Understanding Fraunhofer Diffraction

Size: px
Start display at page:

Download "Understanding Fraunhofer Diffraction"

Transcription

1 [ Assignment View ] [ Eðlisfræði 2, vor Diffraction Assignment is due at 2:00am on Wednesday, January 17, 2007 Credit for problems submitted late will decrease to 0% after the deadline has passed. The wrong answer penalty is 2% per part. Multiple choice questions are penalized as described in the online help. The unopened hint bonus is 2% per part. You are allowed 4 attempts per answer. Diffraction from a single slit: Introduction and increasingly difficult problems with some interesting applications Understanding Fraunhofer Diffraction Learning Goal: To understand the derivations of, and be able to use, the equations for Fraunhofer diffraction. Diffraction is a general term for interference effects related to edges or apertures. Diffraction is more familiar in waves with longer wavlengths than those of light. For example, diffraction is what causes sound to bend around corners or spread as it passes through a doorway. Water waves spread as they pass between rocks near a rugged coast because of diffraction. Two different regimes for diffraction are usually identified: Fresnel and Fraunhofer. Fresnel diffraction is the regime in which the diffracted waves are observed close (as compared to the size of the object causing the diffraction) to the place where they are diffracted. Fresnel diffraction is usually very complicated to work with. The other regime, Fraunhofer diffraction, is much easier to deal with. Fraunhofer diffraction applies to situations in which the diffracted waves are observed far from the point of diffraction. This allows a number of simplifying approximations to be used, reducing diffraction to a very manageable problem. An important case of Fraunhofer diffraction is the pattern formed by light shining through a thin slit onto a distant screen (see the figure). Notice that if the light from the top of the slit and the light from the bottom of the slit arrive at a point on the distant screen with a phase difference of, then the electric field vectors of the light from each part of the slit will cancel completely, resulting in a dark fringe. To understand this phenomenon, picture a phasor diagram for this scenerio (as show in the figure). A phasor diagram consists of vectors (phasors) with magnitude proportional to the magnitude of the electric field of light from a certain point in the slit. The angle of each vector is equal to the phase of the light from that point. These vectors are added together, and the resultant vector gives the net electric field due to light from all points in the slit. In the situation described above, since the magnitude of the electric field vectors is the same for light from any part of the slit and the angle of the phasors changes continuously from to, the phasors will make a complete circle, starting and ending at the origin. The distance from the origin to the endpoint of the phasor path (also the origin) is zero, and so the magnitude of the electric field at point is zero. One reason that Fraunhofer diffraction is relatively easy to deal with is that the large distance from the slit to the screen means that the light paths will be essentially parallel. Therefore, the distance marked in the figure is the entire path-length difference between light from the top of the slit and light from the bottom of the slit. What is the value of? 1 of 10 17/4/07 15:52

2 Hint A.1 A useful triangle Express your answer in terms of the slit width and the angle shown in the figure. = As described in the problem introduction, a criterion for a dark band to appear at point is that the phase difference between light arriving at point from the top of the slit and light arriving at point from the bottom of the slit equal. What length of path difference will give a phase difference of? Express your answer in terms of the wavelength. = Combining your answers from Parts A and B gives the criterion for a dark band in the diffraction pattern as. Part C Consider the phasor diagram from the introduction. The magnitude of the electric field at a point will equal zero as long as the endpoint for the phasor diagram is the origin. Thus, a point with a phasor diagram that goes around a circle twice, for example, ending at the origin, will be another location for a dark band. This idea can be used to modify the equation for the location of a dark band by introducing a variable :. What is the complete set of values of for which this equation gives criteria for dark bands?,,,,,,,,,,,,,, any rational number The value corresponds to, which is the center of the diffraction pattern. The center of the diffraction pattern is a bright band. To see why, notice that if the phase difference from top to bottom is zero, then the phasor diagram will just be a straight line segment pointing away from the origin. This gives the maximum possible intensity in the diffraction pattern. Part D What are the angles for the two dark bands closest to the central maximum. Express your answers in terms of and. Separate the two angles with a comma. Part E The equation for the angles to dark bands is valid for any angle from to. In practice, the bright bands at large angles are usually so dim that the diffraction pattern appearing on a screen is invisible for such angles. For small angles, it is easy to find the distance from the center of the diffraction pattern to the dark band on the 2 of 10 17/4/07 15:52

3 screen corresponding to a particular value of. For small angles,. Since, the small-angle approximation yields. By solving the dark-band criterion, you obtain. Setting the two expressions for equal gives the formula for the position (i.e., distance from the center of the diffraction pattern) of dark bands:, or equivalently,. Assuming that the angle between them is small, what is the distance center of the diffraction pattern? between the two dark bands closest to the Express your answer in terms of,, and. = Part F Suppose that light from a laser with wavelength 633 is incident on a thin slit of width If the diffracted light projects onto a screen at distance 1.50, what is the distance from the center of the diffraction pattern to the dark band with? Express your answer in millimeters to two significant figures. = 3.80 Resolving Pixels on a Computer Screen A standard -inch ( -meter) computer monitor is pixels wide and pixels tall. Each pixel is a square approximately micrometers on each side. Up close, you can see the individual pixels, but from a distance they appear to blend together and form the image on the screen. If the maximum distance between the screen and your eyes at which you can just barely resolve two adjacent pixels is meters, what is the effective diameter of your pupil? Assume that the resolvability is diffraction-limited. Furthermore, use nanometers as a characteristic optical wavelength. Hint A.1 Rayleigh's criterion Express your answer in millimeters to three significant figures. Why You Can Still Receive AM Radio in a City When radio waves try to pass through a city, they encounter thin vertical slits: the separations between the buildings. This causes the radio waves to diffract. In this problem, you will see how different wavelengths refract as they pass through a city and relate this to reception for radios and cell phones. You will use the angle from the 3 of 10 17/4/07 15:52

