Robotic Mapping. Outline. Introduction (Tom)

Size: px
Start display at page:

Download "Robotic Mapping. Outline. Introduction (Tom)"

Transcription

1 Outline Robotic Mapping Student Lecture Itamar Kahn, Thomas Lin, Yuval Mazor Introduction (Tom) Kalman Filtering (Itamar) J.J. Leonard and H.J.S. Feder. A computationally efficient method for large-scale concurrent mapping and localization. In J. Hollerbach and D. Koditschek, editors, Proceedings of the Ninth International Symposium on Robotics Research, Salt Lake City, Utah, 1999 Hybrid Mapping Approaches (Yuval) S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile robot mapping with applications to multirobot and 3D mapping. In Proceedings of the IEEE Internatinoal Conference on Robotics and Automation (ICRA), San Francisco, CA, IEEE Conclusion (Tom) Vision / Steps Truly autonomous mobile robots Sense the environment Acquiring models of the environment Reason Act on environment State of the Art 20 years of research Do well on static, structured, limited size Difficulty with dynamic, unstructured, large scale Simulated versus Real-life What is Robotic Mapping? Acquiring spatial models of physical environments with robots What is Robotic Mapping? Sensors with different limitations Cameras, Sonar, Lasers, Radar, Compasses, GPS Paul Newman's mobile robot mapping MIT 1

2 Main Challenges Noise High Dimensionality Correspondence Problem Changing Environments Robotic Exploration Planning Challenges - Noise Measurement errors accumulate over time Odometry error will accumulate and throw off an entire map Challenges - High Dimensionality 3-D visual maps can take millions of numbers Challenges - Correspondence Problem Do these sensor readings from different times correspond to the same object? Is the blue object the same one it sensed earlier, or it a different object that seems like it's in the same location because of accumulated sensor noise? Challenges - Changing Environments Moving furniture, moving doors Even faster: Moving cars, moving people Hard to distinguish sensor noise and moving items Challenges - Robotic Exploration Planning How robots should explore using incomplete maps 2

3 Today's Methods All Probabilistic Better models uncertainty, sensor noise Kalman Filtering (Itamar will present), Hybrid Methods (Yuval will present) EM, Occupancy Grids, Multi-Planar Maps (not presenting) Decoupled Stochastic Mapping A Computationally Efficient Method for Large-Scale Concurrent Mapping and Localization John J. Leonard and Hands Jacob S. Feder, MIT, 2000 Introduction DSM: Feature based approach to CML Previous solutions are O(n 2 ), where n is the number of features Results from the number of correlations between the vehicles and features Overview Kalman and Extended Kalman Filters Conventional Stochastic Mapping Decoupled Stochastic Mapping Algorithm Testing Kalman Filter Mini Tutorial The mini tutorial is an adaptation of a tutorial presented at ACM SIGGRAPH 2001 by Greg Welch and Gary Bishop (UNC). Kalman Filter KF operates by Predicting the new state and its uncertainty Correcting with the new measurement The slides of the tutorial are available at More information (papers, software, links, etc) is available at IN: Noisy data --> OUT:less noisy 3

4 Kalman Filter Example 2D Position-Only (e.g., 2D Tablet) Process Model: Measurement Model: Î x k y k state Î = 1 0 x k-1 + ~ x k-1 Î 0 1 Î y k-1 Î ~ y k-1 u k v k measurement state transition state noise x k = Ax k-1 + w k-1 = H x 0 x k + ~ u k Î 0 H y Î y k Î ~ v k measurement matrix state z k = Hx k + v k noise Kalman Filter Example Preparation and Initialization State transition: A = 1 0 Î 0 1 Process Noise Covariance: Measurement Noise Covariance: R = E v * v T Initialization: x 0 = H -1 z 0 P 0 = e 0 Î 0 e { } = Q xx 0 Q = E w * w T Î 0 Q yy Î 0 R yy { } = R xx 0 Predict Correct Kalman Filter Example x - k = Ax k-1 P k - = AP k-1 A T + Q ( ) x k = x k - + K z k - Hx k - P k = ( I - KH)P - Kalman Filter Example Predict x k - = Ax k-1 P k - = AP k-1 A T + Q Correct ( ) -1 ( ) K = P - k H T HP - k H T + R x k = x k - + K z k - Hx k - P k = ( I - KH)P - K = P - k H T ( HP - k H T + R) -1 Kalman Filter Example Extend example to 2D Position-Velocity Process model: state transition state 1 0 dt 0 x dt y dx dt Î dy Î dt Measurement model: measurement matrix state x H x y Î 0 H y 0 0 dx dt dy Î dt Kalman Filter But, Kalman filter is not enough!!! Only matrix operations allowed (only works for linear systems) Measurement is a linear function of state Next state is linear function of previous state Can t estimate non-linear variables (e.g., gain, rotation, projection, etc.) 4

5 Extended Kalman Filter Nonlinear Process (Model) Process dynamics: A becomes a(x) Measurement: H becomes h(x) Filter Reformulation Use functions instead of matrices Use Jacobians to project forward, and to relate measurement to state Stochastic Mapping Size-varying Kalman filter Add and Update of representation Build a map through spatial relationship Stochastic Mapping Estimated locations of the robot and the features in the map [ ] T where x r = x r y r f v [ k] T = [ x 1 [ k] T...x N [ k] T ], such that x i = x i y i x [ k] = x r [ k] T x f [ k] T and x f Estimated error covariance P[ k] = P rr[ k] P rf [ k] Î P fr [ k] P ff [ k] [ ] T [ ] T Stochastic Mapping The dynamic model of the robot is given by ( ) + d x ( u[ k] ) where u[ k] = [ df du] T x[ k +1] = f x[ k], u[ k] The observation model for the system is given by ( ) + d z z[ k] = h x[ k] Augmented Stochastic Mapping Given these assumptions, an extended Kalman filter (EKF) is employed to estimate the state x and covariance P. Decoupled Stochastic Mapping Stochastic Mapping: complexity O(n 2 ) Solution: DSM Divide the environment into multiple submaps Each submap has a vehicle position estimate and a set of features estimates 5

