Forward Sampling. Forward Sampling. Forward Sampling. Approximate Inference 1

Size: px
Start display at page:

Download "Forward Sampling. Forward Sampling. Forward Sampling. Approximate Inference 1"

Transcription

1 Approximate Inference This section on approximate inference relies on samples / particles Full particles: complete assignment to all network variables eg. ( = x, = x,..., N = x N ) Topological sort or order: An ordering of the nodes in the AG where comes before Y in the ordering if there is a directed path from to Y in the graph. A topological order is equivalent to a partial order on the nodes of the graph There may be several topological orderings A C B Examples of Topological orders: A,B,C, B,A,C, Student Example P() low 0.6 high 0.4 I G P(G,I) low low C 0.3 low low B 0.4 low low A 0.3 low high C 0.0 low high B 0.08 low high A 0.9 high low C 0.7 high low B 0.5 high low A 0.05 high high C 0. high high B 0.3 ifficulty Grade Letter Intelligence SAT I P(I) low 0.7 high 0.3 I S P(S I) low low 0.95 low high 0.05 high low 0. high high 0.8 G L P(L G) C weak 0.99 C strong 0.0 B weak 0.4 B strong 0.6 A weak 0. A strong high high A 0.5 4

2 ifficulty Grade Letter Intelligence SAT Topological ordering:, I, G, S, L. Sample from P() (Say you get =high). Sample I from P(I) (Say you get I=low) 3. Sample G from P(G I=low,=high) (Say you get G=C) 4. Sample S from P(S I=low) (Say you get S=low) 5. Sample L from P(L G=C) (Say you get L=weak) Suppose you want to calculate P( = x, = x,, n = x n ) using forward sampling on a Bayesian network. The algorithm:. o a topological sort of the nodes in the Bayesian network.. For j = to NU_SAPLES For each node i in the ordering (starting from the top of the Bayesian network down) Sample the value xˆi from the distribution P( i Parents( i )) Add { xˆ ˆ ˆ, x,..., xn} to your collection of samples 3. Let P( x, x,..., n xn ) # of samples with x, x,..., NU _ SAPLES You now have a sample (=high, I=low, G=C, S=low, L=weak) 5 6 n x n How do you sample from P( i Parents( i ))? Note: P( i Parents( i )) is a multinomial distribution P(x i,..., x ik,..., k )? How do you sample from a multinomial distribution P(x i,..., x ik,..., k )? Generate a sample s uniformly from [0,] Partition interval into k subintervals: [0, ), [, + ),... ore generally, the ith interval is i i j, j j j If s is in the ith interval, the sample value is x i. Use binary search to find the interval for s in time O(log k) 7 8

3 Suppose your list of samples looks like the following table: I G S L low low B low weak low high A high strong low high A high weak high high A high strong high low C low weak P(I=high) = 3/5 = 0.6 Note that this value becomes a lot more accurate as the number of samples heads to infinity. 9 From a set of particles = {[],..., []}, we can estimate the expectation of any function f as: Eˆ ( f ) m To estimate P( Pˆ ( I{ y[ y} m f ( [ ) This is the values of the variables in Y in the particle [ 0 efine = total # of particles generated n = p = max i Pa i d = max i Val( i ) Overall cost of sampling is O( n p log(d)) To get the CP entry for given Pa, it costs O(p) Sampling process for P( Pa ) costs O(log(d)) How accurate is this estimate? Using the Hoeffding bound: ˆ P ( P ( [ P(, P( ]) e How many samples are required to achieve an estimate whose error is bounded by, with probability at least (-)? Setting e ln( / ) we get 3

4 How accurate is this estimate? Using the Chernoff bound: ˆ P( /3 P ( P ( P( ( )) e How many samples are required to achieve an estimate whose error is bounded by, with probability at least (-)? ln( / ) 3 P( Note: This requires us to know P( Rejection Sampling 3 4 Rejection Sampling What if we want to estimate P(y E=e)? Rejection sampling: do forward sampling but throw out samples where Ee Example: P(I=high L=weak) = /3 I G S L low low B low weak low high A high strong low high A high weak high high A high strong high low C low weak Rejection Sampling What if the evidence E=e is very very rare? For example, if P(e) = 0.00, then for 0,000 samples, we get 0 unrejected samples To obtain at least * unrejected samples, we need to generate on average = */P(e) samples If evidence is rare, we end up generating a lot of samples which wastes time 5 6 4