4 center of the central intensity maximum to the first intensity minimum as a measure of the width of the central maximum (where nearly all of the diffracted energy is found). Consider radio waves of wavelength entering a city where the buildings have an average separation of. Find the angle to the first minimum from the center of the central maximum. Hint A.1 The equation for intensity The equation for intensity as a function of angle for diffraction from a slit is..2 A criterion for the first minimum Which of the following is a correct (exact) criterion for the location of the first intensity minimum of the diffraction pattern? Hint A.2.a Finding the first intensity minimum The equation for intensity has a minimum value of zero. Therefore, to find the first intensity minimum, you must look for the smallest value of that gives. You are therefore looking for the smallest angle at which the numerator of the squared term is zero, as long as the denominator of the squared term is not zero. If both numerator and denominator equal zero, then you will have to evaluate the limit with L'Hopital's rule to find the value of the intensity function. Now solve for in this criterion to obtain the expression that you need. Express your answer in terms of and. = Assume that the average spacing between buildings is. What is the angle to the first minimum for an FM radio station with a frequency of 101?.1 Find the wavelength Find the wavelength for a radio wave with a frequency of 101. Recall that radio waves are electromagnetic waves, and therefore travel at the speed of light, meters per second. Hint B.1.a Relating wavelength and frequency Express your answer in meters, to three significant figures. = 2.97 Express your answer numerically in degrees to three significant figures. Note: Do not write 4 of 10 17/4/07 15:52

5 your answer in terms of trignometric functions. Evaluate any such functions in your working. = 8.54 Part C What is the angle for a cellular phone that uses radiowaves with a frequency of 900? Part C.1 Find the wavelength Express your answer in degrees to three significant figures. = Part D What problem do you encounter in trying to find the angle for an AM radio station with frequency 1000? The angle becomes zero. The angle can be given only in radians. To find the angle it would be necessary to take the arcsine of a negative number. To find the angle it would be necessary to take the arcsine of a number greater than one. This problem indicates that there is not an intensity minimum for the wavelength of AM radio. The maximum for cell-phone signals is far narrower than the maximum for FM radio waves. Therefore, while you are likely to encounter dead zones for cell phones in a city (unless you are in an area with many cell-phone towers), you should expect less trouble with FM radio, and you should have no trouble listening to AM radio. Note also that some buildings have no roads between them, making for slits with much smaller width. These slits give broad central maxima for FM radio waves, but still have relatively narrow central maxima for cell-phone signals. You can estimate the separation of such buildings and calculate for yourself how this affects transmissions. Overlapping Diffraction Patterns Two lasers, one red (with wavelength nanometers) and the other green (with wavelength nanometers), are mounted behind a -millimeter slit. On the other side of the slit is a white screen. When the red laser is turned on, it creates a diffraction pattern on the screen. The distance from the center of the pattern to the location of the third diffraction minimum of the red laser is centimeters. How far is the screen from the slit? Hint A.1 A criterion for dark fringes Express your answer in meters, to three significant figures. The red laser is turned off, and the green laser is turned on. What happens to the central maximum? Answer not displayed 5 of 10 17/4/07 15:52

6 Part C With both lasers turned on, the screen shows two overlapping diffraction patterns. The central maxima of the two patterns are at the same position. What is the distance between the third minimum in the diffraction pattern of the red laser (from ) and the nearest minimum in the diffraction pattern of the green laser? Hint C.1 How to approach the problem Part C.2 Find the distance to the third minimum Part C.3 Find the separation between successive minima Part C.4 Which minimum is closest? Part C.5 Find the location of the fourth minimum from the green laser Express your answer in centimeters, to three significant figures. Single-Slit Diffraction You have been asked to measure the width of a slit in a piece of paper. You mount the paper centimeters from a screen and illuminate it from behind with laser light of wavelength nanometers (in air). You mark two of the intensity minima as shown in the figure, and measure the distance between them to be millimeters. What is the width of the slit? Hint A.1 The equation for single-slit diffraction Hint A.2 Small-angle approximations Express your answer in micrometers, to three significant figures. 6 of 10 17/4/07 15:52

7 If the entire apparatus were submerged in water, would the width of the central peak change? Hint B.1 How to approach the problem Answer not displayed Easy development of diffraction gratings from multislit interference and a challenging application problem Multislit Interference and Diffraction Gratings Learning Goal: To understand multislit interference and how it leads to the design of diffraction gratings. Diffraction gratings are used in modern spectrometers to separate the wavelengths of visible light. The working of a diffraction grating may be understood through multislit interference, which can be understood as an extension of two-slit interference. In this problem, you will follow the progression from two-slit to many-slit interference to arrive at the important equations describing diffraction gratings. A typical diffraction grating consists of a thin, opaque object with a series of very closely spaced slits in it. (There are also reflection gratings, which use a mirror with nonreflecting lines etched into it to provide the same effects.) To see how a diffraction grating can separate different wavelengths within a spectrum, we will first consider a "grating" with only two slits. Recall that the angles for constructive interference from a pair of slits are given by the equation is the separation between the slits, is the wavelength of the light, and is an integer., where Consider a pair of slits separated by micrometers. What is the angle to the interference maximum with for red light with a wavelength of nanometers? Express your answer in degrees to three significant figures. Consider the same pair of slits separated by micrometers. What is the angle to the interference maximum with for blue light with a wavelength of nanometers? Express your answer in degrees to three significant figures. Part C Part D Part E Part F Part G 7 of 10 17/4/07 15:52