6 How do we move from map to map? Single-pass vs. Multi-pass DSM Cross-map relocation A B Cross-map updating A B Decoupled Stochastic Mapping Vehicle travels to a previously visited area: Cross-map relocation x B [ k] x A r [ k],p B [ k] Prr A [ k] + P B rr [ j] P B rf [ j] Î x B r [ j] Î P B fr [ j] P B ff [ j] Decoupled Stochastic Mapping Facilitate spatial convergence by bringing more accurate vehicle estimates from lower to higher maps: Cross-map updating [ ] f B x B k - Î x f B,P B k - [ k] [ ] Prr [ j] + F B P B rf [ j] P B fr [ j] 2P B ff [ j] Using EKF, estimate vehicle location in submap B: Use state x A r [ k] as measurement z and covariance P A rr [ k] in A as prediction for state in B. Î B Methods Comparison Testing Full covariance ASM Single-pass DSM Multi-pass DSM 6

7 Limitations Sensor noise modeled by gaussian process Hybrid Approaches Limited map dimensionality A Real-Time Algorithm for Mobile Mapping with Applications to Multi-Robot and 3D Mapping Sebastian Thrun, Carnegie Mellon University Wolfram Burgard, University of Freiberg Dieter Fox, Carnegie Mellon University Overview Benefits Concurrent mapping and localization using 2D laser range finders Mapping: Fast scan-matching Localization: Sample-based probabilities Motivation: 3D-Maps and large cyclic environments Computation is all real-time Builds 3D maps Handles cycles Accurate map generation in the absence of odometric data Background Incremental Localization Incremental Localization Expectation Maximization Iterate localization for each new sensor scan Can be done in real-time Fail on cyclic environments as error grows unbounded 7

8 Expectation Maximization (EM) Goal Search most-likely map while considering all past scans Probabilistically, iterate and refine the map Can handle cyclic environments Batch algorithms - not real-time Combine IL and EM in a real-time algorithm that can handle cycles Use posterior estimation like in EM Incremental map construction with maximum likelihood estimators as in IL Mapping A map is a collection of scans and poses m t = { o t,s t } t =0,1,...,t Map likelihood P(m d t ) = hp(m) Ú L P(o t m,s t ) t -1 t Ú t =0 P(s t +1 a t,s t )ds 1...dst t = 0 The most likely map: arg maxp(m d t ) m where: d t ={s o,a o,s 1,a 1,...,s t } Mapping The PDF has an elliptical/banana shape PDF Intuition If a scan shows free space it is unlikely that future scans will show obstacles in that space Darker regions indicate lower probability of an obstacle Posterior pose, s, after moving distance a from s : P(s a, s ) 8

9 Maximizing Map Likelihood Infeasible to maximize while robot is moving in real-time In the past, the robot had to stop (EM) or risk unbounded error (IL) Conventional Incremental Map Given a scan and odometry reading, determine the most likely pose. Use that pose to increment the map. Never go back to change it. s ˆ t = argmax P(s t o t, a t -1, s ˆ t -1 ) m t +1 = m t U { o t, s ˆ t } Conventional Incremental Map Incremental Map Problem This approach works in non-cyclic environments Pose errors necessarily grow Past poses cannot be revised Search algorithms cannot find solutions to close loops Posterior Incremental Mapping Basic premise: Use Markov localization to compute the full posterior over robot poses Probability distribution over poses based on sensor data: Bel(s t ) = P(s t d t, m t -1 ) Posterior Incremental Mapping Posterior is where the robot believes it is. Can be incrementally updated over time Bel(s t ) = hp(o t s t,m t -1 ) Ú P(s t a t -1, s t - 1)Bel(s t -1 )d st-1 Updated pose and maps: s t = argmax Bel(s t ) m t +1 = m t { o t,s t s t U } 9

10 Posterior Incremental Mapping Implementation Details Use the posterior belief to determine the most likely pose Uncertainty grows during a loop The robot has a larger window to search to close the loop Take samples of posterior beliefs Save computation and easier to generalize Use gradient descent on each sample to find globally maximum likelihood function. Backwards Correction Handling a Cycle When a loops closes successfully, we can go back and correct our pose estimates D st = s t - s ˆ t Distribute the error st among all poses in the loop Use gradient descent for all poses in the loop to maximize likelihood Multi-Robot Extensions Using posterior estimation extends naturally to environments with multiple robots Each robot need not know any other robot s initial pose BUT every robot localize itself within the map of an initial Team Leader robot Multi-Robot Extensions Use Monte Carlo Localization Initially any location is likely Posterior estimation localizes the robot in the Team Leader s map 10

11 Results - Cycle Mapping Groundrules: Every scan used for localization Scans appended to map every two meters Random odometric errors (30 or 1 meter) Error generates large error during the cycle but within acceptable range of true pose Posterior estimation finds the true pose and corrects prior beliefs Results - Mapping w/out Odometry Same as before but with no odometric data Traversing the cycles leads to very large error growth Once again, on cycle completion the errors are found and fixed Final map is virtually identical to map generated with odometric data Limitations Non-optimal Nested cycles Dynamic environments Changing the map backwards in time can be dangerous Pseudo-Real Time Brief Comparison Kalman Filtering Hybrid Methods Representation landmark locations point obstacles Sensor Noise Gaussian any Map Dimensionality limited unlimited Dynamic Env's limited no Scenario 1 - Infinite Corridor at Night Which algorithm is better for a robot mapping the infinite corridor late at night, when one janitor is walking around? Vote Kalman Filtering Hybrid Approaches Don't Know Scenario 1 - Infinite Corridor at Night Changing environment problem Kalman - good! (Itamar will explain) Infinite corridor has few features Can handle janitor (limited dynamics) Hybrid - bad! (Yuval will explain) Can't handle dynamic environments 11