5 Rejection Sampling Bad news: Rare evidence is the norm! As # of evidence variables k = E grows, the probability of the evidence decreases exponentially with k Likelihood Weighting Need something better than rejection sampling! 7 8 Likelihood Weighting Likelihood Weighting Intuition: Weight samples according to probability of the evidence Intelligence SAT I P(I) low 0.7 high 0.3 I S P(S I) low low 0.95 low high 0.05 high low 0. high high 0.8 rawing I = high and S = high should be 80% of a sample rawing I = low and S = high should be 5% of a sample 9 Weighted particles: [ ], w[],..., [ ], w[ ] Estimate: Pˆ ( y e) m w[ I{ y[ m w[ y} 0 5

6 Likelihood Weighting Procedure LW-Sample(, // Bayesian network over Z=z // Event in the network ). Let,, n be a topological ordering of. w 3. for i =,, n 4. u i x<pa i > // Assignment to Pa i in x,, x i- 5. if i Zthen 6. Sample x i from P( i u i ) 7. else 8. x i z< i > // Assignment to i in z 9. w w P(x i u i ) // ultiply weight by probability of desired value 0. return (x,, x n ), w 6

Approximate Inference 1. Forward Sampling

Approximate Inference 1. Forward Sampling Approximate Inference This section on approximate inference relies on samples / particles Full particles: complete assignment to all network variables eg. (X = x, X = x,..., X N = x N ) Topological sort

More information

Bayesian Networks. A Bayesian network is a directed acyclic graph that represents causal relationships between random variables. Earthquake.

Bayesian Networks. A Bayesian network is a directed acyclic graph that represents causal relationships between random variables. Earthquake. Bayes Nets Independence With joint probability distributions we can compute many useful things, but working with joint PD's is often intractable. The naïve Bayes' approach represents one (boneheaded?)

More information

Bayesian Classification Using Probabilistic Graphical Models

Bayesian Classification Using Probabilistic Graphical Models San Jose State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research Spring 2014 Bayesian Classification Using Probabilistic Graphical Models Mehal Patel San Jose State University

More information

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Exact Inference

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Exact Inference STAT 598L Probabilistic Graphical Models Instructor: Sergey Kirshner Exact Inference What To Do With Bayesian/Markov Network? Compact representation of a complex model, but Goal: efficient extraction of

More information

Warm-up as you walk in

Warm-up as you walk in arm-up as you walk in Given these N=10 observations of the world: hat is the approximate value for P c a, +b? A. 1/10 B. 5/10. 1/4 D. 1/5 E. I m not sure a, b, +c +a, b, +c a, b, +c a, +b, +c +a, b, +c

More information

Computational Intelligence

Computational Intelligence Computational Intelligence A Logical Approach Problems for Chapter 10 Here are some problems to help you understand the material in Computational Intelligence: A Logical Approach. They are designed to

More information

Bayes Net Learning. EECS 474 Fall 2016

Bayes Net Learning. EECS 474 Fall 2016 Bayes Net Learning EECS 474 Fall 2016 Homework Remaining Homework #3 assigned Homework #4 will be about semi-supervised learning and expectation-maximization Homeworks #3-#4: the how of Graphical Models

More information

Bayesian Networks Inference (continued) Learning

Bayesian Networks Inference (continued) Learning Learning BN tutorial: ftp://ftp.research.microsoft.com/pub/tr/tr-95-06.pdf TAN paper: http://www.cs.huji.ac.il/~nir/abstracts/frgg1.html Bayesian Networks Inference (continued) Learning Machine Learning

More information

Local Probabilistic Models: Context-Specific CPDs. Sargur Srihari

Local Probabilistic Models: Context-Specific CPDs. Sargur Srihari Local Probabilistic Models: Context-Specific CPDs Sargur srihari@cedar.buffalo.edu 1 Context-Specific CPDs Topics 1. Regularity in parameters for different values of parents 2. Tree CPDs 3. Rule CPDs 4.

More information

ARC 088/ABC 083. A: Libra. DEGwer 2017/12/23. #include <s t d i o. h> i n t main ( )

ARC 088/ABC 083. A: Libra. DEGwer 2017/12/23. #include <s t d i o. h> i n t main ( ) ARC 088/ABC 083 DEGwer 2017/12/23 A: Libra A, B, C, D A + B C + D #include i n t main ( ) i n t a, b, c, d ; s c a n f ( %d%d%d%d, &a, &b, &c, &d ) ; i f ( a + b > c + d ) p r i n t f (

More information

STAT 598L Learning Bayesian Network Structure

STAT 598L Learning Bayesian Network Structure STAT 598L Learning Bayesian Network Structure Sergey Kirshner Department of Statistics Purdue University skirshne@purdue.edu November 2, 2009 Acknowledgements: some of the slides were based on Luo Si s