8 A Diffraction Grating Spectrometer Suppose that you have a reflection diffraction grating with 970 lines per millimeter. Light from a sodium lamp passes through the grating and is diffracted onto a distant screen. Two visible lines in the sodium spectrum have wavelengths 498 and 569. What is the angular separation of the first maxima of these spectral lines generated by this diffraction grating?.1 Find reflection angle of Find reflection angle of 569 spectral line line Express your answer in degrees to two significant figures. How wide does this grating need to be to allow you to resolve the two lines and nanometers, which are a well known pair of lines for sodium, in the second order ( )?.1 Find the necessary spectral resolving power Hint B.2 Two expressions for resolving power Hint B.3 Relation between and the grating width. Express your answer in millimeters to two significant figures. Answer not displayed Introduction and good problem on circular diffraction Understanding Circular-Aperture Diffraction Learning Goal: To use the formulas for the locations of the dark bands and understand Rayleigh's criterion of resolvability. An important diffraction pattern in many situations is diffraction from a circular aperture. A circular aperture is relatively easy to make: all that you need is a pin and something opaque to poke the pin through. The figure shows a typical pattern. It consists of a bright central disk, called the Airy disk, surrounded by concentric rings of dark and light. While the mathematics required to derive the equations for circular-aperture diffraction is quite complex, the derived equations are relatively easy to use. One set of equations gives the angular radii of the dark rings, while the other gives the angular radii of the light rings. The equations are the following: 8 of 10 17/4/07 15:52

9 , where is the wavelength of light striking the aperture, is the diameter of the aperture, and is the angle between a line normal to the screen and a line from the center of the aperture to the point of observation. There are more alternating rings farther from the center, but they are so faint that they are not generally of practical interest. Consider light from a helium-neon laser ( nanometers) striking a pinhole with a diameter of At what angle to the normal would the first dark ring be observed? Express your answer in degrees, to three significant figures., Part C Diffraction due to a circular aperture is important in astronomy. Since a telescope has a circular aperture of finite size, stars are not imaged as points, but rather as diffraction patterns. Two distinct points are said to be just resolved (i.e., have the smallest separation for which you can confidently tell that there are two points instead of just one) when the center of one point's diffraction pattern is found in the first dark ring of the other point's diffraction pattern. This is called Rayleigh's criterion for resolvability. Consider a telescope with an aperture of diameter Part D What is the angular radius of the first dark ring for a point source being imaged by this telescope? Use nanometers for the wavelength, since this is near the average for visible light. Express your answer in degrees, to three significant figures. Part E Circular Diffraction Patterns Monochromatic light of wavelength nanometers is incident on a small pinhole in a piece of paper. On a screen meters from the pinhole, you observe the diffraction pattern shown in the figure. You carefully measure the diameter of the central maximum to be millimeters, as shown in the figure. 9 of 10 17/4/07 15:52

10 What is the diameter of the pinhole?.1 Find the angular separation.2 Solve for the diameter Express your answer in millimeters, to three significant figures. Summary 2 of 9 problems complete (20.8% avg. score) 9.36 of 10 points 10 of 10 17/4/07 15:52

Diffraction. Introduction: Diffraction is bending of waves around an obstacle (barrier) or spreading of waves passing through a narrow slit.

Diffraction. Introduction: Diffraction is bending of waves around an obstacle (barrier) or spreading of waves passing through a narrow slit. Introduction: Diffraction is bending of waves around an obstacle (barrier) or spreading of waves passing through a narrow slit. Diffraction amount depends on λ/a proportion If a >> λ diffraction is negligible

More information

Lab 5: Diffraction and Interference

Lab 5: Diffraction and Interference Lab 5: Diffraction and Interference Light is a wave, an electromagnetic wave, and under the proper circumstances, it exhibits wave phenomena, such as constructive and destructive interference. The wavelength

More information

Chapter 36. Diffraction. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 36. Diffraction. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 36 Diffraction Copyright 36-1 Single-Slit Diffraction Learning Objectives 36.01 Describe the diffraction of light waves by a narrow opening and an edge, and also describe the resulting interference

More information

Chapter 36. Diffraction. Dr. Armen Kocharian

Chapter 36. Diffraction. Dr. Armen Kocharian Chapter 36 Diffraction Dr. Armen Kocharian Diffraction Light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit This phenomena

More information

Final Exam and End Material Test Friday, May 12, 10:00-12:00

Final Exam and End Material Test Friday, May 12, 10:00-12:00 Final Exam and End Material Test Friday, May 12, 10:00-12:00 Test rooms: Instructor Sections Room Dr. Hale F, H 104 Physics Dr. Kurter B, N 125 BCH Dr. Madison K, M B-10 Bertelsmeyer Dr. Parris J St. Pats