12 Scenario 2 - Airport Parking Lot Which algorithm is better for a robot mapping an airport parking lot with hundreds of cars but no people? Vote Kalman Filtering Hybrid Approaches Don't Know Scenario 2 - Airport Parking Lot High dimensionality problem Kalman - bad! (Itamar will explain) Only handles limited map dimensionality Hybrid - good! (Yuval will explain) Nothing moving Handles unlimited map dimensionality Scenario 3 - Amusement Park Which algorithm is better for a robot mapping a busy amusement park during Christmas? Vote Kalman Filtering Hybrid Approaches Don't Know Scenario 3 - Amusement Park Both fail Kalman - bad! (Itamar will explain) Only does limited dynamics Hybrid - bad! (Yuval will explain) Can't handle such a dynamic environment Almost no algorithms learn meaningful maps in such a dynamic environment Recap Contributions The Mapping Problem Main Challenges Kalman Filtering Hybrid Methods Comparison Provided overview of robotic mapping Presented Kalman Filtering in depth Presented Hybrid Methods in depth 12

Localization, Mapping and Exploration with Multiple Robots. Dr. Daisy Tang

Localization, Mapping and Exploration with Multiple Robots. Dr. Daisy Tang Localization, Mapping and Exploration with Multiple Robots Dr. Daisy Tang Two Presentations A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping, by Thrun, Burgard

More information

Localization and Map Building

Localization and Map Building Localization and Map Building Noise and aliasing; odometric position estimation To localize or not to localize Belief representation Map representation Probabilistic map-based localization Other examples

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Sebastian Thrun Wolfram Burgard Dieter Fox The MIT Press Cambridge, Massachusetts London, England Preface xvii Acknowledgments xix I Basics 1 1 Introduction 3 1.1 Uncertainty in

More information

Robot Mapping. A Short Introduction to the Bayes Filter and Related Models. Gian Diego Tipaldi, Wolfram Burgard

Robot Mapping. A Short Introduction to the Bayes Filter and Related Models. Gian Diego Tipaldi, Wolfram Burgard Robot Mapping A Short Introduction to the Bayes Filter and Related Models Gian Diego Tipaldi, Wolfram Burgard 1 State Estimation Estimate the state of a system given observations and controls Goal: 2 Recursive

More information

Final project: 45% of the grade, 10% presentation, 35% write-up. Presentations: in lecture Dec 1 and schedule:

Final project: 45% of the grade, 10% presentation, 35% write-up. Presentations: in lecture Dec 1 and schedule: Announcements PS2: due Friday 23:59pm. Final project: 45% of the grade, 10% presentation, 35% write-up Presentations: in lecture Dec 1 and 3 --- schedule: CS 287: Advanced Robotics Fall 2009 Lecture 24:

More information

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models Introduction ti to Embedded dsystems EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping Gabe Hoffmann Ph.D. Candidate, Aero/Astro Engineering Stanford University Statistical Models

More information

Announcements. Recap Landmark based SLAM. Types of SLAM-Problems. Occupancy Grid Maps. Grid-based SLAM. Page 1. CS 287: Advanced Robotics Fall 2009

Announcements. Recap Landmark based SLAM. Types of SLAM-Problems. Occupancy Grid Maps. Grid-based SLAM. Page 1. CS 287: Advanced Robotics Fall 2009 Announcements PS2: due Friday 23:59pm. Final project: 45% of the grade, 10% presentation, 35% write-up Presentations: in lecture Dec 1 and 3 --- schedule: CS 287: Advanced Robotics Fall 2009 Lecture 24:

More information

Revising Stereo Vision Maps in Particle Filter Based SLAM using Localisation Confidence and Sample History

Revising Stereo Vision Maps in Particle Filter Based SLAM using Localisation Confidence and Sample History Revising Stereo Vision Maps in Particle Filter Based SLAM using Localisation Confidence and Sample History Simon Thompson and Satoshi Kagami Digital Human Research Center National Institute of Advanced

More information

Kaijen Hsiao. Part A: Topics of Fascination

Kaijen Hsiao. Part A: Topics of Fascination Kaijen Hsiao Part A: Topics of Fascination 1) I am primarily interested in SLAM. I plan to do my project on an application of SLAM, and thus I am interested not only in the method we learned about in class,

More information

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization. Wolfram Burgard

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization. Wolfram Burgard Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization Wolfram Burgard 1 Motivation Recall: Discrete filter Discretize the continuous state space High memory complexity

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics FastSLAM Sebastian Thrun (abridged and adapted by Rodrigo Ventura in Oct-2008) The SLAM Problem SLAM stands for simultaneous localization and mapping The task of building a map while

More information

Probabilistic Robotics. FastSLAM

Probabilistic Robotics. FastSLAM Probabilistic Robotics FastSLAM The SLAM Problem SLAM stands for simultaneous localization and mapping The task of building a map while estimating the pose of the robot relative to this map Why is SLAM

More information

PROGRAMA DE CURSO. Robotics, Sensing and Autonomous Systems. SCT Auxiliar. Personal

PROGRAMA DE CURSO. Robotics, Sensing and Autonomous Systems. SCT Auxiliar. Personal PROGRAMA DE CURSO Código Nombre EL7031 Robotics, Sensing and Autonomous Systems Nombre en Inglés Robotics, Sensing and Autonomous Systems es Horas de Horas Docencia Horas de Trabajo SCT Docentes Cátedra

More information

Spring Localization II. Roland Siegwart, Margarita Chli, Martin Rufli. ASL Autonomous Systems Lab. Autonomous Mobile Robots

Spring Localization II. Roland Siegwart, Margarita Chli, Martin Rufli. ASL Autonomous Systems Lab. Autonomous Mobile Robots Spring 2016 Localization II Localization I 25.04.2016 1 knowledge, data base mission commands Localization Map Building environment model local map position global map Cognition Path Planning path Perception

More information

Practical Course WS12/13 Introduction to Monte Carlo Localization

Practical Course WS12/13 Introduction to Monte Carlo Localization Practical Course WS12/13 Introduction to Monte Carlo Localization Cyrill Stachniss and Luciano Spinello 1 State Estimation Estimate the state of a system given observations and controls Goal: 2 Bayes Filter