More information

Tools for Scalable Data Mining

Tools for Scalable Data Mining Tools for Scalable Data Mining XANDA SCHOFIELD CS 6410 11/13/2014 1. Astrolabe Large, eventuallyconsistent distributed system ROBERT VAN RENESSE, KEN BIRMAN, WERNER VOGELS [Source: Wikipedia] The Problem

More information

Approximate Bayesian Computation. Alireza Shafaei - April 2016

Approximate Bayesian Computation. Alireza Shafaei - April 2016 Approximate Bayesian Computation Alireza Shafaei - April 2016 The Problem Given a dataset, we are interested in. The Problem Given a dataset, we are interested in. The Problem Given a dataset, we are interested

More information

Power Set of a set and Relations

Power Set of a set and Relations Power Set of a set and Relations 1 Power Set (1) Definition: The power set of a set S, denoted P(S), is the set of all subsets of S. Examples Let A={a,b,c}, P(A)={,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}}

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Bayes Nets: Inference Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

Inference. Inference: calculating some useful quantity from a joint probability distribution Examples: Posterior probability: Most likely explanation:

Inference. Inference: calculating some useful quantity from a joint probability distribution Examples: Posterior probability: Most likely explanation: Inference Inference: calculating some useful quantity from a joint probability distribution Examples: Posterior probability: B A E J M Most likely explanation: This slide deck courtesy of Dan Klein at

More information

CMPSCI 105: Lecture #12 Searching, Sorting, Joins, and Indexing PART #1: SEARCHING AND SORTING. Linear Search. Binary Search.

CMPSCI 105: Lecture #12 Searching, Sorting, Joins, and Indexing PART #1: SEARCHING AND SORTING. Linear Search. Binary Search. CMPSCI 105: Lecture #12 Searching, Sorting, Joins, and Indexing PART #1: SEARCHING AND SORTING Linear Search Binary Search Items can be in any order, Have to examine first record, then second record, then

More information

RNNs as Directed Graphical Models

RNNs as Directed Graphical Models RNNs as Directed Graphical Models Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 10. Topics in Sequence Modeling Overview

More information

Unsupervised Learning. CS 3793/5233 Artificial Intelligence Unsupervised Learning 1

Unsupervised Learning. CS 3793/5233 Artificial Intelligence Unsupervised Learning 1 Unsupervised CS 3793/5233 Artificial Intelligence Unsupervised 1 EM k-means Procedure Data Random Assignment Assign 1 Assign 2 Soft k-means In clustering, the target feature is not given. Goal: Construct

More information

4 Factor graphs and Comparing Graphical Model Types

4 Factor graphs and Comparing Graphical Model Types Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms for Inference Fall 2014 4 Factor graphs and Comparing Graphical Model Types We now introduce

More information

Lecture 6,

Lecture 6, Lecture 6, 4.16.2009 Today: Review: Basic Set Operation: Recall the basic set operator,!. From this operator come other set quantifiers and operations:!,!,!,! \ Set difference (sometimes denoted, a minus

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Bayes Nets: Inference Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley [These slides were created by Dan Klein and Pieter Abbeel for CS188

More information

Computational Geometry

Computational Geometry Windowing queries Windowing Windowing queries Zoom in; re-center and zoom in; select by outlining Windowing Windowing queries Windowing Windowing queries Given a set of n axis-parallel line segments, preprocess

More information

COMPSCI 311: Introduction to Algorithms First Midterm Exam, October 3, 2018

COMPSCI 311: Introduction to Algorithms First Midterm Exam, October 3, 2018 COMPSCI 311: Introduction to Algorithms First Midterm Exam, October 3, 2018 Name: ID: Answer the questions directly on the exam pages. Show all your work for each question. More detail including comments

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University April 1, 2019 Today: Inference in graphical models Learning graphical models Readings: Bishop chapter 8 Bayesian

More information

Introduction to Graphical Models

Introduction to Graphical Models Robert Collins CSE586 Introduction to Graphical Models Readings in Prince textbook: Chapters 10 and 11 but mainly only on directed graphs at this time Credits: Several slides are from: Review: Probability

More information

Comparative Analysis of Naive Bayes and Tree Augmented Naive Bayes Models

Comparative Analysis of Naive Bayes and Tree Augmented Naive Bayes Models San Jose State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research Spring 2014 Comparative Analysis of Naive Bayes and Tree Augmented Naive Bayes Models Harini Padmanaban

More information

Data Compression Techniques

Data Compression Techniques Data Compression Techniques Part 1: Entropy Coding Lecture 1: Introduction and Huffman Coding Juha Kärkkäinen 31.10.2017 1 / 21 Introduction Data compression deals with encoding information in as few bits

More information

1 Dynamic Programming

1 Dynamic Programming Recitation 13 Dynamic Programming Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2013) November 20, 2013 1 Dynamic Programming Dynamic programming is a technique to avoid needless

More information

( ) n 3. n 2 ( ) D. Ο

( ) n 3. n 2 ( ) D. Ο CSE 0 Name Test Summer 0 Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to multiply two n n matrices is: A. Θ( n) B. Θ( max( m,n, p) ) C.