More information

Chapter 36 Diffraction

Chapter 36 Diffraction Chapter 36 Diffraction In Chapter 35, we saw how light beams passing through different slits can interfere with each other and how a beam after passing through a single slit flares diffracts in Young's

More information

To see how a sharp edge or an aperture affect light. To analyze single-slit diffraction and calculate the intensity of the light

To see how a sharp edge or an aperture affect light. To analyze single-slit diffraction and calculate the intensity of the light Diffraction Goals for lecture To see how a sharp edge or an aperture affect light To analyze single-slit diffraction and calculate the intensity of the light To investigate the effect on light of many

More information

Physics 202 Homework 9

Physics 202 Homework 9 Physics 202 Homework 9 May 29, 2013 1. A sheet that is made of plastic (n = 1.60) covers one slit of a double slit 488 nm (see Figure 1). When the double slit is illuminated by monochromatic light (wavelength

More information

PH 222-3A Fall Diffraction Lectures Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-3A Fall Diffraction Lectures Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-3A Fall 2012 Diffraction Lectures 28-29 Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 36 Diffraction In Chapter 35, we saw how light beams passing through

More information

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lens Aberrations - 3 lectures Spherical aberrations Coma,

More information

Lecture 16 Diffraction Ch. 36

Lecture 16 Diffraction Ch. 36 Lecture 16 Diffraction Ch. 36 Topics Newtons Rings Diffraction and the wave theory Single slit diffraction Intensity of single slit diffraction Double slit diffraction Diffraction grating Dispersion and

More information

25-1 Interference from Two Sources

25-1 Interference from Two Sources 25-1 Interference from Two Sources In this chapter, our focus will be on the wave behavior of light, and on how two or more light waves interfere. However, the same concepts apply to sound waves, and other

More information

CHAPTER 26 INTERFERENCE AND DIFFRACTION

CHAPTER 26 INTERFERENCE AND DIFFRACTION CHAPTER 26 INTERFERENCE AND DIFFRACTION INTERFERENCE CONSTRUCTIVE DESTRUCTIVE YOUNG S EXPERIMENT THIN FILMS NEWTON S RINGS DIFFRACTION SINGLE SLIT MULTIPLE SLITS RESOLVING POWER 1 IN PHASE 180 0 OUT OF

More information

Activity 9.1 The Diffraction Grating

Activity 9.1 The Diffraction Grating PHY385H1F Introductory Optics Practicals Day 9 Diffraction November 29, 2010 Please work in a team of 3 or 4 students. All members should find a way to contribute. Two members have a particular role, and

More information

PHYSICS. Chapter 33 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 33 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 33 Lecture RANDALL D. KNIGHT Chapter 33 Wave Optics IN THIS CHAPTER, you will learn about and apply the wave model of light. Slide

More information

College Physics 150. Chapter 25 Interference and Diffraction

College Physics 150. Chapter 25 Interference and Diffraction College Physics 50 Chapter 5 Interference and Diffraction Constructive and Destructive Interference The Michelson Interferometer Thin Films Young s Double Slit Experiment Gratings Diffraction Resolution

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Lab 8. Interference of Light

Lab 8. Interference of Light Lab 8. Interference of Light Goals To observe the interference patterns for laser light passing through a single narrow slit, through two closely spaced slits, and through multiple closely spaced slits,

More information

PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves

PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves Print Your Name Print Your Partners' Names Instructions April 17, 2015 Before lab, read the

More information

Models of Light The wave model: The ray model: The photon model:

Models of Light The wave model: The ray model: The photon model: Models of Light The wave model: under many circumstances, light exhibits the same behavior as sound or water waves. The study of light as a wave is called wave optics. The ray model: The properties of

More information

10.2 Single-Slit Diffraction

10.2 Single-Slit Diffraction 10. Single-Slit Diffraction If you shine a beam of light through a ide-enough opening, you might expect the beam to pass through ith very little diffraction. Hoever, hen light passes through a progressively

More information

Chapter 5 Example and Supplementary Problems

Chapter 5 Example and Supplementary Problems Chapter 5 Example and Supplementary Problems Single-Slit Diffraction: 1) A beam of monochromatic light (550 nm) is incident on a single slit. On a screen 3.0 meters away the distance from the central and

More information

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Early Booklet E.C.: + 1 Unit 5.C Hwk. Pts.: / 25 Unit 5.C Lab Pts.: / 20 Late, Incomplete, No Work, No Units Fees? Y / N 1. Light reflects

More information

Chapter 38. Diffraction Patterns and Polarization

Chapter 38. Diffraction Patterns and Polarization Chapter 38 Diffraction Patterns and Polarization Diffraction Light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit This

More information

Diffraction Diffraction occurs when light waves is passed by an aperture/edge Huygen's Principal: each point on wavefront acts as source of another

Diffraction Diffraction occurs when light waves is passed by an aperture/edge Huygen's Principal: each point on wavefront acts as source of another Diffraction Diffraction occurs when light waves is passed by an aperture/edge Huygen's Principal: each point on wavefront acts as source of another circular wave Consider light from point source at infinity

More information

Chapter 4 - Diffraction

Chapter 4 - Diffraction Diffraction is the phenomenon that occurs when a wave interacts with an obstacle. David J. Starling Penn State Hazleton PHYS 214 When a wave interacts with an obstacle, the waves spread out and interfere.