More information

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz Humanoid Robotics Monte Carlo Localization Maren Bennewitz 1 Basis Probability Rules (1) If x and y are independent: Bayes rule: Often written as: The denominator is a normalizing constant that ensures

More information

Robot Localization based on Geo-referenced Images and G raphic Methods

Robot Localization based on Geo-referenced Images and G raphic Methods Robot Localization based on Geo-referenced Images and G raphic Methods Sid Ahmed Berrabah Mechanical Department, Royal Military School, Belgium, sidahmed.berrabah@rma.ac.be Janusz Bedkowski, Łukasz Lubasiński,

More information

Introduction to Mobile Robotics. SLAM: Simultaneous Localization and Mapping

Introduction to Mobile Robotics. SLAM: Simultaneous Localization and Mapping Introduction to Mobile Robotics SLAM: Simultaneous Localization and Mapping The SLAM Problem SLAM is the process by which a robot builds a map of the environment and, at the same time, uses this map to

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Probabilistic Motion and Sensor Models Some slides adopted from: Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras and Probabilistic Robotics Book SA-1 Sensors for Mobile

More information

Results for Outdoor-SLAM Using Sparse Extended Information Filters

Results for Outdoor-SLAM Using Sparse Extended Information Filters in Proceedings of ICRA-23 Results for Outdoor-SLAM Using Sparse Extended Information Filters Yufeng Liu and Sebastian Thrun School of Computer Science Carnegie Mellon University yufeng@cs.cmu.edu, thrun@cs.cmu.edu

More information

SLAM: Robotic Simultaneous Location and Mapping

SLAM: Robotic Simultaneous Location and Mapping SLAM: Robotic Simultaneous Location and Mapping William Regli Department of Computer Science (and Departments of ECE and MEM) Drexel University Acknowledgments to Sebastian Thrun & others SLAM Lecture

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Discrete Filters and Particle Filters Models Some slides adopted from: Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras and Probabilistic Robotics Book SA-1 Probabilistic

More information

Introduction to Mobile Robotics SLAM Landmark-based FastSLAM

Introduction to Mobile Robotics SLAM Landmark-based FastSLAM Introduction to Mobile Robotics SLAM Landmark-based FastSLAM Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello Partial slide courtesy of Mike Montemerlo 1 The SLAM Problem

More information

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Arun Das 05/09/2017 Arun Das Waterloo Autonomous Vehicles Lab Introduction What s in a name? Arun Das Waterloo Autonomous

More information

Introduction to SLAM Part II. Paul Robertson

Introduction to SLAM Part II. Paul Robertson Introduction to SLAM Part II Paul Robertson Localization Review Tracking, Global Localization, Kidnapping Problem. Kalman Filter Quadratic Linear (unless EKF) SLAM Loop closing Scaling: Partition space

More information

Robot Mapping. Grid Maps. Gian Diego Tipaldi, Wolfram Burgard

Robot Mapping. Grid Maps. Gian Diego Tipaldi, Wolfram Burgard Robot Mapping Grid Maps Gian Diego Tipaldi, Wolfram Burgard 1 Features vs. Volumetric Maps Courtesy: D. Hähnel Courtesy: E. Nebot 2 Features So far, we only used feature maps Natural choice for Kalman

More information

Results for Outdoor-SLAM Using Sparse Extended Information Filters

Results for Outdoor-SLAM Using Sparse Extended Information Filters Results for Outdoor-SLAM Using Sparse Extended Information Filters Yufeng Liu and Sebastian Thrun School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 yufeng@cs.cmu.edu, thrun@cs.cmu.edu

More information

Spring Localization II. Roland Siegwart, Margarita Chli, Juan Nieto, Nick Lawrance. ASL Autonomous Systems Lab. Autonomous Mobile Robots

Spring Localization II. Roland Siegwart, Margarita Chli, Juan Nieto, Nick Lawrance. ASL Autonomous Systems Lab. Autonomous Mobile Robots Spring 2018 Localization II Localization I 16.04.2018 1 knowledge, data base mission commands Localization Map Building environment model local map position global map Cognition Path Planning path Perception

More information

Monte Carlo Localization for Mobile Robots

Monte Carlo Localization for Mobile Robots Monte Carlo Localization for Mobile Robots Frank Dellaert 1, Dieter Fox 2, Wolfram Burgard 3, Sebastian Thrun 4 1 Georgia Institute of Technology 2 University of Washington 3 University of Bonn 4 Carnegie

More information

AUTONOMOUS SYSTEMS. PROBABILISTIC LOCALIZATION Monte Carlo Localization

AUTONOMOUS SYSTEMS. PROBABILISTIC LOCALIZATION Monte Carlo Localization AUTONOMOUS SYSTEMS PROBABILISTIC LOCALIZATION Monte Carlo Localization Maria Isabel Ribeiro Pedro Lima With revisions introduced by Rodrigo Ventura Instituto Superior Técnico/Instituto de Sistemas e Robótica

More information

L17. OCCUPANCY MAPS. NA568 Mobile Robotics: Methods & Algorithms

L17. OCCUPANCY MAPS. NA568 Mobile Robotics: Methods & Algorithms L17. OCCUPANCY MAPS NA568 Mobile Robotics: Methods & Algorithms Today s Topic Why Occupancy Maps? Bayes Binary Filters Log-odds Occupancy Maps Inverse sensor model Learning inverse sensor model ML map

More information

Gaussian Processes, SLAM, Fast SLAM and Rao-Blackwellization

Gaussian Processes, SLAM, Fast SLAM and Rao-Blackwellization Statistical Techniques in Robotics (16-831, F11) Lecture#20 (November 21, 2011) Gaussian Processes, SLAM, Fast SLAM and Rao-Blackwellization Lecturer: Drew Bagnell Scribes: Junier Oliva 1 1 Comments on

