Motion Estimation (II) Ce Liu Microsoft Research New England

Size: px
Start display at page:

Download "Motion Estimation (II) Ce Liu Microsoft Research New England"

Transcription

1 Motion Estimation (II) Ce Liu Microsoft Research New England

2 Last time Motion perception Motion representation Parametric motion: Lucas-Kanade T I x du dv = I x I T x I y I x T I y I y T I y 1 Ix T I t I y T I x Dense optical flow: Horn-Schunck I x 2 + αl I x I y I x I y I 2 y + αl U V = I xi t I y I t

3 Who are they? Berthold K. P. Horn Takeo Kanade

4 Content Robust optical flow estimation Applications Feature matching Discrete optical flow Layer motion analysis Other representations

5 Content Robust optical flow estimation Applications Feature matching Discrete optical flow Layer motion analysis Other representations

6 Spatial regularity Horn-Schunck is a Gaussian Markov random field (GMRF) I x u + I y v + I t 2 + α u 2 + v 2 dxdy Spatial over-smoothness is caused by the quadratic smoothness term Nevertheless, real optical flow fields are sparse! u u x u y v v x v y

7 Data term Horn-Schunck is a Gaussian Markov random field (GMRF) I x u + I y v + I t 2 + α u 2 + v 2 dxdy Quadratic data term implies Gaussian white noise Nevertheless, the difference between two corresponded pixels is caused by Noise (majority) Occlusion Compression error Lighting change The error function needs to account for these factors

8 Explicitly model the noise n Noise model I 2 x + u, y + v = I 1 x, y + n It can be a mixture of two Gaussians, inlier and outlier 2 n ~ λn 0, σ i + 1 λ N(0, σ 2 o ) Inlier Outlier Mixture (λ = 0.9) PDF Potential

9 More components in the mixture Consider a Gaussian mixture model K n~ 1 ξ k N(0, ks 2 ) Z k=1 Varying the decaying rate ξ, we obtain a variety of potential functions ξ = 0.1 ξ =

10 Typical error functions L2 norm ρ z = z L1 norm ρ z = z Truncated L1 norm ρ z = min( z, η) Lorentzian ρ z = log(1 + γz 2 )

11 Robust statistics Traditional L2 norm: only noise, no outlier Example: estimate the average of 0.95, 1.04, 0.91, 1.02, 1.10, Estimate with minimum error z = arg min z L2 norm: z = L1 norm: z = i ρ z z i Truncated L1: z = Lorentzian: z = L2 norm ρ z = z Truncated L1 norm ρ z = min( z, η) L1 norm ρ z = z Lorentzian ρ z = log(1 + γz 2 )

12 The family of robust power functions Can we directly use L1 norm ψ z = z? Derivative is not continuous Alternative forms L1 norm: ψ z 2 = z 2 + ε 2 Sub L1: ψ z 2 ; η = z 2 + ε 2 η, η < z z 2 + ε η = 0.5 η = 0.4 η = 0.3 η =

13 Modification to Horn-Schunck Let x = (x, y, t), and w x = u x, v x, 1 be the flow vector Horn-Schunck (recall) I x u + I y v + I t 2 + α u 2 + v 2 dxdy Robust estimation ψ I x + w I x 2 + αφ u 2 + v 2 dxdy Robust estimation with Lucas-Kanade g ψ I x + w I x 2 + αφ u 2 + v 2 dxdy

14 A unifying framework The robust object function g ψ I x + w I x 2 + αφ u 2 + v 2 dxdy Lucas-Kanade: α = 0, ψ z 2 = z 2 Robust Lucas-Kanade: α = 0, ψ z 2 = z 2 + ε 2 Horn-Schunck: g = 1, ψ z 2 = z 2, φ z 2 = z 2 One can also learn the filters (other than gradients), and robust function ψ, φ( ) [Roth & Black 2005]

15 Derivation strategies Euler-Lagrange Derive in continuous domain, discretize in the end Nonlinear PDE s Outer and inner fixed point iterations Limited to derivative filters; cannot generalize to arbitrary filters Energy minimization Discretize first and derive in matrix form Easy to understand and derive Iteratively reweighted least square (IRLS) Variational optimization Euler-Lagrange = Variational optimization = IRLS

16 Iteratively reweighted least square (IRLS) Let φ z = z 2 + ε 2 η be a robust function We want to minimize the objective function Φ Ax + b = n i=1 φ a i T x + b i 2 where x R d, A = a 1 a 2 a n T R n d, b R n By setting Φ x Φ x = = n = 0, we can derive i=1 n i=1 n i=1 φ a i T x + b i 2 w ii a i T xa i + w ii b i a i a i T w ii xa i + b i w ii a i = A T WAx + A T Wb a i T x + b i a i w ii = φ a i T x + b i 2 W = diag Φ (Ax + b)

17 Iteratively reweighted least square (IRLS) Derivative: Φ x = AT WAx + A T Wb = 0 Iterate between reweighting and least square 1. Initialize x = x 0 2. Compute weight matrix W = diag Φ (Ax + b) 3. Solve the linear system A T WAx = A T Wb 4. If x converges, return; otherwise, go to 2 Convergence is guaranteed (local minima)

18 IRLS for robust optical flow Objective function g ψ I x + w I x 2 + αφ u 2 + v 2 dxdy Discretize, linearize and increment x,y g ψ I t + I x du + I y dv 2 + αφ u + du 2 + v + dv 2 IRLS (initialize du = dv = 0) Reweight: Least square: Ψ xx = diag g ψ I x I x, Ψ xy = diag g ψ I x I y, Ψ yy = diag g ψ I y I y, Ψ xt = diag g ψ I x I t, = diag g ψ I y I t, L = D T x Φ D x + D T y Φ D y Ψ yt Ψ xx + αl Ψ xy + αl Ψ xy Ψ yy du dv = Ψ xt + αlu + αlv Ψ yt