More information

Physics 1C DIFFRACTION AND INTERFERENCE Rev. 2-AH. Introduction

Physics 1C DIFFRACTION AND INTERFERENCE Rev. 2-AH. Introduction Introduction The material for this chapter is discussed in Hecht, Chapter 25. Light exhibits many of the properties of a transverse wave. Waves that overlap with other waves can reinforce each other or

More information

Interference and Diffraction of Light

Interference and Diffraction of Light Name Date Time to Complete h m Partner Course/ Section / Grade Interference and Diffraction of Light Reflection by mirrors and refraction by prisms and lenses can be analyzed using the simple ray model

More information

PY212 Lecture 25. Prof. Tulika Bose 12/3/09. Interference and Diffraction. Fun Link: Diffraction with Ace Ventura

PY212 Lecture 25. Prof. Tulika Bose 12/3/09. Interference and Diffraction. Fun Link: Diffraction with Ace Ventura PY212 Lecture 25 Interference and Diffraction Prof. Tulika Bose 12/3/09 Fun Link: Diffraction with Ace Ventura Summary from last time The wave theory of light is strengthened by the interference and diffraction

More information

Interference of Light

Interference of Light Lab 11. Interference of Light Goals To observe the interference patterns for laser light passing through a single narrow slit, through two closely spaced slits, and through multiple closely spaced slits,

More information

Diffraction. Factors that affect Diffraction

Diffraction. Factors that affect Diffraction Diffraction What is one common property the four images share? Diffraction: Factors that affect Diffraction TELJR Publications 2017 1 Young s Experiment AIM: Does light have properties of a particle? Or

More information

UNIT 102-9: INTERFERENCE AND DIFFRACTION

UNIT 102-9: INTERFERENCE AND DIFFRACTION Name St.No. - Date(YY/MM/DD) / / Section Group # UNIT 102-9: INTERFERENCE AND DIFFRACTION Patterns created by interference of light in a thin film. OBJECTIVES 1. Understand the creation of double-slit

More information

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from Lecture 5-3 Interference and Diffraction of EM Waves During our previous lectures we have been talking about electromagnetic (EM) waves. As we know, harmonic waves of any type represent periodic process

More information

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location.

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Interference Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Thus, interacting electromagnetic waves also add together.

More information

Intermediate Physics PHYS102

Intermediate Physics PHYS102 Intermediate Physics PHYS102 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

mywbut.com Diffraction

mywbut.com Diffraction Diffraction If an opaque obstacle (or aperture) is placed between a source of light and screen, a sufficiently distinct shadow of opaque (or an illuminated aperture) is obtained on the screen.this shows

More information

Chapter 8: Physical Optics

Chapter 8: Physical Optics Chapter 8: Physical Optics Whether light is a particle or a wave had puzzled physicists for centuries. In this chapter, we only analyze light as a wave using basic optical concepts such as interference

More information

Lecture 4. Physics 1502: Lecture 35 Today s Agenda. Homework 09: Wednesday December 9

Lecture 4. Physics 1502: Lecture 35 Today s Agenda. Homework 09: Wednesday December 9 Physics 1502: Lecture 35 Today s Agenda Announcements: Midterm 2: graded soon» solutions Homework 09: Wednesday December 9 Optics Diffraction» Introduction to diffraction» Diffraction from narrow slits»

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 27 Chapter 33 sec. 7-8 Fall 2017 Semester Professor Koltick Clicker Question Bright light of wavelength 585 nm is incident perpendicularly on a soap film (n =

More information

College Physics B - PHY2054C

College Physics B - PHY2054C Young College - PHY2054C Wave Optics: 10/29/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Young 1 2 3 Young 4 5 Assume a thin soap film rests on a flat glass surface. Young Young

More information

PHY132 Introduction to Physics II Class 5 Outline:

PHY132 Introduction to Physics II Class 5 Outline: PHY132 Introduction to Physics II Class 5 Outline: Ch. 22, sections 22.1-22.4 (Note we are skipping sections 22.5 and 22.6 in this course) Light and Optics Double-Slit Interference The Diffraction Grating

More information

EM Waves Practice Problems

EM Waves Practice Problems PSI AP Physics 2 Name 1. Sir Isaac Newton was one of the first physicists to study light. What properties of light did he explain by using the particle model? 2. Who was the first person who was credited

More information

Chapter 25. Wave Optics

Chapter 25. Wave Optics Chapter 25 Wave Optics Interference Light waves interfere with each other much like mechanical waves do All interference associated with light waves arises when the electromagnetic fields that constitute

More information

Lab 8. Interference of Light

Lab 8. Interference of Light Lab 8. Interference of Light Goals To observe the interference patterns for laser light passing through a single narrow slit, through two closely spaced slits, and through multiple closely spaced slits,

More information

Michelson Interferometer

Michelson Interferometer Michelson Interferometer The Michelson interferometer uses the interference of two reflected waves The third, beamsplitting, mirror is partially reflecting ( half silvered, except it s a thin Aluminum

More information

Dr. Quantum. General Physics 2 Light as a Wave 1

Dr. Quantum. General Physics 2 Light as a Wave 1 Dr. Quantum General Physics 2 Light as a Wave 1 The Nature of Light When studying geometric optics, we used a ray model to describe the behavior of light. A wave model of light is necessary to describe

More information

PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4)

PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4) 1 PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4) The first three lectures in this unit dealt with what is for called geometric optics. Geometric optics, treats light as a collection of rays that travel in straight

More information

DIFFRACTION 4.1 DIFFRACTION Difference between Interference and Diffraction Classification Of Diffraction Phenomena

DIFFRACTION 4.1 DIFFRACTION Difference between Interference and Diffraction Classification Of Diffraction Phenomena 4.1 DIFFRACTION Suppose a light wave incident on a slit AB of sufficient width b, as shown in Figure 1. According to concept of rectilinear propagation of light the region A B on the screen should be uniformly

More information

General Physics Experiment 11

General Physics Experiment 11 Physics Labs General Physics Experiment 11 Interference and Diffraction of Light Objectives: To measure the wavelength of light emitted by a Helium-Neon laser. To observe the character of single slit diffraction.