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Bayes Filter Implementations Discrete filters, Particle filters Piecewise Constant Representation of belief 2 Discrete Bayes Filter Algorithm 1. Algorithm Discrete_Bayes_filter(

More information

Advanced Techniques for Mobile Robotics Graph-based SLAM using Least Squares. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz

Advanced Techniques for Mobile Robotics Graph-based SLAM using Least Squares. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Advanced Techniques for Mobile Robotics Graph-based SLAM using Least Squares Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz SLAM Constraints connect the poses of the robot while it is moving

More information

Particle Filter in Brief. Robot Mapping. FastSLAM Feature-based SLAM with Particle Filters. Particle Representation. Particle Filter Algorithm

Particle Filter in Brief. Robot Mapping. FastSLAM Feature-based SLAM with Particle Filters. Particle Representation. Particle Filter Algorithm Robot Mapping FastSLAM Feature-based SLAM with Particle Filters Cyrill Stachniss Particle Filter in Brief! Non-parametric, recursive Bayes filter! Posterior is represented by a set of weighted samples!

More information

Environment Identification by Comparing Maps of Landmarks

Environment Identification by Comparing Maps of Landmarks Environment Identification by Comparing Maps of Landmarks Jens-Steffen Gutmann Masaki Fukuchi Kohtaro Sabe Digital Creatures Laboratory Sony Corporation -- Kitashinagawa, Shinagawa-ku Tokyo, 4- Japan Email:

More information

7630 Autonomous Robotics Probabilities for Robotics

7630 Autonomous Robotics Probabilities for Robotics 7630 Autonomous Robotics Probabilities for Robotics Basics of probability theory The Bayes-Filter Introduction to localization problems Monte-Carlo-Localization Based on material from R. Triebel, R. Kästner

More information

(W: 12:05-1:50, 50-N202)

(W: 12:05-1:50, 50-N202) 2016 School of Information Technology and Electrical Engineering at the University of Queensland Schedule of Events Week Date Lecture (W: 12:05-1:50, 50-N202) 1 27-Jul Introduction 2 Representing Position

More information

Robotics. Lecture 7: Simultaneous Localisation and Mapping (SLAM)

Robotics. Lecture 7: Simultaneous Localisation and Mapping (SLAM) Robotics Lecture 7: Simultaneous Localisation and Mapping (SLAM) See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College

More information

CSE-571 Robotics. Sensors for Mobile Robots. Beam-based Sensor Model. Proximity Sensors. Probabilistic Sensor Models. Beam-based Scan-based Landmarks

CSE-571 Robotics. Sensors for Mobile Robots. Beam-based Sensor Model. Proximity Sensors. Probabilistic Sensor Models. Beam-based Scan-based Landmarks Sensors for Mobile Robots CSE-57 Robotics Probabilistic Sensor Models Beam-based Scan-based Landmarks Contact sensors: Bumpers Internal sensors Accelerometers (spring-mounted masses) Gyroscopes (spinning

More information

What is the SLAM problem?

What is the SLAM problem? SLAM Tutorial Slides by Marios Xanthidis, C. Stachniss, P. Allen, C. Fermuller Paul Furgale, Margarita Chli, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart What is the SLAM problem? The

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: EKF-based SLAM Dr. Kostas Alexis (CSE) These slides have partially relied on the course of C. Stachniss, Robot Mapping - WS 2013/14 Autonomous Robot Challenges Where

More information

This chapter explains two techniques which are frequently used throughout

This chapter explains two techniques which are frequently used throughout Chapter 2 Basic Techniques This chapter explains two techniques which are frequently used throughout this thesis. First, we will introduce the concept of particle filters. A particle filter is a recursive

More information

Uncertainties: Representation and Propagation & Line Extraction from Range data

Uncertainties: Representation and Propagation & Line Extraction from Range data 41 Uncertainties: Representation and Propagation & Line Extraction from Range data 42 Uncertainty Representation Section 4.1.3 of the book Sensing in the real world is always uncertain How can uncertainty

More information

IROS 05 Tutorial. MCL: Global Localization (Sonar) Monte-Carlo Localization. Particle Filters. Rao-Blackwellized Particle Filters and Loop Closing

IROS 05 Tutorial. MCL: Global Localization (Sonar) Monte-Carlo Localization. Particle Filters. Rao-Blackwellized Particle Filters and Loop Closing IROS 05 Tutorial SLAM - Getting it Working in Real World Applications Rao-Blackwellized Particle Filters and Loop Closing Cyrill Stachniss and Wolfram Burgard University of Freiburg, Dept. of Computer

More information

Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM) Simultaneous Localization and Mapping (SLAM) RSS Lecture 16 April 8, 2013 Prof. Teller Text: Siegwart and Nourbakhsh S. 5.8 SLAM Problem Statement Inputs: No external coordinate reference Time series of

More information

UNIVERSITÀ DEGLI STUDI DI GENOVA MASTER S THESIS

UNIVERSITÀ DEGLI STUDI DI GENOVA MASTER S THESIS UNIVERSITÀ DEGLI STUDI DI GENOVA MASTER S THESIS Integrated Cooperative SLAM with Visual Odometry within teams of autonomous planetary exploration rovers Author: Ekaterina Peshkova Supervisors: Giuseppe

More information

Simultaneous Localization

Simultaneous Localization Simultaneous Localization and Mapping (SLAM) RSS Technical Lecture 16 April 9, 2012 Prof. Teller Text: Siegwart and Nourbakhsh S. 5.8 Navigation Overview Where am I? Where am I going? Localization Assumed

More information

ICRA 2016 Tutorial on SLAM. Graph-Based SLAM and Sparsity. Cyrill Stachniss

ICRA 2016 Tutorial on SLAM. Graph-Based SLAM and Sparsity. Cyrill Stachniss ICRA 2016 Tutorial on SLAM Graph-Based SLAM and Sparsity Cyrill Stachniss 1 Graph-Based SLAM?? 2 Graph-Based SLAM?? SLAM = simultaneous localization and mapping 3 Graph-Based SLAM?? SLAM = simultaneous