19 What s changed? Optical flow with robust function Ψ xx = diag g ψ I x I x, Ψ xy = diag g ψ I x I y, Ψ yy = diag g ψ I y I y, Ψ xt = diag g ψ I x I t, = diag g ψ I y I t, L = D T x Φ D x + D T y Φ D y Ψ yt Ψ xx + αl Ψ xy + αl Ψ xy Ψ yy du dv = Ψ xt + αlu + αlv Ψ yt Horn-Schunck I x 2 + αl I x I y I x I y I 2 y + αl du dv = I xi t + αlu I y I t + αlv

20 Example Robust optical flow Input two frames Horn-Schunck Flow visualization Coarse-to-fine LK with median filtering

21 Content Robust optical flow estimation Applications Feature matching Discrete optical flow Layer motion analysis Other representations

22 Video stabilization

23 Video denoising

24 Video super resolution

25 Content Robust optical flow estimation Applications Feature matching Discrete optical flow Layer motion analysis Contour motion analysis Obtaining motion ground truth

26 Block matching Both Horn-Schunck and Lucas-Kanade are sub-pixel accuracy algorithms But in practice we may not need sub-pixel accuracy MPEG: block matching using MMSE H264: variable block size and quarter-pixel precision

27 Tracking reliable features Idea: no need to work on ambiguous region pixels (flat regions & line structures) Instead, we can track features and then propagate the tracking to ambiguous pixels Good features to track [Shi & Tomashi 94] T I x du dv = I x I T x I y I x T I y I y T I y Block matching + Lucas-Kanade refinement 1 Ix T I t I y T I t

28 Feature detection & tracking

29 From sparse to dense Interpolation: given values {d i } at { x i, y i }, reconstruct a smooth plane f(x, y) Membrane model (first order smoothness) i w i f x i, y i d i 2 + α f x 2 + f y 2 dxdy Thin plate model (second order smoothness) i w i f x i, y i d i 2 + α f xx 2 + f xy 2 + f yy 2 dxdy

30 Membrane vs. thin plate

31 Dense flow field from sparse tracking

32 Pros and Cons of Feature Matching Pros Efficient (a few feature points vs. all pixels) Reliable (with advanced feature descriptors) Cons Independent tracking (tracking can be unreliable) Not all information is used (may not capture weak features) How to improve Track every pixel with uncertainty Integrate spatial regularity (neighboring pixels go together)

33 Content Robust optical flow estimation Applications Feature matching Discrete optical flow Layer motion analysis Other representations

34 Discrete optical flow The objective function is similar to that of continuous flow x = (x, y) is pixel coordinate, w = (u, v) is flow vector E w = x x min( I 1 x I 2 x + w x, t) + η( u x + v x ) + Data term Small displacement min α u x 1 u x 2, d + min α v x 1 v x 2, d x 1,x 2 ε Spatial regularity Truncated L1 norms: Account for outliers in the data term Encourage piecewise smoothness in the smoothness term

35 Decoupled smoothness Coupled smoothness Smoothness O(L 4 ) Decoupled smoothness Smoothness: O(L) 2 ) Data term: O(L 2 ) Data term: O(L 2 ) Smoothness: O(L) 2 )

36 Combinatorial optimization on graph E w = min( I 1 x I 2 x + w x, t) + x η( u x + v x ) + x min α u x 1 u x 2, d + min α v x 1 v x 2, d x 1,x 2 ε Optimization strategies Belief propagation Graph cuts MCMC (simulated annealing)

37 Dual-layer belief propagation Horizontal flow u Vertical flow v w = (u, v) Data term min( I 1 x I 2 x + w, t) Smoothness term on u min α u x 1 u x 2, d v Smoothness term on v min α v x 1 v x 2, d u [Shekhovtsov et al. CVPR 07] Regularization term on u η u x Regularization term on v η v x

38 Dual-layer belief propagation Message M j k : given all the information at node k, predict the distribution at node j k j v u Update within u plane

39 Dual-layer belief propagation v u Update within v plane

40 Dual-layer belief propagation k j v u Update from u plane to v plane

41 Dual-layer belief propagation v u Update from v plane to u plane

42 Example Discrete optical flow Input two frames Robust optical flow Flow visualization Coarse-to-fine LK with median filtering

43 Content Robust optical flow estimation Applications Feature matching Discrete optical flow Layer motion analysis Other representations

44 Layer representation Optical flow field is able to model complicated motion Different angle: a video sequence can be a composite of several moving layers Layers have been widely used Adobe Photoshop Adobe After Effect Compositing is straightforward, but inference is hard Wang & Adelson, 1994

45 Wang & Adelson, 1994 Strategy Obtaining dense optical flow field Divide a frame into non-overlapping regions and fit affine motion for each region Cluster affine motions by k-means clustering Region assignment by hypothesis testing Region splitter: disconnected regions are separated

46 Results Optical flow field Clustering to affine regions Clustering with error metric Flower garden Three layers with affine motion superimposed Reconstructed background layer

47 Weiss & Adelson, 1996 Chicken & egg problem Good motion good segmentation Good segmentation good motion We don t have either of them, so iterate! Perceptually organized expectation & maximization (POEM) E-step: estimate the motion parameter of each layer M-step: estimate the likelihood that a pixel belongs to each of the layers (segmentation)

48 Liu et. al Reliable layer segmentation for motion magnification Layer segmentation pipeline Feature point tracking Trajectory clustering Dense optical flow interpolation Layer segmentation

49 Normalized Complex Correlation Feature point tracking Trajectory clustering Dense optical flow interpolation Layer segmentation The similarity metric should be independent of phase and magnitude Normalized complex correlation S( C, C 1 2 ) t C ( t) C ( t) 1 t C ( t) C ( t) t C 2 2 ( t) C 2 ( t)

50 Trajectory Spectral Clustering Feature point tracking Trajectory clustering Dense optical flow interpolation Layer segmentation Trajectory Two clusters Affinity matrix Clustering Reordering of affinity matrix