More information

Diffraction: Taking Light Apart

Diffraction: Taking Light Apart Diffraction: Taking Light Apart Engage Student Guide A. Waves Let s first consider diffraction. It s part of everyday life, in which waves of energy don t seem to move in straight lines. Do the activity

More information

Diffraction Diffraction occurs when light waves pass through an aperture Huygen's Principal: each point on wavefront acts as source of another wave

Diffraction Diffraction occurs when light waves pass through an aperture Huygen's Principal: each point on wavefront acts as source of another wave Diffraction Diffraction occurs when light waves pass through an aperture Huygen's Principal: each point on wavefront acts as source of another wave If light coming from infinity point source at infinity

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1975-4 (Physical Optics) a. Light of a single wavelength is incident on a single slit of width w. (w is a few wavelengths.) Sketch a graph of the intensity as

More information

Lecture 6: Waves Review and Examples PLEASE REVIEW ON YOUR OWN. Lecture 6, p. 1

Lecture 6: Waves Review and Examples PLEASE REVIEW ON YOUR OWN. Lecture 6, p. 1 Lecture 6: Waves Review and Examples PLEASE REVEW ON YOUR OWN Lecture 6, p. 1 Single-Slit Diffraction (from L4) Slit of width a. Where are the minima? Use Huygens principle: treat each point across the

More information

Interference of Light

Interference of Light Interference of Light Objective To study the interference patterns of light passed through a single and double-slit, a human hair, and compact discs using a laser. Equipment meter stick index card slit

More information

PHYSICS 116 INTERFERENCE AND DIFFRACTION

PHYSICS 116 INTERFERENCE AND DIFFRACTION Name Date Lab Time Lab TA PHYSICS 116 INTERFERENCE AND DIFFRACTION IMPORTANT SAFETY NOTE: PARTS OF THIS LAB INVOLVE THE USE OF HELIUM-NEON LASERS. THESE LASERS WILL NOT BURN YOUR SKIN BUT CAN CAUSE EYE

More information

Wave Optics. April 9, 2014 Chapter 34 1

Wave Optics. April 9, 2014 Chapter 34 1 Wave Optics April 9, 2014 Chapter 34 1 Announcements! Remainder of this week: Wave Optics! Next week: Last of biweekly exams, then relativity! Last week: Review of entire course, no exam! Final exam Wednesday,

More information

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24 AP Physics-B Physical Optics Introduction: We have seen that the reflection and refraction of light can be understood in terms of both rays and wave fronts of light. Light rays are quite compatible with

More information

Lecture 41: WED 29 APR

Lecture 41: WED 29 APR Physics 2102 Jonathan Dowling Lecture 41: WED 29 APR Ch. 36: Diffraction PHYS 2102-2 FINAL 5:30-7:30PM FRI 08 MAY COATES 143 1/2 ON NEW MATERIAL 1/2 ON OLD MATERIAL Old Formula Sheet: http://www.phys.lsu.edu/classes/

More information

Lecture 24 (Diffraction I Single-Slit Diffraction) Physics Spring 2018 Douglas Fields

Lecture 24 (Diffraction I Single-Slit Diffraction) Physics Spring 2018 Douglas Fields Lecture 24 (Diffraction I Single-Slit Diffraction) Physics 262-01 Spring 2018 Douglas Fields Single-Slit Diffraction As we have already hinted at, and seen, waves don t behave as we might have expected

More information

Chapter 38 Wave Optics (II)

Chapter 38 Wave Optics (II) Chapter 38 Wave Optics (II) Initiation: Young s ideas on light were daring and imaginative, but he did not provide rigorous mathematical theory and, more importantly, he is arrogant. Progress: Fresnel,

More information

Physics 2102 Jonathan Dowling. Lecture 29. Ch. 36: Diffraction

Physics 2102 Jonathan Dowling. Lecture 29. Ch. 36: Diffraction Physics 2102 Jonathan Dowling Lecture 29 Ch. 36: Diffraction Things You Should Learn from This Lecture 1. When light passes through a small slit, is spreads out and produces a diffraction pattern, showing

More information

Physics 214 Midterm Fall 2003 Form A

Physics 214 Midterm Fall 2003 Form A 1. A ray of light is incident at the center of the flat circular surface of a hemispherical glass object as shown in the figure. The refracted ray A. emerges from the glass bent at an angle θ 2 with respect

More information

Chapter 10 DIFFRACTION GRADING SAFETY NOTES

Chapter 10 DIFFRACTION GRADING SAFETY NOTES Chapter 10 DIFFRACTION GRADING SAFETY NOTES Do not look directly into the laser cavity, or at any reflections of the laser caused by shiny surfaces. Keep beam at bench level so as not to accidentally shine

More information

The location of the bright fringes can be found using the following equation.