More information

Clipping Lines. Dr. Scott Schaefer

Clipping Lines. Dr. Scott Schaefer Clipping Lines Dr. Scott Schaefer Why Clip? We do not want to waste time drawing objects that are outside of viewing window (or clipping window) 2/94 Clipping Points Given a point (x, y) and clipping window

More information

Math 205 Test 3 Grading Guidelines Problem 1 Part a: 1 point for figuring out r, 2 points for setting up the equation P = ln 2 P and 1 point for the initial condition. Part b: All or nothing. This is really

More information

Hierarchical Clustering 4/5/17

Hierarchical Clustering 4/5/17 Hierarchical Clustering 4/5/17 Hypothesis Space Continuous inputs Output is a binary tree with data points as leaves. Useful for explaining the training data. Not useful for making new predictions. Direction

More information

Computer Vision Group Prof. Daniel Cremers. 4a. Inference in Graphical Models

Computer Vision Group Prof. Daniel Cremers. 4a. Inference in Graphical Models Group Prof. Daniel Cremers 4a. Inference in Graphical Models Inference on a Chain (Rep.) The first values of µ α and µ β are: The partition function can be computed at any node: Overall, we have O(NK 2

More information

Monte Carlo Integration and Random Numbers

Monte Carlo Integration and Random Numbers Monte Carlo Integration and Random Numbers Higher dimensional integration u Simpson rule with M evaluations in u one dimension the error is order M -4! u d dimensions the error is order M -4/d u In general

More information

Module 8: Range-Searching in Dictionaries for Points

Module 8: Range-Searching in Dictionaries for Points Module 8: Range-Searching in Dictionaries for Points CS 240 Data Structures and Data Management T. Biedl K. Lanctot M. Sepehri S. Wild Based on lecture notes by many previous cs240 instructors David R.

More information

The Round Complexity of Distributed Sorting

The Round Complexity of Distributed Sorting The Round Complexity of Distributed Sorting by Boaz Patt-Shamir Marat Teplitsky Tel Aviv University 1 Motivation Distributed sorting Infrastructure is more and more distributed Cloud Smartphones 2 CONGEST

More information

Computer Vision Group Prof. Daniel Cremers. 6. Boosting

Computer Vision Group Prof. Daniel Cremers. 6. Boosting Prof. Daniel Cremers 6. Boosting Repetition: Regression We start with a set of basis functions (x) =( 0 (x), 1(x),..., M 1(x)) x 2 í d The goal is to fit a model into the data y(x, w) =w T (x) To do this,

More information

Partitioning Data. IRDS: Evaluation, Debugging, and Diagnostics. Cross-Validation. Cross-Validation for parameter tuning

Partitioning Data. IRDS: Evaluation, Debugging, and Diagnostics. Cross-Validation. Cross-Validation for parameter tuning Partitioning Data IRDS: Evaluation, Debugging, and Diagnostics Charles Sutton University of Edinburgh Training Validation Test Training : Running learning algorithms Validation : Tuning parameters of learning

More information

1 ICS 161: Design and Analysis of Algorithms Lecture notes for January 23, Bucket Sorting

1 ICS 161: Design and Analysis of Algorithms Lecture notes for January 23, Bucket Sorting 1 ICS 161: Design and Analysis of Algorithms Lecture notes for January 23, 1996 2 Bucket Sorting We ve seen various algorithms for sorting in O(n log n) time and a lower bound showing that O(n log n) is

More information

A Brief Introduction to Bayesian Networks. adapted from slides by Mitch Marcus

A Brief Introduction to Bayesian Networks. adapted from slides by Mitch Marcus A Brief Introduction to Bayesian Networks adapted from slides by Mitch Marcus Bayesian Networks A simple, graphical notation for conditional independence assertions and hence for compact specification

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 18 Luca Trevisan March 3, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 18 Luca Trevisan March 3, 2011 Stanford University CS359G: Graph Partitioning and Expanders Handout 8 Luca Trevisan March 3, 20 Lecture 8 In which we prove properties of expander graphs. Quasirandomness of Expander Graphs Recall that

More information

Mondrian Forests: Efficient Online Random Forests

Mondrian Forests: Efficient Online Random Forests Mondrian Forests: Efficient Online Random Forests Balaji Lakshminarayanan Joint work with Daniel M. Roy and Yee Whye Teh 1 Outline Background and Motivation Mondrian Forests Randomization mechanism Online

More information

CPSC 536N: Randomized Algorithms Term 2. Lecture 4

CPSC 536N: Randomized Algorithms Term 2. Lecture 4 CPSC 536N: Randomized Algorithms 2011-12 Term 2 Prof. Nick Harvey Lecture 4 University of British Columbia In today s lecture we will see two applications of negative binomially distributed random variables.