51 Clustering Results Feature point tracking Trajectory clustering Dense optical flow interpolation Layer segmentation

52 From Sparse Feature Points to Dense Optical Flow Field Feature point tracking Trajectory clustering Dense optical flow interpolation Layer segmentation Interpolate dense optical flow field using locally weighted linear regression Dense Flow vectors optical of flow field clustered of cluster sparse 12 (leaves) (swing) feature points Cluster 1: leaves Cluster 2: swing

53 Motion Layer Assignment Feature point tracking Trajectory clustering Dense optical flow interpolation Layer segmentation Assign each pixel to a motion cluster layer, using four cues: Motion likelihood consistency of pixel s intensity if it moves with the motion of a given layer (dense optical flow field) Color likelihood consistency of the color in a layer Spatial connectivity adjacent pixels favored to belong the same group Temporal coherence label assignment stays constant over time Energy minimization using graph cuts

54

55 How good is optical flow? The AAE (average angular error) race on the Yosemite sequence for over 15 years Improvement # Yosemite sequence State-of-the-art optical flow * # I. Austvoll. Lecture Notes in Computer Science, 2005 * Brox et al. ECCV, 2004.

56 Middlebury flow database Baker et. al. A Database and Evaluation Methodology for Optical Flow. ICCV 2007

57 Middlebury flow database

58 Human-assisted motion annotation Ground truth is essential to progress the field A first step in computer vision to obtain ground-truth motion for arbitrary scenes (a different approach from Baker et al. 2007) An interactive system to combine human perception and the state-of-the-art computer vision algorithms to annotate motion Liu et al. Human-assisted motion annotation. CVPR 2008

59 Demo: interactive layer segmentation

60 Demo: interactive motion labeling

61 Motion database of natural scenes Color map Bruhn et al. Lucas/Kanade meets Horn/Schunck: combining local and global optical flow methods. IJCV, 2005

62 Content Robust optical flow estimation Applications Feature matching Discrete optical flow Layer motion analysis Other representations

63 Particle video P. Sand and S. Teller. Particle Video: Long-Range Motion Estimation using Point Trajectories. CVPR 2006

64 Particle video

65 Seemingly Simple Examples Kanizsa square From real video

66 Output from the State-of-the-Art Optical Flow Algorithm Kanizsa square Optical flow field T. Brox et al. High accuracy optical flow estimation based on a theory for warping. ECCV 2004

67 Output from the State-of-the-Art Optical Flow Algorithm Dancer Optical flow field T. Brox et al. High accuracy optical flow estimation based on a theory for warping. ECCV 2004

68 Optical flow representation: aperture problem Corners Lines Flat regions Spurious junctions Boundary ownership Illusory boundaries

69 Optical flow representation: aperture problem We need motion representation beyond pixel level! Corners Lines Flat regions Spurious junctions Boundary ownership Illusory boundaries

70 Challenge: Textureless Objects under Occlusion Corners are not always trustworthy (junctions) Flat regions do not always move smoothly (discontinuous at illusory boundaries) How about boundaries? Easy to detect and track for textureless objects Able to handle junctions with illusory boundaries

71 Frame 1

72 Frame 2

73 Extracted boundary fragments

74 Optical flow from Lucas-Kanade algorithm

75 Estimated motion by our system, after grouping

76 Boundary grouping and illusory boundaries (frame 1)

77 Boundary grouping and illusory boundaries (frame 2)

78 Rotating Chair

79 Frame 1

80 Frame 2

81 Extracted boundary fragments

82 Estimated flow field from Brox et al.

83 Estimated motion by our system, after grouping

84 Boundary grouping and illusory boundaries (frame 1)

85 Boundary grouping and illusory boundaries (frame 2)

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 14 130307 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Stereo Dense Motion Estimation Translational

More information

Notes 9: Optical Flow

Notes 9: Optical Flow Course 049064: Variational Methods in Image Processing Notes 9: Optical Flow Guy Gilboa 1 Basic Model 1.1 Background Optical flow is a fundamental problem in computer vision. The general goal is to find

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 11 140311 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Motion Analysis Motivation Differential Motion Optical

More information

COMPUTER VISION > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE

COMPUTER VISION > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE COMPUTER VISION 2017-2018 > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE OUTLINE Optical flow Lucas-Kanade Horn-Schunck Applications of optical flow Optical flow tracking Histograms of oriented flow Assignment

More information

Motion and Optical Flow. Slides from Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi

Motion and Optical Flow. Slides from Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi Motion and Optical Flow Slides from Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi We live in a moving world Perceiving, understanding and predicting motion is an important part of our daily lives Motion

More information

Representing Moving Images with Layers. J. Y. Wang and E. H. Adelson MIT Media Lab

Representing Moving Images with Layers. J. Y. Wang and E. H. Adelson MIT Media Lab Representing Moving Images with Layers J. Y. Wang and E. H. Adelson MIT Media Lab Goal Represent moving images with sets of overlapping layers Layers are ordered in depth and occlude each other Velocity

More information

Overview. Video. Overview 4/7/2008. Optical flow. Why estimate motion? Motion estimation: Optical flow. Motion Magnification Colorization.

Overview. Video. Overview 4/7/2008. Optical flow. Why estimate motion? Motion estimation: Optical flow. Motion Magnification Colorization. Overview Video Optical flow Motion Magnification Colorization Lecture 9 Optical flow Motion Magnification Colorization Overview Optical flow Combination of slides from Rick Szeliski, Steve Seitz, Alyosha

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 19: Optical flow http://en.wikipedia.org/wiki/barberpole_illusion Readings Szeliski, Chapter 8.4-8.5 Announcements Project 2b due Tuesday, Nov 2 Please sign

More information

The Lucas & Kanade Algorithm

The Lucas & Kanade Algorithm The Lucas & Kanade Algorithm Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Registration, Registration, Registration. Linearizing Registration. Lucas & Kanade Algorithm. 3 Biggest

More information

Optical Flow CS 637. Fuxin Li. With materials from Kristen Grauman, Richard Szeliski, S. Narasimhan, Deqing Sun