The location of the bright fringes can be found using the following equation. What You Need to Know: In the past two labs we ve been thinking of light as a particle that reflects off of a surface or refracts into a medium. Now we are going to talk about light as a wave. If you take

More information

Interference of Light

Interference of Light Lecture 22 Chapter 22 Physics II Wave Optics: Interference of Light Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Wave Motion Interference Models of Light (Water waves are Easy

More information

L 32 Light and Optics [3]

L 32 Light and Optics [3] L 32 Light and Optics [3] Measurements of the speed of light The bending of light refraction Total internal reflection Dispersion Dispersion Rainbows Atmospheric scattering Blue sky red sunsets Light and

More information

MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER

MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER Warsaw University of Technology Faculty of Physics Physics Laboratory I P Irma Śledzińska 4 MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER 1. Fundamentals Electromagnetic

More information

Interference of Light

Interference of Light Interference of Light Review: Principle of Superposition When two or more waves interact they interfere. Wave interference is governed by the principle of superposition. The superposition principle says

More information

Chapter 15. Light Waves

Chapter 15. Light Waves Chapter 15 Light Waves Chapter 15 is finished, but is not in camera-ready format. All diagrams are missing, but here are some excerpts from the text with omissions indicated by... After 15.1, read 15.2

More information

Diffraction. PHYS 1301 F98 Prof. T.E. Coan Last edit 6 Aug 98. Introduction

Diffraction. PHYS 1301 F98 Prof. T.E. Coan Last edit 6 Aug 98. Introduction 1 Diffraction PHYS 1301 F98 Prof. T.E. Coan Last edit 6 Aug 98 Introduction You have probably asked yourself at one time or another, what is light. One way of thinking about light is that it is a kind

More information

Matthew Schwartz Lecture 19: Diffraction and resolution

Matthew Schwartz Lecture 19: Diffraction and resolution Matthew Schwartz Lecture 19: Diffraction and resolution 1 Huygens principle Diffraction refers to what happens to a wave when it hits an obstacle. The key to understanding diffraction is a very simple

More information

22.4. (a) (b) (c) (d)

22.4. (a) (b) (c) (d) mλl 22.2. Because ym = increasing λ and L increases the fringe spacing. Increasing d decreases the fringe d spacing. Submerging the experiment in water decreases λ and decreases the fringe spacing. So

More information

Laser Diffraction and Interference

Laser Diffraction and Interference Laser Diffraction and Interference Objective 1. To determine the wavelength of laser light from a thin wire diffraction pattern.. Compare the thickness of the wire with the single-slit width that form

More information

Chapter 37. Wave Optics

Chapter 37. Wave Optics Chapter 37 Wave Optics Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics. Sometimes called physical optics These phenomena include:

More information

Diffraction. Introduction:

Diffraction. Introduction: 1 Diffraction Introduction: The phenomenon of diffraction results when a wave interacts with an object or aperture whose size is comparable to the wavelength of the wave interacting with it. Loosely speaking,

More information

Diffraction and Interference of Plane Light Waves

Diffraction and Interference of Plane Light Waves PHY 92 Diffraction and Interference of Plane Light Waves Diffraction and Interference of Plane Light Waves Introduction In this experiment you will become familiar with diffraction patterns created when

More information

Interference of Light

Interference of Light Lecture 23 Chapter 22 Physics II 08.07.2015 Wave Optics: Interference of Light Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html

More information

Physics 1CL WAVE OPTICS: INTERFERENCE AND DIFFRACTION Fall 2009

Physics 1CL WAVE OPTICS: INTERFERENCE AND DIFFRACTION Fall 2009 Introduction An important property of waves is interference. You are familiar with some simple examples of interference of sound waves. This interference effect produces positions having large amplitude

More information

Diffraction and Interference of Plane Light Waves

Diffraction and Interference of Plane Light Waves 1 Diffraction and Interference of Plane Light Waves Introduction In this experiment you will become familiar with diffraction patterns created when a beam of light scatters from objects placed in its path.

More information

Lecture Wave Optics. Physics Help Q&A: tutor.leiacademy.org

Lecture Wave Optics. Physics Help Q&A: tutor.leiacademy.org Lecture 1202 Wave Optics Physics Help Q&A: tutor.leiacademy.org Total Internal Reflection A phenomenon called total internal reflectioncan occur when light is directed from a medium having a given index

More information

Wave Properties of Light

Wave Properties of Light 1 Wave Properties of Light Notice! You will be using laser light. Never look directly into the laser or at the reflected light! Part One: The Single Slit. You will be using real equipment in this laboratory

More information

Lecture 6: Waves Review and Examples PLEASE REVIEW ON YOUR OWN. Lecture 6, p. 1

Lecture 6: Waves Review and Examples PLEASE REVIEW ON YOUR OWN. Lecture 6, p. 1 Lecture 6: Waves Review and Examples PLEASE REVEW ON YOUR OWN Lecture 6, p. 1 Single-Slit Slit Diffraction (from L4) Slit of width a. Where are the minima? Use Huygens principle: treat each point across

More information

Basic optics. Geometrical optics and images Interference Diffraction Diffraction integral. we use simple models that say a lot! more rigorous approach