More information

David Rappaport School of Computing Queen s University CANADA. Copyright, 1996 Dale Carnegie & Associates, Inc.

David Rappaport School of Computing Queen s University CANADA. Copyright, 1996 Dale Carnegie & Associates, Inc. David Rappaport School of Computing Queen s University CANADA Copyright, 1996 Dale Carnegie & Associates, Inc. Data Compression There are two broad categories of data compression: Lossless Compression

More information

Balls Into Bins Model Occupancy Problems

Balls Into Bins Model Occupancy Problems Balls Into Bins Model Occupancy Problems Assume that m balls are thrown randomly is n bins, i.e., the location of each ball is independently and uniformly chosen at random from the n possibilities. How

More information

Homework 2. Due: March 2, 2018 at 7:00PM. p = 1 m. (x i ). i=1

Homework 2. Due: March 2, 2018 at 7:00PM. p = 1 m. (x i ). i=1 Homework 2 Due: March 2, 2018 at 7:00PM Written Questions Problem 1: Estimator (5 points) Let x 1, x 2,..., x m be an i.i.d. (independent and identically distributed) sample drawn from distribution B(p)

More information

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute. Module 02 Lecture - 45 Memoization

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute. Module 02 Lecture - 45 Memoization Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute Module 02 Lecture - 45 Memoization Let us continue our discussion of inductive definitions. (Refer Slide Time: 00:05)

More information

Sparse & Redundant Representations and Their Applications in Signal and Image Processing

Sparse & Redundant Representations and Their Applications in Signal and Image Processing Sparse & Redundant Representations and Their Applications in Signal and Image Processing Sparseland: An Estimation Point of View Michael Elad The Computer Science Department The Technion Israel Institute

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 17 EM CS/CNS/EE 155 Andreas Krause Announcements Project poster session on Thursday Dec 3, 4-6pm in Annenberg 2 nd floor atrium! Easels, poster boards and cookies

More information

CSE373: Data Structures & Algorithms Lecture 11: Implementing Union-Find. Lauren Milne Spring 2015

CSE373: Data Structures & Algorithms Lecture 11: Implementing Union-Find. Lauren Milne Spring 2015 CSE: Data Structures & Algorithms Lecture : Implementing Union-Find Lauren Milne Spring 05 Announcements Homework due in ONE week Wednesday April 9 th! TA sessions Catie will be back on Monday. The plan

More information

General Instructions. You can use QtSpim simulator to work on these assignments.

General Instructions. You can use QtSpim simulator to work on these assignments. General Instructions You can use QtSpim simulator to work on these assignments. Only one member of each group has to submit the assignment. Please Make sure that there is no duplicate submission from your

More information

Today. Logistic Regression. Decision Trees Redux. Graphical Models. Maximum Entropy Formulation. Now using Information Theory

Today. Logistic Regression. Decision Trees Redux. Graphical Models. Maximum Entropy Formulation. Now using Information Theory Today Logistic Regression Maximum Entropy Formulation Decision Trees Redux Now using Information Theory Graphical Models Representing conditional dependence graphically 1 Logistic Regression Optimization

More information

Machine Learning (BSMC-GA 4439) Wenke Liu

Machine Learning (BSMC-GA 4439) Wenke Liu Machine Learning (BSMC-GA 4439) Wenke Liu 01-31-017 Outline Background Defining proximity Clustering methods Determining number of clusters Comparing two solutions Cluster analysis as unsupervised Learning

More information

RYERSON UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPS 616 FINAL EXAM WINTER 2018

RYERSON UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPS 616 FINAL EXAM WINTER 2018 RYERSON UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPS 616 FINAL EXAM WINTER 2018 INSTRUCTIONS This exam is 3 hours long. This exam is out of 70 and is worth 55% of the course mark. This is a closed book

More information

Balanced Trees Part One

Balanced Trees Part One Balanced Trees Part One Balanced Trees Balanced search trees are among the most useful and versatile data structures. Many programming languages ship with a balanced tree library. C++: std::map / std::set

More information

Biology 644: Bioinformatics

Biology 644: Bioinformatics A statistical Markov model in which the system being modeled is assumed to be a Markov process with unobserved (hidden) states in the training data. First used in speech and handwriting recognition In