Optical Flow CS 637. Fuxin Li. With materials from Kristen Grauman, Richard Szeliski, S. Narasimhan, Deqing Sun Optical Flow CS 637 Fuxin Li With materials from Kristen Grauman, Richard Szeliski, S. Narasimhan, Deqing Sun Motion and perceptual organization Sometimes, motion is the only cue Motion and perceptual

More information

Comparison between Motion Analysis and Stereo

Comparison between Motion Analysis and Stereo MOTION ESTIMATION The slides are from several sources through James Hays (Brown); Silvio Savarese (U. of Michigan); Octavia Camps (Northeastern); including their own slides. Comparison between Motion Analysis

More information

CS-465 Computer Vision

CS-465 Computer Vision CS-465 Computer Vision Nazar Khan PUCIT 9. Optic Flow Optic Flow Nazar Khan Computer Vision 2 / 25 Optic Flow Nazar Khan Computer Vision 3 / 25 Optic Flow Where does pixel (x, y) in frame z move to in

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who 1 in turn adapted slides from Steve Seitz, Rick Szeliski,

More information

CS 4495 Computer Vision Motion and Optic Flow

CS 4495 Computer Vision Motion and Optic Flow CS 4495 Computer Vision Aaron Bobick School of Interactive Computing Administrivia PS4 is out, due Sunday Oct 27 th. All relevant lectures posted Details about Problem Set: You may *not* use built in Harris

More information

Technion - Computer Science Department - Tehnical Report CIS

Technion - Computer Science Department - Tehnical Report CIS Over-Parameterized Variational Optical Flow Tal Nir Alfred M. Bruckstein Ron Kimmel {taln, freddy, ron}@cs.technion.ac.il Department of Computer Science Technion Israel Institute of Technology Technion

More information

SURVEY OF LOCAL AND GLOBAL OPTICAL FLOW WITH COARSE TO FINE METHOD

SURVEY OF LOCAL AND GLOBAL OPTICAL FLOW WITH COARSE TO FINE METHOD SURVEY OF LOCAL AND GLOBAL OPTICAL FLOW WITH COARSE TO FINE METHOD M.E-II, Department of Computer Engineering, PICT, Pune ABSTRACT: Optical flow as an image processing technique finds its applications

More information

Part II: Modeling Aspects

Part II: Modeling Aspects Yosemite test sequence Illumination changes Motion discontinuities Variational Optical Flow Estimation Part II: Modeling Aspects Discontinuity Di ti it preserving i smoothness th tterms Robust data terms

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who in turn adapted slides from Steve Seitz, Rick Szeliski,

More information

Peripheral drift illusion

Peripheral drift illusion Peripheral drift illusion Does it work on other animals? Computer Vision Motion and Optical Flow Many slides adapted from J. Hays, S. Seitz, R. Szeliski, M. Pollefeys, K. Grauman and others Video A video

More information

Motion Estimation. There are three main types (or applications) of motion estimation:

Motion Estimation. There are three main types (or applications) of motion estimation: Members: D91922016 朱威達 R93922010 林聖凱 R93922044 謝俊瑋 Motion Estimation There are three main types (or applications) of motion estimation: Parametric motion (image alignment) The main idea of parametric motion

More information

Dense Image-based Motion Estimation Algorithms & Optical Flow

Dense Image-based Motion Estimation Algorithms & Optical Flow Dense mage-based Motion Estimation Algorithms & Optical Flow Video A video is a sequence of frames captured at different times The video data is a function of v time (t) v space (x,y) ntroduction to motion

More information

Multiple Combined Constraints for Optical Flow Estimation

Multiple Combined Constraints for Optical Flow Estimation Multiple Combined Constraints for Optical Flow Estimation Ahmed Fahad and Tim Morris School of Computer Science, The University of Manchester Manchester, M3 9PL, UK ahmed.fahad@postgrad.manchester.ac.uk,

More information

Segmentation and Tracking of Partial Planar Templates

Segmentation and Tracking of Partial Planar Templates Segmentation and Tracking of Partial Planar Templates Abdelsalam Masoud William Hoff Colorado School of Mines Colorado School of Mines Golden, CO 800 Golden, CO 800 amasoud@mines.edu whoff@mines.edu Abstract

More information

Schedule. Tuesday, May 10: Thursday, May 12: Motion microscopy, separating shading and paint min. student project presentations, projects due.

Schedule. Tuesday, May 10: Thursday, May 12: Motion microscopy, separating shading and paint min. student project presentations, projects due. Schedule Tuesday, May 10: Motion microscopy, separating shading and paint Thursday, May 12: 5-10 min. student project presentations, projects due. Computer vision for photography Bill Freeman Computer

More information

Segmentation and Grouping April 19 th, 2018

Segmentation and Grouping April 19 th, 2018 Segmentation and Grouping April 19 th, 2018 Yong Jae Lee UC Davis Features and filters Transforming and describing images; textures, edges 2 Grouping and fitting [fig from Shi et al] Clustering, segmentation,

More information

Optical Flow-Based Motion Estimation. Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides.

Optical Flow-Based Motion Estimation. Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides. Optical Flow-Based Motion Estimation Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides. 1 Why estimate motion? We live in a 4-D world Wide applications Object

More information

Multi-stable Perception. Necker Cube

Multi-stable Perception. Necker Cube Multi-stable Perception Necker Cube Spinning dancer illusion, Nobuyuki Kayahara Multiple view geometry Stereo vision Epipolar geometry Lowe Hartley and Zisserman Depth map extraction Essential matrix

More information

Motion Tracking and Event Understanding in Video Sequences

Motion Tracking and Event Understanding in Video Sequences Motion Tracking and Event Understanding in Video Sequences Isaac Cohen Elaine Kang, Jinman Kang Institute for Robotics and Intelligent Systems University of Southern California Los Angeles, CA Objectives!

More information

Visual Tracking. Image Processing Laboratory Dipartimento di Matematica e Informatica Università degli studi di Catania.