More information

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss Robot Mapping Least Squares Approach to SLAM Cyrill Stachniss 1 Three Main SLAM Paradigms Kalman filter Particle filter Graphbased least squares approach to SLAM 2 Least Squares in General Approach for

More information

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General Robot Mapping Three Main SLAM Paradigms Least Squares Approach to SLAM Kalman filter Particle filter Graphbased Cyrill Stachniss least squares approach to SLAM 1 2 Least Squares in General! Approach for

More information

L10. PARTICLE FILTERING CONTINUED. NA568 Mobile Robotics: Methods & Algorithms

L10. PARTICLE FILTERING CONTINUED. NA568 Mobile Robotics: Methods & Algorithms L10. PARTICLE FILTERING CONTINUED NA568 Mobile Robotics: Methods & Algorithms Gaussian Filters The Kalman filter and its variants can only model (unimodal) Gaussian distributions Courtesy: K. Arras Motivation

More information

COS Lecture 13 Autonomous Robot Navigation

COS Lecture 13 Autonomous Robot Navigation COS 495 - Lecture 13 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 2011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

EE565:Mobile Robotics Lecture 3

EE565:Mobile Robotics Lecture 3 EE565:Mobile Robotics Lecture 3 Welcome Dr. Ahmad Kamal Nasir Today s Objectives Motion Models Velocity based model (Dead-Reckoning) Odometry based model (Wheel Encoders) Sensor Models Beam model of range

More information

CVPR 2014 Visual SLAM Tutorial Efficient Inference

CVPR 2014 Visual SLAM Tutorial Efficient Inference CVPR 2014 Visual SLAM Tutorial Efficient Inference kaess@cmu.edu The Robotics Institute Carnegie Mellon University The Mapping Problem (t=0) Robot Landmark Measurement Onboard sensors: Wheel odometry Inertial

More information

Where s the Boss? : Monte Carlo Localization for an Autonomous Ground Vehicle using an Aerial Lidar Map

Where s the Boss? : Monte Carlo Localization for an Autonomous Ground Vehicle using an Aerial Lidar Map Where s the Boss? : Monte Carlo Localization for an Autonomous Ground Vehicle using an Aerial Lidar Map Sebastian Scherer, Young-Woo Seo, and Prasanna Velagapudi October 16, 2007 Robotics Institute Carnegie

More information

Particle Filters. CSE-571 Probabilistic Robotics. Dependencies. Particle Filter Algorithm. Fast-SLAM Mapping

Particle Filters. CSE-571 Probabilistic Robotics. Dependencies. Particle Filter Algorithm. Fast-SLAM Mapping CSE-571 Probabilistic Robotics Fast-SLAM Mapping Particle Filters Represent belief by random samples Estimation of non-gaussian, nonlinear processes Sampling Importance Resampling (SIR) principle Draw

More information

Monte Carlo Localization using Dynamically Expanding Occupancy Grids. Karan M. Gupta

Monte Carlo Localization using Dynamically Expanding Occupancy Grids. Karan M. Gupta 1 Monte Carlo Localization using Dynamically Expanding Occupancy Grids Karan M. Gupta Agenda Introduction Occupancy Grids Sonar Sensor Model Dynamically Expanding Occupancy Grids Monte Carlo Localization

More information

Implementation of Odometry with EKF for Localization of Hector SLAM Method

Implementation of Odometry with EKF for Localization of Hector SLAM Method Implementation of Odometry with EKF for Localization of Hector SLAM Method Kao-Shing Hwang 1 Wei-Cheng Jiang 2 Zuo-Syuan Wang 3 Department of Electrical Engineering, National Sun Yat-sen University, Kaohsiung,

More information

Simultaneous Localization and Mapping

Simultaneous Localization and Mapping Sebastian Lembcke SLAM 1 / 29 MIN Faculty Department of Informatics Simultaneous Localization and Mapping Visual Loop-Closure Detection University of Hamburg Faculty of Mathematics, Informatics and Natural

More information

Basics of Localization, Mapping and SLAM. Jari Saarinen Aalto University Department of Automation and systems Technology

Basics of Localization, Mapping and SLAM. Jari Saarinen Aalto University Department of Automation and systems Technology Basics of Localization, Mapping and SLAM Jari Saarinen Aalto University Department of Automation and systems Technology Content Introduction to Problem (s) Localization A few basic equations Dead Reckoning

More information

Least Squares and SLAM Pose-SLAM

Least Squares and SLAM Pose-SLAM Least Squares and SLAM Pose-SLAM Giorgio Grisetti Part of the material of this course is taken from the Robotics 2 lectures given by G.Grisetti, W.Burgard, C.Stachniss, K.Arras, D. Tipaldi and M.Bennewitz

More information

ME 456: Probabilistic Robotics

ME 456: Probabilistic Robotics ME 456: Probabilistic Robotics Week 5, Lecture 2 SLAM Reading: Chapters 10,13 HW 2 due Oct 30, 11:59 PM Introduction In state esemaeon and Bayes filter lectures, we showed how to find robot s pose based

More information

Robotics. Chapter 25. Chapter 25 1

Robotics. Chapter 25. Chapter 25 1 Robotics Chapter 25 Chapter 25 1 Outline Robots, Effectors, and Sensors Localization and Mapping Motion Planning Chapter 25 2 Mobile Robots Chapter 25 3 Manipulators P R R R R R Configuration of robot

More information

Integrated systems for Mapping and Localization

Integrated systems for Mapping and Localization Integrated systems for Mapping and Localization Patric Jensfelt, Henrik I Christensen & Guido Zunino Centre for Autonomous Systems, Royal Institute of Technology SE 1 44 Stockholm, Sweden fpatric,hic,guidozg@nada.kth.se

More information

A New Omnidirectional Vision Sensor for Monte-Carlo Localization

A New Omnidirectional Vision Sensor for Monte-Carlo Localization A New Omnidirectional Vision Sensor for Monte-Carlo Localization E. Menegatti 1, A. Pretto 1, and E. Pagello 12 1 Intelligent Autonomous Systems Laboratory Department of Information Engineering The University