More information

Tree-Structured Indexes

Tree-Structured Indexes Tree-Structured Indexes Yanlei Diao UMass Amherst Slides Courtesy of R. Ramakrishnan and J. Gehrke Access Methods v File of records: Abstraction of disk storage for query processing (1) Sequential scan;

More information

CPS222 Lecture: Sets. 1. Projectable of random maze creation example 2. Handout of union/find code from program that does this

CPS222 Lecture: Sets. 1. Projectable of random maze creation example 2. Handout of union/find code from program that does this CPS222 Lecture: Sets Objectives: last revised April 16, 2015 1. To introduce representations for sets that can be used for various problems a. Array or list of members b. Map-based representation c. Bit

More information

Machine Learning (BSMC-GA 4439) Wenke Liu

Machine Learning (BSMC-GA 4439) Wenke Liu Machine Learning (BSMC-GA 4439) Wenke Liu 01-25-2018 Outline Background Defining proximity Clustering methods Determining number of clusters Other approaches Cluster analysis as unsupervised Learning Unsupervised

More information

COT 5407: Introduction. to Algorithms. Giri NARASIMHAN. 1/29/19 CAP 5510 / CGS 5166

COT 5407: Introduction. to Algorithms. Giri NARASIMHAN.   1/29/19 CAP 5510 / CGS 5166 COT 5407: Introduction!1 to Algorithms Giri NARASIMHAN www.cs.fiu.edu/~giri/teach/5407s19.html CAP 5510 / CGS 5166 1/29/19 !2 Computation Tree for A on n inputs! Assume A is a comparison-based sorting

More information

Hash Table and Hashing

Hash Table and Hashing Hash Table and Hashing The tree structures discussed so far assume that we can only work with the input keys by comparing them. No other operation is considered. In practice, it is often true that an input

More information

1 Dynamic Programming

1 Dynamic Programming Recitation 13 Dynamic Programming Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2013) April 17, 2013 1 Dynamic Programming Dynamic programming is a technique to avoid needless

More information

Tree-Structured Indexes

Tree-Structured Indexes Tree-Structured Indexes Chapter 9 Database Management Systems, R. Ramakrishnan and J. Gehrke 1 Introduction As for any index, 3 alternatives for data entries k*: Data record with key value k

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction A Monte Carlo method is a compuational method that uses random numbers to compute (estimate) some quantity of interest. Very often the quantity we want to compute is the mean of

More information

Algorithms. Appendix B. B.1 Matrix Algorithms. Matrix/Matrix multiplication. Vector/Matrix multiplication. This appendix is about algorithms.

Algorithms. Appendix B. B.1 Matrix Algorithms. Matrix/Matrix multiplication. Vector/Matrix multiplication. This appendix is about algorithms. Appendix B Algorithms This appendix is about algorithms. B.1 Matrix Algorithms When describing algorithms for manipulating matrices, we will use the notation x[i] for the i-th element of a vector (row

More information

Machine Learning

Machine Learning Machine Learning 10-701 Tom M. Mitchell Machine Learning Department Carnegie Mellon University January 20, 2011 Today: Bayes Classifiers Naïve Bayes Gaussian Naïve Bayes Readings: Mitchell: Naïve Bayes

More information

Machine Learning. Supervised Learning. Manfred Huber

Machine Learning. Supervised Learning. Manfred Huber Machine Learning Supervised Learning Manfred Huber 2015 1 Supervised Learning Supervised learning is learning where the training data contains the target output of the learning system. Training data D

More information

Graphical models are a lot like a circuit diagram they are written down to visualize and better understand a problem.

Graphical models are a lot like a circuit diagram they are written down to visualize and better understand a problem. Machine Learning (ML, F16) Lecture#15 (Tuesday, Nov. 1st) Lecturer: Byron Boots Graphical Models 1 Graphical Models Often, one is interested in representing a joint distribution P over a set of n random

More information

Binary floating point encodings

Binary floating point encodings Week 1: Wednesday, Jan 25 Binary floating point encodings Binary floating point arithmetic is essentially scientific notation. Where in decimal scientific notation we write in floating point, we write

More information

Upper Bounds for Maximally Greedy Binary Search Trees

Upper Bounds for Maximally Greedy Binary Search Trees Upper Bounds for Maximally Greedy Binary Search Trees Kyle Fox -- University of Illinois at Urbana-Champaign Balanced Binary Search Trees Want data structures for dictionary, predecessor search, etc. Red-black

More information

Recall from Tuesday. Our solution to fragmentation is to split up a process s address space into smaller chunks. Physical Memory OS.