Visual Tracking. Image Processing Laboratory Dipartimento di Matematica e Informatica Università degli studi di Catania. Image Processing Laboratory Dipartimento di Matematica e Informatica Università degli studi di Catania 1 What is visual tracking? estimation of the target location over time 2 applications Six main areas:

More information

Computer Vision Lecture 20

Computer Vision Lecture 20 Computer Perceptual Vision and Sensory WS 16/17 Augmented Computing Computer Perceptual Vision and Sensory WS 16/17 Augmented Computing Computer Perceptual Vision and Sensory WS 16/17 Augmented Computing

More information

Computer Vision Lecture 20

Computer Vision Lecture 20 Computer Perceptual Vision and Sensory WS 16/76 Augmented Computing Many slides adapted from K. Grauman, S. Seitz, R. Szeliski, M. Pollefeys, S. Lazebnik Computer Vision Lecture 20 Motion and Optical Flow

More information

SPM-BP: Sped-up PatchMatch Belief Propagation for Continuous MRFs. Yu Li, Dongbo Min, Michael S. Brown, Minh N. Do, Jiangbo Lu

SPM-BP: Sped-up PatchMatch Belief Propagation for Continuous MRFs. Yu Li, Dongbo Min, Michael S. Brown, Minh N. Do, Jiangbo Lu SPM-BP: Sped-up PatchMatch Belief Propagation for Continuous MRFs Yu Li, Dongbo Min, Michael S. Brown, Minh N. Do, Jiangbo Lu Discrete Pixel-Labeling Optimization on MRF 2/37 Many computer vision tasks

More information

Large Displacement Optical Flow & Applications

Large Displacement Optical Flow & Applications Large Displacement Optical Flow & Applications Narayanan Sundaram, Kurt Keutzer (Parlab) In collaboration with Thomas Brox (University of Freiburg) Michael Tao (University of California Berkeley) Parlab

More information

Optic Flow and Basics Towards Horn-Schunck 1

Optic Flow and Basics Towards Horn-Schunck 1 Optic Flow and Basics Towards Horn-Schunck 1 Lecture 7 See Section 4.1 and Beginning of 4.2 in Reinhard Klette: Concise Computer Vision Springer-Verlag, London, 2014 1 See last slide for copyright information.

More information

CS 565 Computer Vision. Nazar Khan PUCIT Lectures 15 and 16: Optic Flow

CS 565 Computer Vision. Nazar Khan PUCIT Lectures 15 and 16: Optic Flow CS 565 Computer Vision Nazar Khan PUCIT Lectures 15 and 16: Optic Flow Introduction Basic Problem given: image sequence f(x, y, z), where (x, y) specifies the location and z denotes time wanted: displacement

More information

Outline. Segmentation & Grouping. Examples of grouping in vision. Grouping in vision. Grouping in vision 2/9/2011. CS 376 Lecture 7 Segmentation 1

Outline. Segmentation & Grouping. Examples of grouping in vision. Grouping in vision. Grouping in vision 2/9/2011. CS 376 Lecture 7 Segmentation 1 Outline What are grouping problems in vision? Segmentation & Grouping Wed, Feb 9 Prof. UT-Austin Inspiration from human perception Gestalt properties Bottom-up segmentation via clustering Algorithms: Mode

More information

Optical Flow Estimation

Optical Flow Estimation Optical Flow Estimation Goal: Introduction to image motion and 2D optical flow estimation. Motivation: Motion is a rich source of information about the world: segmentation surface structure from parallax

More information

3D Computer Vision. Dense 3D Reconstruction II. Prof. Didier Stricker. Christiano Gava

3D Computer Vision. Dense 3D Reconstruction II. Prof. Didier Stricker. Christiano Gava 3D Computer Vision Dense 3D Reconstruction II Prof. Didier Stricker Christiano Gava Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Coarse to Over-Fine Optical Flow Estimation

Coarse to Over-Fine Optical Flow Estimation Coarse to Over-Fine Optical Flow Estimation Tomer Amiaz* Eyal Lubetzky Nahum Kiryati* *School of Electrical Engineering School of Computer Science Tel Aviv University Tel Aviv 69978, Israel September 11,

More information

Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects

Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects Intelligent Control Systems Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

Segmentation and Grouping April 21 st, 2015

Segmentation and Grouping April 21 st, 2015 Segmentation and Grouping April 21 st, 2015 Yong Jae Lee UC Davis Announcements PS0 grades are up on SmartSite Please put name on answer sheet 2 Features and filters Transforming and describing images;

More information

Ninio, J. and Stevens, K. A. (2000) Variations on the Hermann grid: an extinction illusion. Perception, 29,

Ninio, J. and Stevens, K. A. (2000) Variations on the Hermann grid: an extinction illusion. Perception, 29, Ninio, J. and Stevens, K. A. (2000) Variations on the Hermann grid: an extinction illusion. Perception, 29, 1209-1217. CS 4495 Computer Vision A. Bobick Sparse to Dense Correspodence Building Rome in

More information

Regularization and Markov Random Fields (MRF) CS 664 Spring 2008

Regularization and Markov Random Fields (MRF) CS 664 Spring 2008 Regularization and Markov Random Fields (MRF) CS 664 Spring 2008 Regularization in Low Level Vision Low level vision problems concerned with estimating some quantity at each pixel Visual motion (u(x,y),v(x,y))

More information

Mixture Models and EM

Mixture Models and EM Mixture Models and EM Goal: Introduction to probabilistic mixture models and the expectationmaximization (EM) algorithm. Motivation: simultaneous fitting of multiple model instances unsupervised clustering

More information

Comparison of stereo inspired optical flow estimation techniques

Comparison of stereo inspired optical flow estimation techniques Comparison of stereo inspired optical flow estimation techniques ABSTRACT The similarity of the correspondence problems in optical flow estimation and disparity estimation techniques enables methods to