More information

Localization and Map Building

Localization and Map Building Localization and Map Building Noise and aliasing; odometric position estimation To localize or not to localize Belief representation Map representation Probabilistic map-based localization Other examples

More information

SLAM Part 2 and Intro to Kernel Machines

SLAM Part 2 and Intro to Kernel Machines Statistical Techniques in Robotics (16-831, F11) Lecture #21 (Nov 28, 2011) SLAM Part 2 and Intro to Kernel Machines Lecturer: Drew Bagnell Scribe: Robbie Paolini 1 1 Fast SLAM Fast SLAM is an algorithm

More information

Simultaneous Localization and Mapping! SLAM

Simultaneous Localization and Mapping! SLAM Overview Simultaneous Localization and Mapping! SLAM What is SLAM? Qualifying Oral Examination Why do SLAM? Who, When, Where?!! A very brief literature overview Andrew Hogue hogue@cs.yorku.ca How has the

More information

TORO - Efficient Constraint Network Optimization for SLAM

TORO - Efficient Constraint Network Optimization for SLAM TORO - Efficient Constraint Network Optimization for SLAM Cyrill Stachniss Joint work with Giorgio Grisetti and Wolfram Burgard Special thanks to and partial slide courtesy of: Diego Tipaldi, Edwin Olson,

More information

Mobile Robot Mapping and Localization in Non-Static Environments

Mobile Robot Mapping and Localization in Non-Static Environments Mobile Robot Mapping and Localization in Non-Static Environments Cyrill Stachniss Wolfram Burgard University of Freiburg, Department of Computer Science, D-790 Freiburg, Germany {stachnis burgard @informatik.uni-freiburg.de}

More information

AUTONOMOUS SYSTEMS. LOCALIZATION, MAPPING & SIMULTANEOUS LOCALIZATION AND MAPPING Part V Mapping & Occupancy Grid Mapping

AUTONOMOUS SYSTEMS. LOCALIZATION, MAPPING & SIMULTANEOUS LOCALIZATION AND MAPPING Part V Mapping & Occupancy Grid Mapping AUTONOMOUS SYSTEMS LOCALIZATION, MAPPING & SIMULTANEOUS LOCALIZATION AND MAPPING Part V Mapping & Occupancy Grid Mapping Maria Isabel Ribeiro Pedro Lima with revisions introduced by Rodrigo Ventura Instituto

More information

for real time map scan assembly would be an effective compromise of accuracy and quickness. By fitting only some points in each scan with selected poi

for real time map scan assembly would be an effective compromise of accuracy and quickness. By fitting only some points in each scan with selected poi Quantitative and qualitative comparison of three laser-range mapping algorithms using two types of laser scanner data Alexander Scott Lynne E. Parker Claude Touzet DePauw University Oak Ridge National

More information

L12. EKF-SLAM: PART II. NA568 Mobile Robotics: Methods & Algorithms

L12. EKF-SLAM: PART II. NA568 Mobile Robotics: Methods & Algorithms L12. EKF-SLAM: PART II NA568 Mobile Robotics: Methods & Algorithms Today s Lecture Feature-based EKF-SLAM Review Data Association Configuration Space Incremental ML (i.e., Nearest Neighbor) Joint Compatibility

More information

Robotics. Haslum COMP3620/6320

Robotics. Haslum COMP3620/6320 Robotics P@trik Haslum COMP3620/6320 Introduction Robotics Industrial Automation * Repetitive manipulation tasks (assembly, etc). * Well-known, controlled environment. * High-power, high-precision, very

More information

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu

More information

CAMERA POSE ESTIMATION OF RGB-D SENSORS USING PARTICLE FILTERING

CAMERA POSE ESTIMATION OF RGB-D SENSORS USING PARTICLE FILTERING CAMERA POSE ESTIMATION OF RGB-D SENSORS USING PARTICLE FILTERING By Michael Lowney Senior Thesis in Electrical Engineering University of Illinois at Urbana-Champaign Advisor: Professor Minh Do May 2015

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Introduction to Mobile Robotics Gaussian Processes Wolfram Burgard Cyrill Stachniss Giorgio Grisetti Maren Bennewitz Christian Plagemann SS08, University of Freiburg, Department for Computer Science Announcement

More information

Robot Mapping. TORO Gradient Descent for SLAM. Cyrill Stachniss

Robot Mapping. TORO Gradient Descent for SLAM. Cyrill Stachniss Robot Mapping TORO Gradient Descent for SLAM Cyrill Stachniss 1 Stochastic Gradient Descent Minimize the error individually for each constraint (decomposition of the problem into sub-problems) Solve one

More information

Mini Survey Paper (Robotic Mapping) Ryan Hamor CPRE 583 September 2011

Mini Survey Paper (Robotic Mapping) Ryan Hamor CPRE 583 September 2011 Mini Survey Paper (Robotic Mapping) Ryan Hamor CPRE 583 September 2011 Introduction The goal of this survey paper is to examine the field of robotic mapping and the use of FPGAs in various implementations.

More information

Zürich. Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza. ETH Master Course: L Autonomous Mobile Robots Summary

Zürich. Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza. ETH Master Course: L Autonomous Mobile Robots Summary Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza ETH Master Course: 151-0854-00L Autonomous Mobile Robots Summary 2 Lecture Overview Mobile Robot Control Scheme knowledge, data base mission

More information

Perception. Autonomous Mobile Robots. Sensors Vision Uncertainties, Line extraction from laser scans. Autonomous Systems Lab. Zürich.