Basic optics. Geometrical optics and images Interference Diffraction Diffraction integral. we use simple models that say a lot! more rigorous approach Basic optics Geometrical optics and images Interference Diffraction Diffraction integral we use simple models that say a lot! more rigorous approach Basic optics Geometrical optics and images Interference

More information

Diffraction through a single slit

Diffraction through a single slit Diffraction through a single slit Waves diffract when they encounter obstacles. Why does this happen? If we apply Huygens principle it becomes clear. Think about a wavefront impinging on a barrier with

More information

Laboratory 11: Interference of Light Prelab

Laboratory 11: Interference of Light Prelab Phys 132L Fall 2018 Laboratory 11: Interference of Light Prelab 1 Diffraction grating Light with wavelength 560 nm is incident on a diffraction grating with slit spacing 2.0 10 6 m. Determinetheangles

More information

PHYSICS 1040L LAB LAB 7: DIFFRACTION & INTERFERENCE

PHYSICS 1040L LAB LAB 7: DIFFRACTION & INTERFERENCE PHYSICS 1040L LAB LAB 7: DIFFRACTION & INTERFERENCE Object: To investigate the diffraction and interference of light, Apparatus: Lasers, optical bench, single and double slits. screen and mounts. Theory:

More information

Single slit diffraction

Single slit diffraction Single slit diffraction Book page 364-367 Review double slit Core Assume paths of the two rays are parallel This is a good assumption if D >>> d PD = R 2 R 1 = dsin θ since sin θ = PD d Constructive interference

More information

Interference & Diffraction

Interference & Diffraction Electromagnetism & Light Interference & Diffraction https://youtu.be/iuv6hy6zsd0?t=2m17s Your opinion is very important to us. What study material would you recommend for future classes of Phys140/141?

More information

Review Session 1. Dr. Flera Rizatdinova

Review Session 1. Dr. Flera Rizatdinova Review Session 1 Dr. Flera Rizatdinova Summary of Chapter 23 Index of refraction: Angle of reflection equals angle of incidence Plane mirror: image is virtual, upright, and the same size as the object

More information

Phase. E = A sin(2p f t+f) (wave in time) or E = A sin(2p x/l +f) (wave in space)

Phase. E = A sin(2p f t+f) (wave in time) or E = A sin(2p x/l +f) (wave in space) Interference When two (or more) waves arrive at a point (in space or time), they interfere, and their amplitudes may add or subtract, depending on their frequency and phase. 1 Phase E = A sin(2p f t+f)

More information

CAUTION: NEVER LOOK DIRECTLY INTO THE LASER BEAM.

CAUTION: NEVER LOOK DIRECTLY INTO THE LASER BEAM. LABORATORY 12 PHYSICAL OPTICS I: INTERFERENCE AND DIFFRACTION Objectives To be able to explain demonstrate understanding of the dependence of a double slit interference pattern on slit width, slit separation

More information

Diffraction Challenge Problem Solutions

Diffraction Challenge Problem Solutions Diffraction Challenge Problem Solutions Problem 1: Measuring the Wavelength of Laser Light Suppose you shine a red laser through a pair of narrow slits (a = 40 μm) separated by a known distance and allow

More information

22.1. Visualize: Please refer to Figure Ex22.1. Solve: (a)

22.1. Visualize: Please refer to Figure Ex22.1. Solve: (a) 22.. Visualize: Please refer to Figure Ex22.. Solve: (a) (b) The initial light pattern is a double-slit interference pattern. It is centered behind the midpoint of the slits. The slight decrease in intensity

More information

Observation Screen. Introduction

Observation Screen. Introduction 1 PHYS 1301 Diffraction Introduction Diffraction basically means `spreading out, while interference is a pattern that emerges when waves collide. You may have already seen a demonstration of interference

More information

Optics Final Exam Name

Optics Final Exam Name Instructions: Place your name on all of the pages. Do all of your work in this booklet. Do not tear off any sheets. Show all of your steps in the problems for full credit. Be clear and neat in your work.

More information

Chapter 37. Interference of Light Waves

Chapter 37. Interference of Light Waves Chapter 37 Interference of Light Waves Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics These phenomena include: Interference Diffraction

More information

Chapter 2: Wave Optics

Chapter 2: Wave Optics Chapter : Wave Optics P-1. We can write a plane wave with the z axis taken in the direction of the wave vector k as u(,) r t Acos tkzarg( A) As c /, T 1/ and k / we can rewrite the plane wave as t z u(,)

More information

Ray Optics. Lecture 23. Chapter 23. Physics II. Course website:

Ray Optics. Lecture 23. Chapter 23. Physics II. Course website: Lecture 23 Chapter 23 Physics II Ray Optics Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Let s finish talking about a diffraction grating Diffraction Grating Let s improve (more

More information

Chapter 24 - The Wave Nature of Light

Chapter 24 - The Wave Nature of Light Chapter 24 - The Wave Nature of Light Summary Four Consequences of the Wave nature of Light: Diffraction Dispersion Interference Polarization Huygens principle: every point on a wavefront is a source of

More information

INTERFERENCE. where, m = 0, 1, 2,... (1.2) otherwise, if it is half integral multiple of wavelength, the interference would be destructive.

INTERFERENCE. where, m = 0, 1, 2,... (1.2) otherwise, if it is half integral multiple of wavelength, the interference would be destructive. 1.1 INTERFERENCE When two (or more than two) waves of the same frequency travel almost in the same direction and have a phase difference that remains constant with time, the resultant intensity of light

More information