More information

Local Grouping for Optical Flow

Local Grouping for Optical Flow Local Grouping for Optical Flow Xiaofeng Ren Toyota Technological Institute at Chicago 1427 E. 60th Street, Chicago, IL 60637 xren@tti-c.org Abstract Optical flow estimation requires spatial integration,

More information

Visual motion. Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys

Visual motion. Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys Visual motion Man slides adapted from S. Seitz, R. Szeliski, M. Pollefes Motion and perceptual organization Sometimes, motion is the onl cue Motion and perceptual organization Sometimes, motion is the

More information

Optical flow and tracking

Optical flow and tracking EECS 442 Computer vision Optical flow and tracking Intro Optical flow and feature tracking Lucas-Kanade algorithm Motion segmentation Segments of this lectures are courtesy of Profs S. Lazebnik S. Seitz,

More information

Lecture 16: Computer Vision

Lecture 16: Computer Vision CS4442/9542b: Artificial Intelligence II Prof. Olga Veksler Lecture 16: Computer Vision Motion Slides are from Steve Seitz (UW), David Jacobs (UMD) Outline Motion Estimation Motion Field Optical Flow Field

More information

Motion. 1 Introduction. 2 Optical Flow. Sohaib A Khan. 2.1 Brightness Constancy Equation

Motion. 1 Introduction. 2 Optical Flow. Sohaib A Khan. 2.1 Brightness Constancy Equation Motion Sohaib A Khan 1 Introduction So far, we have dealing with single images of a static scene taken by a fixed camera. Here we will deal with sequence of images taken at different time intervals. Motion

More information

Feature Based Registration - Image Alignment

Feature Based Registration - Image Alignment Feature Based Registration - Image Alignment Image Registration Image registration is the process of estimating an optimal transformation between two or more images. Many slides from Alexei Efros http://graphics.cs.cmu.edu/courses/15-463/2007_fall/463.html

More information

Visual Tracking (1) Feature Point Tracking and Block Matching

Visual Tracking (1) Feature Point Tracking and Block Matching Intelligent Control Systems Visual Tracking (1) Feature Point Tracking and Block Matching Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

CUDA GPGPU. Ivo Ihrke Tobias Ritschel Mario Fritz

CUDA GPGPU. Ivo Ihrke Tobias Ritschel Mario Fritz CUDA GPGPU Ivo Ihrke Tobias Ritschel Mario Fritz Today 3 Topics Intro to CUDA (NVIDIA slides) How is the GPU hardware organized? What is the programming model? Simple Kernels Hello World Gaussian Filtering

More information

Particle Tracking. For Bulk Material Handling Systems Using DEM Models. By: Jordan Pease

Particle Tracking. For Bulk Material Handling Systems Using DEM Models. By: Jordan Pease Particle Tracking For Bulk Material Handling Systems Using DEM Models By: Jordan Pease Introduction Motivation for project Particle Tracking Application to DEM models Experimental Results Future Work References

More information

Visual Tracking. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania

Visual Tracking. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania Visual Tracking Antonino Furnari Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania furnari@dmi.unict.it 11 giugno 2015 What is visual tracking? estimation

More information

CS664 Lecture #18: Motion

CS664 Lecture #18: Motion CS664 Lecture #18: Motion Announcements Most paper choices were fine Please be sure to email me for approval, if you haven t already This is intended to help you, especially with the final project Use

More information

Motion and Tracking. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE)

Motion and Tracking. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE) Motion and Tracking Andrea Torsello DAIS Università Ca Foscari via Torino 155, 30172 Mestre (VE) Motion Segmentation Segment the video into multiple coherently moving objects Motion and Perceptual Organization

More information

Augmented Reality VU. Computer Vision 3D Registration (2) Prof. Vincent Lepetit

Augmented Reality VU. Computer Vision 3D Registration (2) Prof. Vincent Lepetit Augmented Reality VU Computer Vision 3D Registration (2) Prof. Vincent Lepetit Feature Point-Based 3D Tracking Feature Points for 3D Tracking Much less ambiguous than edges; Point-to-point reprojection

More information

CS 2770: Computer Vision. Edges and Segments. Prof. Adriana Kovashka University of Pittsburgh February 21, 2017

CS 2770: Computer Vision. Edges and Segments. Prof. Adriana Kovashka University of Pittsburgh February 21, 2017 CS 2770: Computer Vision Edges and Segments Prof. Adriana Kovashka University of Pittsburgh February 21, 2017 Edges vs Segments Figure adapted from J. Hays Edges vs Segments Edges More low-level Don t

More information

Using Subspace Constraints to Improve Feature Tracking Presented by Bryan Poling. Based on work by Bryan Poling, Gilad Lerman, and Arthur Szlam

Using Subspace Constraints to Improve Feature Tracking Presented by Bryan Poling. Based on work by Bryan Poling, Gilad Lerman, and Arthur Szlam Presented by Based on work by, Gilad Lerman, and Arthur Szlam What is Tracking? Broad Definition Tracking, or Object tracking, is a general term for following some thing through multiple frames of a video

More information

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009 Learning and Inferring Depth from Monocular Images Jiyan Pan April 1, 2009 Traditional ways of inferring depth Binocular disparity Structure from motion Defocus Given a single monocular image, how to infer

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 10 130221 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Canny Edge Detector Hough Transform Feature-Based

More information

Robust Model-Free Tracking of Non-Rigid Shape. Abstract

Robust Model-Free Tracking of Non-Rigid Shape. Abstract Robust Model-Free Tracking of Non-Rigid Shape Lorenzo Torresani Stanford University ltorresa@cs.stanford.edu Christoph Bregler New York University chris.bregler@nyu.edu New York University CS TR2003-840

More information

What have we leaned so far?

