVCT reconstruction Patient Quality Assurance using Sinogram Development of A Novel Image Guidance Alternative for Patient Localization

More information

Medical Image Analysis

Medical Image Analysis Medical Image Analysis Instructor: Moo K. Chung mchung@stat.wisc.edu Lecture 10. Multiple Comparisons March 06, 2007 This lecture will show you how to construct P-value maps fmri Multiple Comparisons 4-Dimensional

More information

Computational Medical Imaging Analysis Chapter 4: Image Visualization

Computational Medical Imaging Analysis Chapter 4: Image Visualization Computational Medical Imaging Analysis Chapter 4: Image Visualization Jun Zhang Laboratory for Computational Medical Imaging & Data Analysis Department of Computer Science University of Kentucky Lexington,

More information