Recall from Tuesday. Our solution to fragmentation is to split up a process s address space into smaller chunks. Physical Memory OS. Paging 11/10/16 Recall from Tuesday Our solution to fragmentation is to split up a process s address space into smaller chunks. Physical Memory OS Process 3 Process 3 OS: Place Process 3 Process 1 Process

More information

Approximate (Monte Carlo) Inference in Bayes Nets. Monte Carlo (continued)

Approximate (Monte Carlo) Inference in Bayes Nets. Monte Carlo (continued) Approximate (Monte Carlo) Inference in Bayes Nets Basic idea: Let s repeatedly sample according to the distribution represented by the Bayes Net. If in 400/1000 draws, the variable X is true, then we estimate

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms CSE 5311 Lecture 8 Sorting in Linear Time Junzhou Huang, Ph.D. Department of Computer Science and Engineering CSE5311 Design and Analysis of Algorithms 1 Sorting So Far

More information

Research Students Lecture Series 2015

Research Students Lecture Series 2015 Research Students Lecture Series 215 Analyse your big data with this one weird probabilistic approach! Or: applied probabilistic algorithms in 5 easy pieces Advait Sarkar advait.sarkar@cl.cam.ac.uk Research

More information

ASYMPTOTIC COMPLEXITY

ASYMPTOTIC COMPLEXITY Simplicity is a great virtue but it requires hard work to achieve it and education to appreciate it. And to make matters worse: complexity sells better. - Edsger Dijkstra ASYMPTOTIC COMPLEXITY Lecture

More information

Graphical Models. David M. Blei Columbia University. September 17, 2014

Graphical Models. David M. Blei Columbia University. September 17, 2014 Graphical Models David M. Blei Columbia University September 17, 2014 These lecture notes follow the ideas in Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. In addition,

More information

1 Definition of Reduction

1 Definition of Reduction 1 Definition of Reduction Problem A is reducible, or more technically Turing reducible, to problem B, denoted A B if there a main program M to solve problem A that lacks only a procedure to solve problem

More information

HTS Report. d2 Test of Attention. Technical Report. A Sample ID Date 17/12/2015. Mouse. Hogrefe Ltd, Oxford

HTS Report. d2 Test of Attention. Technical Report. A Sample ID Date 17/12/2015. Mouse. Hogrefe Ltd, Oxford HTS Report d2 Test of Attention Technical Report ID 8603-231 Date 17/12/2015 Mouse d2 Overview 2 / 12 OVERVIEW Structure of this report Profile sheet Table of scores Scale details Additional information

More information

CS242: Probabilistic Graphical Models Lecture 3: Factor Graphs & Variable Elimination

CS242: Probabilistic Graphical Models Lecture 3: Factor Graphs & Variable Elimination CS242: Probabilistic Graphical Models Lecture 3: Factor Graphs & Variable Elimination Instructor: Erik Sudderth Brown University Computer Science September 11, 2014 Some figures and materials courtesy

More information

CS 170 Algorithms Spring 2009 David Wagner MT2

CS 170 Algorithms Spring 2009 David Wagner MT2 CS 170 Algorithms Spring 2009 David Wagner MT2 PRINT your name:, (last) SIGN your name: (first) PRINT your Unix account login: Your TA s name: Discussion section time: Name of the person sitting to your

More information

Mondrian Forests: Efficient Online Random Forests

Mondrian Forests: Efficient Online Random Forests Mondrian Forests: Efficient Online Random Forests Balaji Lakshminarayanan (Gatsby Unit, UCL) Daniel M. Roy (Cambridge Toronto) Yee Whye Teh (Oxford) September 4, 2014 1 Outline Background and Motivation

More information

Lecture 9: Parameter Passing, Generics and Polymorphism, Exceptions

Lecture 9: Parameter Passing, Generics and Polymorphism, Exceptions Lecture 9: Parameter Passing, Generics and Polymorphism, Exceptions COMP 524 Programming Language Concepts Stephen Olivier February 12, 2008 Based on notes by A. Block, N. Fisher, F. Hernandez-Campos,

More information

CSE 202: Design and Analysis of Algorithms Lecture 3

CSE 202: Design and Analysis of Algorithms Lecture 3 CSE 202: Design and Analysis of Algorithms Lecture 3 Instructor: Kamalika Chaudhuri Announcement Homework 1 out Due on Mon April 11 in class No late homeworks will be accepted Greedy Algorithms Direct

More information

CS103 Handout 13 Fall 2012 May 4, 2012 Problem Set 5

CS103 Handout 13 Fall 2012 May 4, 2012 Problem Set 5 CS103 Handout 13 Fall 2012 May 4, 2012 Problem Set 5 This fifth problem set explores the regular languages, their properties, and their limits. This will be your first foray into computability theory,