What have we leaned so far? What have we leaned so far? Camera structure Eye structure Project 1: High Dynamic Range Imaging What have we learned so far? Image Filtering Image Warping Camera Projection Model Project 2: Panoramic

More information

Optical flow. Cordelia Schmid

Optical flow. Cordelia Schmid Optical flow Cordelia Schmid Motion field The motion field is the projection of the 3D scene motion into the image Optical flow Definition: optical flow is the apparent motion of brightness patterns in

More information

EECS 556 Image Processing W 09

EECS 556 Image Processing W 09 EECS 556 Image Processing W 09 Motion estimation Global vs. Local Motion Block Motion Estimation Optical Flow Estimation (normal equation) Man slides of this lecture are courtes of prof Milanfar (UCSC)

More information

Colour Segmentation-based Computation of Dense Optical Flow with Application to Video Object Segmentation

Colour Segmentation-based Computation of Dense Optical Flow with Application to Video Object Segmentation ÖGAI Journal 24/1 11 Colour Segmentation-based Computation of Dense Optical Flow with Application to Video Object Segmentation Michael Bleyer, Margrit Gelautz, Christoph Rhemann Vienna University of Technology

More information

Segmentation and Grouping

Segmentation and Grouping CS 1699: Intro to Computer Vision Segmentation and Grouping Prof. Adriana Kovashka University of Pittsburgh September 24, 2015 Goals: Grouping in vision Gather features that belong together Obtain an intermediate

More information

Over-Parameterized Variational Optical Flow

Over-Parameterized Variational Optical Flow DOI 10.1007/s11263-007-0051-2 Over-Parameterized Variational Optical Flow Tal Nir Alfred M. Bruckstein Ron Kimmel Received: 4 August 2006 / Accepted: 5 March 2007 Springer Science+Business Media, LLC 2007

More information

Optical flow. Cordelia Schmid

Optical flow. Cordelia Schmid Optical flow Cordelia Schmid Motion field The motion field is the projection of the 3D scene motion into the image Optical flow Definition: optical flow is the apparent motion of brightness patterns in

More information

Lucas-Kanade Motion Estimation. Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides.

Lucas-Kanade Motion Estimation. Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides. Lucas-Kanade Motion Estimation Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides. 1 Why estimate motion? We live in a 4-D world Wide applications Object

More information

Stereo Vision II: Dense Stereo Matching

Stereo Vision II: Dense Stereo Matching Stereo Vision II: Dense Stereo Matching Nassir Navab Slides prepared by Christian Unger Outline. Hardware. Challenges. Taxonomy of Stereo Matching. Analysis of Different Problems. Practical Considerations.

More information

Matching. Compare region of image to region of image. Today, simplest kind of matching. Intensities similar.

Matching. Compare region of image to region of image. Today, simplest kind of matching. Intensities similar. Matching Compare region of image to region of image. We talked about this for stereo. Important for motion. Epipolar constraint unknown. But motion small. Recognition Find object in image. Recognize object.

More information

Grouping and Segmentation

Grouping and Segmentation Grouping and Segmentation CS 554 Computer Vision Pinar Duygulu Bilkent University (Source:Kristen Grauman ) Goals: Grouping in vision Gather features that belong together Obtain an intermediate representation

More information

Dense Correspondence and Its Applications

Dense Correspondence and Its Applications Dense Correspondence and Its Applications CVFX @ NTHU 28 May 2015 Outline Dense Correspondence Optical ow Epipolar Geometry Stereo Correspondence Why dense correspondence? Features are sparse Some applications

More information

Capturing, Modeling, Rendering 3D Structures

Capturing, Modeling, Rendering 3D Structures Computer Vision Approach Capturing, Modeling, Rendering 3D Structures Calculate pixel correspondences and extract geometry Not robust Difficult to acquire illumination effects, e.g. specular highlights

More information

Computer Vision Lecture 20

Computer Vision Lecture 20 Computer Vision Lecture 2 Motion and Optical Flow Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de 28.1.216 Man slides adapted from K. Grauman, S. Seitz, R. Szeliski,

More information

FAST-MATCH: FAST AFFINE TEMPLATE MATCHING

FAST-MATCH: FAST AFFINE TEMPLATE MATCHING Seminar on Sublinear Time Algorithms FAST-MATCH: FAST AFFINE TEMPLATE MATCHING KORMAN, S., REICHMAN, D., TSUR, G., & AVIDAN, S., 2013 Given by: Shira Faigenbaum-Golovin Tel-Aviv University 27.12.2015 Problem

More information

Announcements. Computer Vision I. Motion Field Equation. Revisiting the small motion assumption. Visual Tracking. CSE252A Lecture 19.

Announcements. Computer Vision I. Motion Field Equation. Revisiting the small motion assumption. Visual Tracking. CSE252A Lecture 19. Visual Tracking CSE252A Lecture 19 Hw 4 assigned Announcements No class on Thursday 12/6 Extra class on Tuesday 12/4 at 6:30PM in WLH Room 2112 Motion Field Equation Measurements I x = I x, T: Components

More information

Computer Vision II Lecture 4

Computer Vision II Lecture 4 Computer Vision II Lecture 4 Color based Tracking 29.04.2014 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Single-Object Tracking Background modeling

More information

ELEC Dr Reji Mathew Electrical Engineering UNSW

ELEC Dr Reji Mathew Electrical Engineering UNSW ELEC 4622 Dr Reji Mathew Electrical Engineering UNSW Review of Motion Modelling and Estimation Introduction to Motion Modelling & Estimation Forward Motion Backward Motion Block Motion Estimation Motion

More information

Perceptual Grouping from Motion Cues Using Tensor Voting

Perceptual Grouping from Motion Cues Using Tensor Voting Perceptual Grouping from Motion Cues Using Tensor Voting 1. Research Team Project Leader: Graduate Students: Prof. Gérard Medioni, Computer Science Mircea Nicolescu, Changki Min 2. Statement of Project

More information

Adaptive Multi-Stage 2D Image Motion Field Estimation

Adaptive Multi-Stage 2D Image Motion Field Estimation Adaptive Multi-Stage 2D Image Motion Field Estimation Ulrich Neumann and Suya You Computer Science Department Integrated Media Systems Center University of Southern California, CA 90089-0781 ABSRAC his