Perception. Autonomous Mobile Robots. Sensors Vision Uncertainties, Line extraction from laser scans. Autonomous Systems Lab. Zürich. Autonomous Mobile Robots Localization "Position" Global Map Cognition Environment Model Local Map Path Perception Real World Environment Motion Control Perception Sensors Vision Uncertainties, Line extraction

More information

A MOBILE ROBOT MAPPING SYSTEM WITH AN INFORMATION-BASED EXPLORATION STRATEGY

A MOBILE ROBOT MAPPING SYSTEM WITH AN INFORMATION-BASED EXPLORATION STRATEGY A MOBILE ROBOT MAPPING SYSTEM WITH AN INFORMATION-BASED EXPLORATION STRATEGY Francesco Amigoni, Vincenzo Caglioti, Umberto Galtarossa Dipartimento di Elettronica e Informazione, Politecnico di Milano Piazza

More information

Matching Evaluation of 2D Laser Scan Points using Observed Probability in Unstable Measurement Environment

Matching Evaluation of 2D Laser Scan Points using Observed Probability in Unstable Measurement Environment Matching Evaluation of D Laser Scan Points using Observed Probability in Unstable Measurement Environment Taichi Yamada, and Akihisa Ohya Abstract In the real environment such as urban areas sidewalk,

More information

Scan Matching. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Scan Matching. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Scan Matching Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Scan Matching Overview Problem statement: Given a scan and a map, or a scan and a scan,

More information

Artificial Intelligence for Robotics: A Brief Summary

Artificial Intelligence for Robotics: A Brief Summary Artificial Intelligence for Robotics: A Brief Summary This document provides a summary of the course, Artificial Intelligence for Robotics, and highlights main concepts. Lesson 1: Localization (using Histogram

More information

NAVIGATION SYSTEM OF AN OUTDOOR SERVICE ROBOT WITH HYBRID LOCOMOTION SYSTEM

NAVIGATION SYSTEM OF AN OUTDOOR SERVICE ROBOT WITH HYBRID LOCOMOTION SYSTEM NAVIGATION SYSTEM OF AN OUTDOOR SERVICE ROBOT WITH HYBRID LOCOMOTION SYSTEM Jorma Selkäinaho, Aarne Halme and Janne Paanajärvi Automation Technology Laboratory, Helsinki University of Technology, Espoo,

More information

EKF Localization and EKF SLAM incorporating prior information

EKF Localization and EKF SLAM incorporating prior information EKF Localization and EKF SLAM incorporating prior information Final Report ME- Samuel Castaneda ID: 113155 1. Abstract In the context of mobile robotics, before any motion planning or navigation algorithm

More information

Geometric Rays for Bearing-Only SLAM

Geometric Rays for Bearing-Only SLAM Geometric Rays for Bearing-Only SLAM Joan Solà and Thomas Lemaire LAAS-CNRS Toulouse, France This is about 1. Bearing-Only SLAM (or Single-Camera SLAM) 2. Landmark Initialization 3. Efficiency: Gaussian

More information

An Iterative Approach for Building Feature Maps in Cyclic Environments

An Iterative Approach for Building Feature Maps in Cyclic Environments An Iterative Approach for Building Feature Maps in Cyclic Environments Haris Baltzakis and Panos Trahanias Institute of Computer Science, Foundation for Research and Technology Hellas (FORTH), P.O.Box

More information

EE631 Cooperating Autonomous Mobile Robots

EE631 Cooperating Autonomous Mobile Robots EE631 Cooperating Autonomous Mobile Robots Lecture: Multi-Robot Motion Planning Prof. Yi Guo ECE Department Plan Introduction Premises and Problem Statement A Multi-Robot Motion Planning Algorithm Implementation

More information

RoboCup Rescue Summer School Navigation Tutorial

RoboCup Rescue Summer School Navigation Tutorial RoboCup Rescue Summer School 2012 Institute for Software Technology, Graz University of Technology, Austria 1 Literature Choset, Lynch, Hutchinson, Kantor, Burgard, Kavraki and Thrun. Principle of Robot

More information

A Novel Map Merging Methodology for Multi-Robot Systems

A Novel Map Merging Methodology for Multi-Robot Systems , October 20-22, 2010, San Francisco, USA A Novel Map Merging Methodology for Multi-Robot Systems Sebahattin Topal Đsmet Erkmen Aydan M. Erkmen Abstract In this paper, we consider the problem of occupancy

More information

Today MAPS AND MAPPING. Features. process of creating maps. More likely features are things that can be extracted from images:

Today MAPS AND MAPPING. Features. process of creating maps. More likely features are things that can be extracted from images: MAPS AND MAPPING Features In the first class we said that navigation begins with what the robot can see. There are several forms this might take, but it will depend on: What sensors the robot has What

More information

Visually Augmented POMDP for Indoor Robot Navigation

Visually Augmented POMDP for Indoor Robot Navigation Visually Augmented POMDP for Indoor obot Navigation LÓPEZ M.E., BAEA., BEGASA L.M., ESCUDEO M.S. Electronics Department University of Alcalá Campus Universitario. 28871 Alcalá de Henares (Madrid) SPAIN

More information

Markov Localization for Mobile Robots in Dynaic Environments

Markov Localization for Mobile Robots in Dynaic Environments Markov Localization for Mobile Robots in Dynaic Environments http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume11/fox99a-html/jair-localize.html Next: Introduction Journal of Artificial Intelligence

More information

Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features

Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features Stephen Se, David Lowe, Jim Little Department of Computer Science University of British Columbia Presented by Adam Bickett

More information

Vehicle Localization. Hannah Rae Kerner 21 April 2015

Vehicle Localization. Hannah Rae Kerner 21 April 2015 Vehicle Localization Hannah Rae Kerner 21 April 2015 Spotted in Mtn View: Google Car Why precision localization? in order for a robot to follow a road, it needs to know where the road is to stay in a particular

More information

Introduction to Mobile Robotics SLAM Grid-based FastSLAM. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello

Introduction to Mobile Robotics SLAM Grid-based FastSLAM. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello Introduction to Mobile Robotics SLAM Grid-based FastSLAM Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello 1 The SLAM Problem SLAM stands for simultaneous localization

More information

Classification: Linear Discriminant Functions

Classification: Linear Discriminant Functions Classification: Linear Discriminant Functions CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Discriminant functions Linear Discriminant functions

More information