More information

Λέων-Χαράλαμπος Σταματάρης

Λέων-Χαράλαμπος Σταματάρης Λέων-Χαράλαμπος Σταματάρης INTRODUCTION Two classical problems of information dissemination in computer networks: The broadcasting problem: Distributing a particular message from a distinguished source

More information

Data Structures and Algorithms Week 4

Data Structures and Algorithms Week 4 Data Structures and Algorithms Week. About sorting algorithms. Heapsort Complete binary trees Heap data structure. Quicksort a popular algorithm very fast on average Previous Week Divide and conquer Merge

More information

2 A Template for Minimum Spanning Tree Algorithms

2 A Template for Minimum Spanning Tree Algorithms CS, Lecture 5 Minimum Spanning Trees Scribe: Logan Short (05), William Chen (0), Mary Wootters (0) Date: May, 0 Introduction Today we will continue our discussion of greedy algorithms, specifically in

More information

1 Static-to-Dynamic Transformations

1 Static-to-Dynamic Transformations You re older than you ve ever been and now you re even older And now you re even older And now you re even older You re older than you ve ever been and now you re even older And now you re older still

More information

Jana Kosecka. Linear Time Sorting, Median, Order Statistics. Many slides here are based on E. Demaine, D. Luebke slides

Jana Kosecka. Linear Time Sorting, Median, Order Statistics. Many slides here are based on E. Demaine, D. Luebke slides Jana Kosecka Linear Time Sorting, Median, Order Statistics Many slides here are based on E. Demaine, D. Luebke slides Insertion sort: Easy to code Fast on small inputs (less than ~50 elements) Fast on

More information

Tree-Structured Indexes (Brass Tacks)

Tree-Structured Indexes (Brass Tacks) Tree-Structured Indexes (Brass Tacks) Chapter 10 Ramakrishnan and Gehrke (Sections 10.3-10.8) CPSC 404, Laks V.S. Lakshmanan 1 What will I learn from this set of lectures? How do B+trees work (for search)?

More information

Conceptual Data Modeling

Conceptual Data Modeling Conceptual Data odeling A data model is a way to describe the structure of the data. In models that are implemented it includes a set of operations that manipulate the data. A Data odel is a combination

More information

COSC160: Data Structures Hashing Structures. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Data Structures Hashing Structures. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Data Structures Hashing Structures Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Hashing Structures I. Motivation and Review II. Hash Functions III. HashTables I. Implementations

More information

Union/Find Aka: Disjoint-set forest. Problem definition. Naïve attempts CS 445

Union/Find Aka: Disjoint-set forest. Problem definition. Naïve attempts CS 445 CS 5 Union/Find Aka: Disjoint-set forest Alon Efrat Problem definition Given: A set of atoms S={1, n E.g. each represents a commercial name of a drugs. This set consists of different disjoint subsets.

More information

Fast Lookup: Hash tables

Fast Lookup: Hash tables CSE 100: HASHING Operations: Find (key based look up) Insert Delete Fast Lookup: Hash tables Consider the 2-sum problem: Given an unsorted array of N integers, find all pairs of elements that sum to a

More information

Statistical Techniques in Robotics (STR, S15) Lecture#06 (Wednesday, January 28)

Statistical Techniques in Robotics (STR, S15) Lecture#06 (Wednesday, January 28) Statistical Techniques in Robotics (STR, S15) Lecture#06 (Wednesday, January 28) Lecturer: Byron Boots Graphical Models 1 Graphical Models Often one is interested in representing a joint distribution P

More information

Data Structures Lecture 3 Order Notation and Recursion

Data Structures Lecture 3 Order Notation and Recursion Data Structures Lecture 3 Order Notation and Recursion 1 Overview The median grade.cpp program from Lecture 2 and background on constructing and using vectors. Algorithm analysis; order notation Recursion

More information

Section 6.1 Estimating With Finite Sums

Section 6.1 Estimating With Finite Sums Suppose that a jet takes off, becomes airborne at a velocity of 180 mph and climbs to its cruising altitude. The following table gives the velocity every hour for the first 5 hours, a time during which

More information

Review I" CMPSCI 383 December 6, 2011!

Review I CMPSCI 383 December 6, 2011! Review I" CMPSCI 383 December 6, 2011! 1 General Information about the Final" Closed book closed notes! Includes midterm material too! But expect more emphasis on later material! 2 What you should know!

More information

CS240 Fall Mike Lam, Professor. Algorithm Analysis

CS240 Fall Mike Lam, Professor. Algorithm Analysis CS240 Fall 2014 Mike Lam, Professor Algorithm Analysis HW1 Grades are Posted Grades were generally good Check my comments! Come talk to me if you have any questions PA1 is Due 9/17 @ noon Web-CAT submission

More information