More information

Enhancing Gradient Sparsity for Parametrized Motion Estimation

Enhancing Gradient Sparsity for Parametrized Motion Estimation HAN et al.: ENHANCING GRADIENT SPARSITY FOR MOTION ESTIMATION 1 Enhancing Gradient Sparsity for Parametrized Motion Estimation Junyu Han pengjie.han@gmail.com Fei Qi fred.qi@ieee.org Guangming Shi gmshi@xidian.edu.cn

More information

Ruch (Motion) Rozpoznawanie Obrazów Krzysztof Krawiec Instytut Informatyki, Politechnika Poznańska. Krzysztof Krawiec IDSS

Ruch (Motion) Rozpoznawanie Obrazów Krzysztof Krawiec Instytut Informatyki, Politechnika Poznańska. Krzysztof Krawiec IDSS Ruch (Motion) Rozpoznawanie Obrazów Krzysztof Krawiec Instytut Informatyki, Politechnika Poznańska 1 Krzysztof Krawiec IDSS 2 The importance of visual motion Adds entirely new (temporal) dimension to visual

More information

Computer Vision I. Dense Stereo Correspondences. Anita Sellent 1/15/16

Computer Vision I. Dense Stereo Correspondences. Anita Sellent 1/15/16 Computer Vision I Dense Stereo Correspondences Anita Sellent Stereo Two Cameras Overlapping field of view Known transformation between cameras From disparity compute depth [ Bradski, Kaehler: Learning

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 7.1: 2D Motion Estimation in Images Jürgen Sturm Technische Universität München 3D to 2D Perspective Projections

More information

Markov Networks in Computer Vision

Markov Networks in Computer Vision Markov Networks in Computer Vision Sargur Srihari srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Some applications: 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

Sparsity Model for Robust Optical Flow Estimation at Motion Discontinuities

Sparsity Model for Robust Optical Flow Estimation at Motion Discontinuities Sparsity Model for Robust Optical Flow Estimation at Motion Discontinuities Xiaohui Shen and Ying Wu Northwestern University Sheridan Road, Evanston, IL {xsh3,yingwu}@eecs.northwestern.edu Abstract This

More information

Fundamental matrix. Let p be a point in left image, p in right image. Epipolar relation. Epipolar mapping described by a 3x3 matrix F

Fundamental matrix. Let p be a point in left image, p in right image. Epipolar relation. Epipolar mapping described by a 3x3 matrix F Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix F Fundamental

More information

Learning Two-View Stereo Matching

Learning Two-View Stereo Matching Learning Two-View Stereo Matching Jianxiong Xiao Jingni Chen Dit-Yan Yeung Long Quan Department of Computer Science and Engineering The Hong Kong University of Science and Technology The 10th European

More information

Nonrigid Surface Modelling. and Fast Recovery. Department of Computer Science and Engineering. Committee: Prof. Leo J. Jia and Prof. K. H.

Nonrigid Surface Modelling. and Fast Recovery. Department of Computer Science and Engineering. Committee: Prof. Leo J. Jia and Prof. K. H. Nonrigid Surface Modelling and Fast Recovery Zhu Jianke Supervisor: Prof. Michael R. Lyu Committee: Prof. Leo J. Jia and Prof. K. H. Wong Department of Computer Science and Engineering May 11, 2007 1 2

More information

Optical Flow Estimation using Fourier Mellin Transform

Optical Flow Estimation using Fourier Mellin Transform Optical Flow Estimation using Fourier Mellin Transform Huy Tho Ho School of EEE, Adelaide University, Australia huy.ho@adelaide.edu.au Roland Goecke RSISE, Australian National University, Australia roland.goecke@anu.edu.au

More information

Markov Networks in Computer Vision. Sargur Srihari

Markov Networks in Computer Vision. Sargur Srihari Markov Networks in Computer Vision Sargur srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Important application area for MNs 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

Using temporal seeding to constrain the disparity search range in stereo matching

Using temporal seeding to constrain the disparity search range in stereo matching Using temporal seeding to constrain the disparity search range in stereo matching Thulani Ndhlovu Mobile Intelligent Autonomous Systems CSIR South Africa Email: tndhlovu@csir.co.za Fred Nicolls Department

More information

FusionFlow: Discrete-Continuous Optimization for Optical Flow Estimation

FusionFlow: Discrete-Continuous Optimization for Optical Flow Estimation FusionFlow: Discrete-Continuous Optimization for Optical Flow Estimation Victor Lempitsky Microsoft Research Cambridge Stefan Roth TU Darmstadt Carsten Rother Microsoft Research Cambridge Abstract Accurate

More information

The 2D/3D Differential Optical Flow

The 2D/3D Differential Optical Flow The 2D/3D Differential Optical Flow Prof. John Barron Dept. of Computer Science University of Western Ontario London, Ontario, Canada, N6A 5B7 Email: barron@csd.uwo.ca Phone: 519-661-2111 x86896 Canadian

More information

Visual Tracking (1) Pixel-intensity-based methods

Visual Tracking (1) Pixel-intensity-based methods Intelligent Control Systems Visual Tracking (1) Pixel-intensity-based methods Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

Finally: Motion and tracking. Motion 4/20/2011. CS 376 Lecture 24 Motion 1. Video. Uses of motion. Motion parallax. Motion field

Finally: Motion and tracking. Motion 4/20/2011. CS 376 Lecture 24 Motion 1. Video. Uses of motion. Motion parallax. Motion field Finally: Motion and tracking Tracking objects, video analysis, low level motion Motion Wed, April 20 Kristen Grauman UT-Austin Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys, and S. Lazebnik

More information

Lecture 16: Computer Vision

Lecture 16: Computer Vision CS442/542b: Artificial ntelligence Prof. Olga Veksler Lecture 16: Computer Vision Motion Slides are from Steve Seitz (UW), David Jacobs (UMD) Outline Motion Estimation Motion Field Optical Flow Field Methods

More information